Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/libbench2/verify-rdft2.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/libbench2/verify-rdft2.c Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,307 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "verify.h" + +/* copy real A into real B, using output stride of A and input stride of B */ +typedef struct { + dotens2_closure k; + R *ra; + R *rb; +} cpyr_closure; + +static void cpyr0(dotens2_closure *k_, + int indxa, int ondxa, int indxb, int ondxb) +{ + cpyr_closure *k = (cpyr_closure *)k_; + k->rb[indxb] = k->ra[ondxa]; + UNUSED(indxa); UNUSED(ondxb); +} + +static void cpyr(R *ra, const bench_tensor *sza, + R *rb, const bench_tensor *szb) +{ + cpyr_closure k; + k.k.apply = cpyr0; + k.ra = ra; k.rb = rb; + bench_dotens2(sza, szb, &k.k); +} + +/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride + of A and input stride of B. Only copies non-redundant half; other + half must be copied via mkhermitian. */ +typedef struct { + dotens2_closure k; + int n; + int as; + int scalea; + R *ra, *ia; + R *rb, *ib; +} cpyhc2_closure; + +static void cpyhc20(dotens2_closure *k_, + int indxa, int ondxa, int indxb, int ondxb) +{ + cpyhc2_closure *k = (cpyhc2_closure *)k_; + int i, n = k->n; + int scalea = k->scalea; + int as = k->as * scalea; + R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea; + R *rb = k->rb + indxb, *ib = k->ib + indxb; + UNUSED(indxa); UNUSED(ondxb); + + for (i = 0; i < n/2 + 1; ++i) { + rb[2*i] = ra[as*i]; + ib[2*i] = ia[as*i]; + } +} + +static void cpyhc2(R *ra, R *ia, + const bench_tensor *sza, const bench_tensor *vecsza, + int scalea, + R *rb, R *ib, const bench_tensor *szb) +{ + cpyhc2_closure k; + BENCH_ASSERT(sza->rnk <= 1); + k.k.apply = cpyhc20; + k.n = tensor_sz(sza); + k.scalea = scalea; + if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0) + k.as = 0; + else + k.as = sza->dims[0].os; + k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; + bench_dotens2(vecsza, szb, &k.k); +} + +/* icpyhc2 is the inverse of cpyhc2 */ + +static void icpyhc20(dotens2_closure *k_, + int indxa, int ondxa, int indxb, int ondxb) +{ + cpyhc2_closure *k = (cpyhc2_closure *)k_; + int i, n = k->n; + int scalea = k->scalea; + int as = k->as * scalea; + R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea; + R *rb = k->rb + ondxb, *ib = k->ib + ondxb; + UNUSED(ondxa); UNUSED(indxb); + + for (i = 0; i < n/2 + 1; ++i) { + ra[as*i] = rb[2*i]; + ia[as*i] = ib[2*i]; + } +} + +static void icpyhc2(R *ra, R *ia, + const bench_tensor *sza, const bench_tensor *vecsza, + int scalea, + R *rb, R *ib, const bench_tensor *szb) +{ + cpyhc2_closure k; + BENCH_ASSERT(sza->rnk <= 1); + k.k.apply = icpyhc20; + k.n = tensor_sz(sza); + k.scalea = scalea; + if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0) + k.as = 0; + else + k.as = sza->dims[0].is; + k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; + bench_dotens2(vecsza, szb, &k.k); +} + +typedef struct { + dofft_closure k; + bench_problem *p; +} dofft_rdft2_closure; + +static void rdft2_apply(dofft_closure *k_, + bench_complex *in, bench_complex *out) +{ + dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_; + bench_problem *p = k->p; + bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap; + bench_tensor *probsz2, *totalsz2, *pckdsz2; + bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap; + bench_real *ri, *ii, *ro, *io; + int n2, totalscale; + + totalsz = tensor_append(p->vecsz, p->sz); + pckdsz = verify_pack(totalsz, 2); + n2 = tensor_sz(totalsz); + if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0) + n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * + (p->sz->dims[p->sz->rnk - 1].n / 2 + 1); + ri = (bench_real *) p->in; + ro = (bench_real *) p->out; + + if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) { + probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1); + totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1); + pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1); + } + else { + probsz2 = mktensor(0); + totalsz2 = tensor_copy(totalsz); + pckdsz2 = tensor_copy(pckdsz); + } + + totalsz_swap = tensor_copy_swapio(totalsz); + pckdsz_swap = tensor_copy_swapio(pckdsz); + totalsz2_swap = tensor_copy_swapio(totalsz2); + pckdsz2_swap = tensor_copy_swapio(pckdsz2); + probsz2_swap = tensor_copy_swapio(probsz2); + + /* confusion: the stride is the distance between complex elements + when using interleaved format, but it is the distance between + real elements when using split format */ + if (p->split) { + ii = p->ini ? (bench_real *) p->ini : ri + n2; + io = p->outi ? (bench_real *) p->outi : ro + n2; + totalscale = 1; + } else { + ii = p->ini ? (bench_real *) p->ini : ri + 1; + io = p->outi ? (bench_real *) p->outi : ro + 1; + totalscale = 2; + } + + if (p->sign < 0) { /* R2HC */ + int N, vN, i; + cpyr(&c_re(in[0]), pckdsz, ri, totalsz); + after_problem_rcopy_from(p, ri); + doit(1, p); + after_problem_hccopy_to(p, ro, io); + if (k->k.recopy_input) + cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap); + cpyhc2(ro, io, probsz2, totalsz2, totalscale, + &c_re(out[0]), &c_im(out[0]), pckdsz2); + N = tensor_sz(p->sz); + vN = tensor_sz(p->vecsz); + for (i = 0; i < vN; ++i) + mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1); + } + else { /* HC2R */ + icpyhc2(ri, ii, probsz2, totalsz2, totalscale, + &c_re(in[0]), &c_im(in[0]), pckdsz2); + after_problem_hccopy_from(p, ri, ii); + doit(1, p); + after_problem_rcopy_to(p, ro); + if (k->k.recopy_input) + cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale, + &c_re(in[0]), &c_im(in[0]), pckdsz2_swap); + mkreal(out, tensor_sz(pckdsz)); + cpyr(ro, totalsz, &c_re(out[0]), pckdsz); + } + + tensor_destroy(totalsz); + tensor_destroy(pckdsz); + tensor_destroy(totalsz_swap); + tensor_destroy(pckdsz_swap); + tensor_destroy(probsz2); + tensor_destroy(totalsz2); + tensor_destroy(pckdsz2); + tensor_destroy(probsz2_swap); + tensor_destroy(totalsz2_swap); + tensor_destroy(pckdsz2_swap); +} + +void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e) +{ + C *inA, *inB, *inC, *outA, *outB, *outC, *tmp; + int n, vecn, N; + dofft_rdft2_closure k; + + BENCH_ASSERT(p->kind == PROBLEM_REAL); + + if (!BENCH_FINITE_RNK(p->sz->rnk) || !BENCH_FINITE_RNK(p->vecsz->rnk)) + return; /* give up */ + + k.k.apply = rdft2_apply; + k.k.recopy_input = 0; + k.p = p; + + if (rounds == 0) + rounds = 20; /* default value */ + + n = tensor_sz(p->sz); + vecn = tensor_sz(p->vecsz); + N = n * vecn; + + inA = (C *) bench_malloc(N * sizeof(C)); + inB = (C *) bench_malloc(N * sizeof(C)); + inC = (C *) bench_malloc(N * sizeof(C)); + outA = (C *) bench_malloc(N * sizeof(C)); + outB = (C *) bench_malloc(N * sizeof(C)); + outC = (C *) bench_malloc(N * sizeof(C)); + tmp = (C *) bench_malloc(N * sizeof(C)); + + e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, + tmp, rounds, tol); + e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC, + tmp, rounds, tol); + + e->s = 0.0; + if (p->sign < 0) + e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, + inA, inB, outA, outB, + tmp, rounds, tol, TIME_SHIFT)); + else + e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign, + inA, inB, outA, outB, + tmp, rounds, tol, FREQ_SHIFT)); + + if (!p->in_place && !p->destroy_input) + preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1, + N, inA, inB, outB, rounds); + + bench_free(tmp); + bench_free(outC); + bench_free(outB); + bench_free(outA); + bench_free(inC); + bench_free(inB); + bench_free(inA); +} + +void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds, + double t[6]) +{ + dofft_rdft2_closure k; + int n; + C *a, *b; + + BENCH_ASSERT(p->kind == PROBLEM_REAL); + BENCH_ASSERT(p->sz->rnk == 1); + BENCH_ASSERT(p->vecsz->rnk == 0); + + k.k.apply = rdft2_apply; + k.k.recopy_input = 0; + k.p = p; + n = tensor_sz(p->sz); + + a = (C *) bench_malloc(n * sizeof(C)); + b = (C *) bench_malloc(n * sizeof(C)); + accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, + n, a, b, rounds, impulse_rounds, t); + bench_free(b); + bench_free(a); +}