diff src/fftw-3.3.5/libbench2/verify-rdft2.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/libbench2/verify-rdft2.c	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,307 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "verify.h"
+
+/* copy real A into real B, using output stride of A and input stride of B */
+typedef struct {
+     dotens2_closure k;
+     R *ra;
+     R *rb;
+} cpyr_closure;
+
+static void cpyr0(dotens2_closure *k_,
+                  int indxa, int ondxa, int indxb, int ondxb)
+{
+     cpyr_closure *k = (cpyr_closure *)k_;
+     k->rb[indxb] = k->ra[ondxa];
+     UNUSED(indxa); UNUSED(ondxb);
+}
+
+static void cpyr(R *ra, const bench_tensor *sza, 
+		 R *rb, const bench_tensor *szb)
+{
+     cpyr_closure k;
+     k.k.apply = cpyr0;
+     k.ra = ra; k.rb = rb;
+     bench_dotens2(sza, szb, &k.k);
+}
+
+/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
+   of A and input stride of B.  Only copies non-redundant half; other
+   half must be copied via mkhermitian. */
+typedef struct {
+     dotens2_closure k;
+     int n;
+     int as;
+     int scalea;
+     R *ra, *ia;
+     R *rb, *ib;
+} cpyhc2_closure;
+
+static void cpyhc20(dotens2_closure *k_, 
+		    int indxa, int ondxa, int indxb, int ondxb)
+{
+     cpyhc2_closure *k = (cpyhc2_closure *)k_;
+     int i, n = k->n;
+     int scalea = k->scalea;
+     int as = k->as * scalea;
+     R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
+     R *rb = k->rb + indxb, *ib = k->ib + indxb;
+     UNUSED(indxa); UNUSED(ondxb);
+
+     for (i = 0; i < n/2 + 1; ++i) {
+	  rb[2*i] = ra[as*i];
+	  ib[2*i] = ia[as*i];
+     }
+}
+
+static void cpyhc2(R *ra, R *ia,
+		   const bench_tensor *sza, const bench_tensor *vecsza,
+		   int scalea,
+		   R *rb, R *ib, const bench_tensor *szb)
+{
+     cpyhc2_closure k;
+     BENCH_ASSERT(sza->rnk <= 1);
+     k.k.apply = cpyhc20;
+     k.n = tensor_sz(sza);
+     k.scalea = scalea;
+     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
+	  k.as = 0;
+     else
+	  k.as = sza->dims[0].os;
+     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
+     bench_dotens2(vecsza, szb, &k.k);
+}
+
+/* icpyhc2 is the inverse of cpyhc2 */
+
+static void icpyhc20(dotens2_closure *k_, 
+		     int indxa, int ondxa, int indxb, int ondxb)
+{
+     cpyhc2_closure *k = (cpyhc2_closure *)k_;
+     int i, n = k->n;
+     int scalea = k->scalea;
+     int as = k->as * scalea;
+     R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
+     R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
+     UNUSED(ondxa); UNUSED(indxb);
+
+     for (i = 0; i < n/2 + 1; ++i) {
+	  ra[as*i] = rb[2*i];
+	  ia[as*i] = ib[2*i];
+     }
+}
+
+static void icpyhc2(R *ra, R *ia, 
+		    const bench_tensor *sza, const bench_tensor *vecsza,
+		    int scalea,
+		    R *rb, R *ib, const bench_tensor *szb)
+{
+     cpyhc2_closure k;
+     BENCH_ASSERT(sza->rnk <= 1);
+     k.k.apply = icpyhc20;
+     k.n = tensor_sz(sza);
+     k.scalea = scalea;
+     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
+	  k.as = 0;
+     else
+	  k.as = sza->dims[0].is;
+     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
+     bench_dotens2(vecsza, szb, &k.k);
+}
+
+typedef struct {
+     dofft_closure k;
+     bench_problem *p;
+} dofft_rdft2_closure;
+
+static void rdft2_apply(dofft_closure *k_, 
+			bench_complex *in, bench_complex *out)
+{
+     dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
+     bench_problem *p = k->p;
+     bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
+     bench_tensor *probsz2, *totalsz2, *pckdsz2;
+     bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
+     bench_real *ri, *ii, *ro, *io;
+     int n2, totalscale;
+
+     totalsz = tensor_append(p->vecsz, p->sz);
+     pckdsz = verify_pack(totalsz, 2);
+     n2 = tensor_sz(totalsz);
+     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
+	  n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * 
+	       (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
+     ri = (bench_real *) p->in;
+     ro = (bench_real *) p->out;
+
+     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
+	  probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
+	  totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
+	  pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
+     }
+     else {
+	  probsz2 = mktensor(0);
+	  totalsz2 = tensor_copy(totalsz);
+	  pckdsz2 = tensor_copy(pckdsz);
+     }
+
+     totalsz_swap = tensor_copy_swapio(totalsz);
+     pckdsz_swap = tensor_copy_swapio(pckdsz);
+     totalsz2_swap = tensor_copy_swapio(totalsz2);
+     pckdsz2_swap = tensor_copy_swapio(pckdsz2);
+     probsz2_swap = tensor_copy_swapio(probsz2);
+
+     /* confusion: the stride is the distance between complex elements
+	when using interleaved format, but it is the distance between
+	real elements when using split format */
+     if (p->split) {
+	  ii = p->ini ? (bench_real *) p->ini : ri + n2;
+	  io = p->outi ? (bench_real *) p->outi : ro + n2;
+	  totalscale = 1;
+     } else {
+	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
+	  io = p->outi ? (bench_real *) p->outi : ro + 1;
+	  totalscale = 2;
+     }
+
+     if (p->sign < 0) { /* R2HC */
+	  int N, vN, i;
+	  cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
+	  after_problem_rcopy_from(p, ri);
+	  doit(1, p);
+	  after_problem_hccopy_to(p, ro, io);
+	  if (k->k.recopy_input)
+	       cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
+	  cpyhc2(ro, io, probsz2, totalsz2, totalscale,
+		 &c_re(out[0]), &c_im(out[0]), pckdsz2);
+	  N = tensor_sz(p->sz);
+	  vN = tensor_sz(p->vecsz);
+	  for (i = 0; i < vN; ++i)
+	       mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
+     }
+     else { /* HC2R */
+	  icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
+		  &c_re(in[0]), &c_im(in[0]), pckdsz2);
+	  after_problem_hccopy_from(p, ri, ii);
+	  doit(1, p);
+	  after_problem_rcopy_to(p, ro);
+	  if (k->k.recopy_input)
+	       cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
+		      &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
+	  mkreal(out, tensor_sz(pckdsz));
+	  cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
+     }
+
+     tensor_destroy(totalsz);
+     tensor_destroy(pckdsz);
+     tensor_destroy(totalsz_swap);
+     tensor_destroy(pckdsz_swap);
+     tensor_destroy(probsz2);
+     tensor_destroy(totalsz2);
+     tensor_destroy(pckdsz2);
+     tensor_destroy(probsz2_swap);
+     tensor_destroy(totalsz2_swap);
+     tensor_destroy(pckdsz2_swap);
+}
+
+void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
+{
+     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
+     int n, vecn, N;
+     dofft_rdft2_closure k;
+
+     BENCH_ASSERT(p->kind == PROBLEM_REAL);
+
+     if (!BENCH_FINITE_RNK(p->sz->rnk) || !BENCH_FINITE_RNK(p->vecsz->rnk))
+	  return;      /* give up */
+
+     k.k.apply = rdft2_apply;
+     k.k.recopy_input = 0;
+     k.p = p;
+
+     if (rounds == 0)
+	  rounds = 20;  /* default value */
+
+     n = tensor_sz(p->sz);
+     vecn = tensor_sz(p->vecsz);
+     N = n * vecn;
+
+     inA = (C *) bench_malloc(N * sizeof(C));
+     inB = (C *) bench_malloc(N * sizeof(C));
+     inC = (C *) bench_malloc(N * sizeof(C));
+     outA = (C *) bench_malloc(N * sizeof(C));
+     outB = (C *) bench_malloc(N * sizeof(C));
+     outC = (C *) bench_malloc(N * sizeof(C));
+     tmp = (C *) bench_malloc(N * sizeof(C));
+
+     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
+		    tmp, rounds, tol);
+     e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
+		   tmp, rounds, tol);
+
+     e->s = 0.0;
+     if (p->sign < 0)
+	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
+				     inA, inB, outA, outB, 
+				     tmp, rounds, tol, TIME_SHIFT));
+     else
+	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
+				     inA, inB, outA, outB, 
+				     tmp, rounds, tol, FREQ_SHIFT));
+     
+     if (!p->in_place && !p->destroy_input)
+	  preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
+			  N, inA, inB, outB, rounds);
+
+     bench_free(tmp);
+     bench_free(outC);
+     bench_free(outB);
+     bench_free(outA);
+     bench_free(inC);
+     bench_free(inB);
+     bench_free(inA);
+}
+
+void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
+		    double t[6])
+{
+     dofft_rdft2_closure k;
+     int n;
+     C *a, *b;
+
+     BENCH_ASSERT(p->kind == PROBLEM_REAL);
+     BENCH_ASSERT(p->sz->rnk == 1);
+     BENCH_ASSERT(p->vecsz->rnk == 0);
+
+     k.k.apply = rdft2_apply;
+     k.k.recopy_input = 0;
+     k.p = p;
+     n = tensor_sz(p->sz);
+
+     a = (C *) bench_malloc(n * sizeof(C));
+     b = (C *) bench_malloc(n * sizeof(C));
+     accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, 
+		   n, a, b, rounds, impulse_rounds, t);
+     bench_free(b);
+     bench_free(a);
+}