Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/rdft/buffered.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/rdft/buffered.c Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,337 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "rdft.h" + +typedef struct { + solver super; + size_t maxnbuf_ndx; +} S; + +static const INT maxnbufs[] = { 8, 256 }; + +typedef struct { + plan_rdft super; + + plan *cld, *cldcpy, *cldrest; + INT n, vl, nbuf, bufdist; + INT ivs_by_nbuf, ovs_by_nbuf; +} P; + +/* transform a vector input with the help of bufs */ +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld = (plan_rdft *) ego->cld; + plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; + plan_rdft *cldrest; + INT i, vl = ego->vl, nbuf = ego->nbuf; + INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; + R *bufs; + + bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS); + + for (i = nbuf; i <= vl; i += nbuf) { + /* transform to bufs: */ + cld->apply((plan *) cld, I, bufs); + I += ivs_by_nbuf; + + /* copy back */ + cldcpy->apply((plan *) cldcpy, bufs, O); + O += ovs_by_nbuf; + } + + X(ifree)(bufs); + + /* Do the remaining transforms, if any: */ + cldrest = (plan_rdft *) ego->cldrest; + cldrest->apply((plan *) cldrest, I, O); +} + +/* for hc2r problems, copy the input into buffer, and then + transform buffer->output, which allows for destruction of the + buffer */ +static void apply_hc2r(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld = (plan_rdft *) ego->cld; + plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; + plan_rdft *cldrest; + INT i, vl = ego->vl, nbuf = ego->nbuf; + INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; + R *bufs; + + bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS); + + for (i = nbuf; i <= vl; i += nbuf) { + /* copy input into bufs: */ + cldcpy->apply((plan *) cldcpy, I, bufs); + I += ivs_by_nbuf; + + /* transform to output */ + cld->apply((plan *) cld, bufs, O); + O += ovs_by_nbuf; + } + + X(ifree)(bufs); + + /* Do the remaining transforms, if any: */ + cldrest = (plan_rdft *) ego->cldrest; + cldrest->apply((plan *) cldrest, I, O); +} + + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + + X(plan_awake)(ego->cld, wakefulness); + X(plan_awake)(ego->cldcpy, wakefulness); + X(plan_awake)(ego->cldrest, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldrest); + X(plan_destroy_internal)(ego->cldcpy); + X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(rdft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))", + ego->n, ego->nbuf, + ego->vl, ego->bufdist % ego->n, + ego->cld, ego->cldcpy, ego->cldrest); +} + +static int applicable0(const S *ego, const problem *p_, const planner *plnr) +{ + const problem_rdft *p = (const problem_rdft *) p_; + iodim *d = p->sz->dims; + + if (1 + && p->vecsz->rnk <= 1 + && p->sz->rnk == 1 + ) { + INT vl, ivs, ovs; + X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); + + if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr)) + return 0; + + /* if this solver is redundant, in the sense that a solver + of lower index generates the same plan, then prune this + solver */ + if (X(nbuf_redundant)(d[0].n, vl, + ego->maxnbuf_ndx, + maxnbufs, NELEM(maxnbufs))) + return 0; + + if (p->I != p->O) { + if (p->kind[0] == HC2R) { + /* Allow HC2R problems only if the input is to be + preserved. This solver sets NO_DESTROY_INPUT, + which prevents infinite loops */ + return (NO_DESTROY_INPUTP(plnr)); + } else { + /* + In principle, the buffered transforms might be useful + when working out of place. However, in order to + prevent infinite loops in the planner, we require + that the output stride of the buffered transforms be + greater than 1. + */ + return (d[0].os > 1); + } + } + + /* + * If the problem is in place, the input/output strides must + * be the same or the whole thing must fit in the buffer. + */ + if (X(tensor_inplace_strides2)(p->sz, p->vecsz)) + return 1; + + if (/* fits into buffer: */ + ((p->vecsz->rnk == 0) + || + (X(nbuf)(d[0].n, p->vecsz->dims[0].n, + maxnbufs[ego->maxnbuf_ndx]) + == p->vecsz->dims[0].n))) + return 1; + } + + return 0; +} + +static int applicable(const S *ego, const problem *p_, const planner *plnr) +{ + const problem_rdft *p; + + if (NO_BUFFERINGP(plnr)) return 0; + + if (!applicable0(ego, p_, plnr)) return 0; + + p = (const problem_rdft *) p_; + if (p->kind[0] == HC2R) { + if (NO_UGLYP(plnr)) { + /* UGLY if in-place and too big, since the problem + could be solved via transpositions */ + if (p->I == p->O && X(toobig)(p->sz->dims[0].n)) + return 0; + } + } else { + if (NO_UGLYP(plnr)) { + if (p->I != p->O) return 0; + if (X(toobig)(p->sz->dims[0].n)) return 0; + } + } + return 1; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + P *pln; + const S *ego = (const S *)ego_; + plan *cld = (plan *) 0; + plan *cldcpy = (plan *) 0; + plan *cldrest = (plan *) 0; + const problem_rdft *p = (const problem_rdft *) p_; + R *bufs = (R *) 0; + INT nbuf = 0, bufdist, n, vl; + INT ivs, ovs; + int hc2rp; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego, p_, plnr)) + goto nada; + + n = X(tensor_sz)(p->sz); + X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); + hc2rp = (p->kind[0] == HC2R); + + nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]); + bufdist = X(bufdist)(n, vl); + A(nbuf > 0); + + /* initial allocation for the purpose of planning */ + bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); + + if (hc2rp) { + /* allow destruction of buffer */ + cld = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_d)( + X(mktensor_1d)(n, 1, p->sz->dims[0].os), + X(mktensor_1d)(nbuf, bufdist, ovs), + bufs, TAINT(p->O, ovs * nbuf), p->kind), + 0, 0, NO_DESTROY_INPUT); + if (!cld) goto nada; + + /* copying input into buffer buffer is a rank-0 transform: */ + cldcpy = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_2d)(nbuf, ivs, bufdist, + n, p->sz->dims[0].is, 1), + TAINT(p->I, ivs * nbuf), bufs)); + if (!cldcpy) goto nada; + } else { + /* allow destruction of input if problem is in place */ + cld = X(mkplan_f_d)(plnr, + X(mkproblem_rdft_d)( + X(mktensor_1d)(n, p->sz->dims[0].is, 1), + X(mktensor_1d)(nbuf, ivs, bufdist), + TAINT(p->I, ivs * nbuf), bufs, p->kind), + 0, 0, (p->I == p->O) ? NO_DESTROY_INPUT : 0); + if (!cld) goto nada; + + /* copying back from the buffer is a rank-0 transform: */ + cldcpy = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_2d)(nbuf, bufdist, ovs, + n, 1, p->sz->dims[0].os), + bufs, TAINT(p->O, ovs * nbuf))); + if (!cldcpy) goto nada; + } + + /* deallocate buffers, let apply() allocate them for real */ + X(ifree)(bufs); + bufs = 0; + + /* plan the leftover transforms (cldrest): */ + { + INT id = ivs * (nbuf * (vl / nbuf)); + INT od = ovs * (nbuf * (vl / nbuf)); + cldrest = X(mkplan_d)(plnr, + X(mkproblem_rdft_d)( + X(tensor_copy)(p->sz), + X(mktensor_1d)(vl % nbuf, ivs, ovs), + p->I + id, p->O + od, p->kind)); + } + if (!cldrest) goto nada; + + pln = MKPLAN_RDFT(P, &padt, hc2rp ? apply_hc2r : apply); + pln->cld = cld; + pln->cldcpy = cldcpy; + pln->cldrest = cldrest; + pln->n = n; + pln->vl = vl; + pln->ivs_by_nbuf = ivs * nbuf; + pln->ovs_by_nbuf = ovs * nbuf; + + pln->nbuf = nbuf; + pln->bufdist = bufdist; + + { + opcnt t; + X(ops_add)(&cld->ops, &cldcpy->ops, &t); + X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops); + } + + return &(pln->super.super); + + nada: + X(ifree0)(bufs); + X(plan_destroy_internal)(cldrest); + X(plan_destroy_internal)(cldcpy); + X(plan_destroy_internal)(cld); + return (plan *) 0; +} + +static solver *mksolver(size_t maxnbuf_ndx) +{ + static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->maxnbuf_ndx = maxnbuf_ndx; + return &(slv->super); +} + +void X(rdft_buffered_register)(planner *p) +{ + size_t i; + for (i = 0; i < NELEM(maxnbufs); ++i) + REGISTER_SOLVER(p, mksolver(i)); +}