Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_10.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_10.c Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,297 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 30 16:52:40 EDT 2016 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */ + +/* + * This function contains 61 FP additions, 60 FP multiplications, + * (or, 33 additions, 32 multiplications, 28 fused multiply/add), + * 77 stack variables, 5 constants, and 20 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { + V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1; + V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ; + V TT, Tz, T7, TR, To, Tu, TU; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tv = LDW(&(W[0])); + T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + Tq = LDW(&(W[TWVL * 6])); + Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T9 = LDW(&(W[TWVL * 2])); + Ti = LDW(&(W[TWVL * 4])); + Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); + Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Tr = VZMULJ(Tq, VFMACONJ(T6, T5)); + Td = LDW(&(W[TWVL * 12])); + Tx = LDW(&(W[TWVL * 10])); + Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); + Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta)); + Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + Tk = LDW(&(W[TWVL * 14])); + Ts = LDW(&(W[TWVL * 16])); + Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te)); + Ty = VZMULJ(Tx, VFMACONJ(Tf, Te)); + T3 = VFMACONJ(T2, T1); + T4 = LDW(&(W[TWVL * 8])); + Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl)); + Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl)); + Th = VSUB(Tc, Tg); + TQ = VADD(Tc, Tg); + TT = VADD(Tw, Ty); + Tz = VSUB(Tw, Ty); + T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5)); + TR = VADD(Tj, Tn); + To = VSUB(Tj, Tn); + Tu = VSUB(Tr, Tt); + TU = VADD(Tr, Tt); + { + V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ; + V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ; + V T18, T19, T15, T14; + TP = VADD(T3, T7); + T8 = VSUB(T3, T7); + TS = VADD(TQ, TR); + T11 = VSUB(TQ, TR); + Tp = VSUB(Th, To); + TH = VADD(Th, To); + TA = VSUB(Tu, Tz); + TG = VADD(Tz, Tu); + TV = VADD(TT, TU); + T12 = VSUB(TU, TT); + TE = VSUB(Tp, TA); + TB = VADD(Tp, TA); + TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH)); + TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG)); + TZ = VSUB(TS, TV); + TW = VADD(TS, TV); + T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12)); + T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11)); + TD = VFNMS(LDK(KP250000000), TB, T8); + TC = VMUL(LDK(KP500000000), VADD(T8, TB)); + TY = VFNMS(LDK(KP250000000), TW, TP); + TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW))); + TL = VFMA(LDK(KP559016994), TE, TD); + TF = VFNMS(LDK(KP559016994), TE, TD); + ST(&(Rp[0]), TC, ms, &(Rp[0])); + T10 = VFMA(LDK(KP559016994), TZ, TY); + T16 = VFNMS(LDK(KP559016994), TZ, TY); + ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0])); + TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL))); + TO = VMUL(LDK(KP500000000), VFMAI(TM, TL)); + TK = VMUL(LDK(KP500000000), VFMAI(TI, TF)); + TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF))); + T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16)); + T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16))); + T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10))); + T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10)); + ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0])); + ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0])); + ST(&(Rm[0]), T15, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} }; + +void XSIMD(codelet_hc2cfdftv_10) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */ + +/* + * This function contains 61 FP additions, 38 FP multiplications, + * (or, 55 additions, 32 multiplications, 6 fused multiply/add), + * 82 stack variables, 5 constants, and 20 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP125000000, +0.125000000000000000000000000000000000000000000); + DVK(KP279508497, +0.279508497187473712051146708591409529430077295); + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) { + V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN; + V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c; + V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d; + { + V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6; + V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm; + V TC, T4, T9, T5; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + T3 = VCONJ(T2); + Tx = LDW(&(W[0])); + Ty = VZMULIJ(Tx, VSUB(T3, T1)); + T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T7 = VCONJ(T6); + TA = LDW(&(W[TWVL * 6])); + TB = VZMULJ(TA, VADD(T7, T8)); + Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Te = VCONJ(Td); + Tb = LDW(&(W[TWVL * 2])); + Tf = VZMULJ(Tb, VADD(Tc, Te)); + Tr = LDW(&(W[TWVL * 4])); + Ts = VZMULIJ(Tr, VSUB(Te, Tc)); + Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Ti = VCONJ(Th); + Tg = LDW(&(W[TWVL * 12])); + Tk = VZMULIJ(Tg, VSUB(Ti, Tj)); + Tv = LDW(&(W[TWVL * 10])); + Tw = VZMULJ(Tv, VADD(Ti, Tj)); + Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + Tp = VCONJ(To); + Tm = LDW(&(W[TWVL * 14])); + Tq = VZMULJ(Tm, VADD(Tn, Tp)); + TC = LDW(&(W[TWVL * 16])); + TD = VZMULIJ(TC, VSUB(Tp, Tn)); + Tl = VSUB(Tf, Tk); + Tt = VSUB(Tq, Ts); + Tu = VADD(Tl, Tt); + TY = VADD(Ty, Tw); + TZ = VADD(TB, TD); + T10 = VADD(TY, TZ); + Tz = VSUB(Tw, Ty); + TE = VSUB(TB, TD); + TF = VADD(Tz, TE); + TV = VADD(Tf, Tk); + TW = VADD(Ts, Tq); + TX = VADD(TV, TW); + T4 = VADD(T1, T3); + T5 = LDW(&(W[TWVL * 8])); + T9 = VZMULIJ(T5, VSUB(T7, T8)); + Ta = VSUB(T4, T9); + TU = VADD(T4, T9); + } + TL = VSUB(Tl, Tt); + TM = VSUB(TE, Tz); + TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM)))); + TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM)))); + TI = VMUL(LDK(KP279508497), VSUB(Tu, TF)); + TG = VADD(Tu, TF); + TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta)); + TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG))); + TQ = VSUB(TJ, TI); + TK = VADD(TI, TJ); + ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0])); + TT = VCONJ(VADD(TQ, TR)); + ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0])); + TO = VSUB(TK, TN); + ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)])); + TP = VCONJ(VADD(TK, TN)); + ST(&(Rm[0]), TP, -ms, &(Rm[0])); + TS = VSUB(TQ, TR); + ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)])); + T16 = VSUB(TZ, TY); + T17 = VSUB(TV, TW); + T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16)))); + T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16)))); + T14 = VMUL(LDK(KP279508497), VSUB(TX, T10)); + T11 = VADD(TX, T10); + T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU)); + T12 = VMUL(LDK(KP500000000), VADD(TU, T11)); + T1b = VADD(T14, T13); + T15 = VSUB(T13, T14); + ST(&(Rp[0]), T12, ms, &(Rp[0])); + T1e = VADD(T1b, T1c); + ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0])); + T19 = VCONJ(VSUB(T15, T18)); + ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)])); + T1a = VADD(T15, T18); + ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0])); + T1d = VCONJ(VSUB(T1b, T1c)); + ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} }; + +void XSIMD(codelet_hc2cfdftv_10) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */