diff src/fftw-3.3.5/genfft/fft.ml @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/genfft/fft.ml	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,307 @@
+(*
+ * Copyright (c) 1997-1999 Massachusetts Institute of Technology
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ *)
+
+
+(* This is the part of the generator that actually computes the FFT
+   in symbolic form *)
+
+open Complex
+open Util
+
+(* choose a suitable factor of n *)
+let choose_factor n =
+  (* first choice: i such that gcd(i, n / i) = 1, i as big as possible *)
+  let choose1 n =
+    let rec loop i f =
+      if (i * i > n) then f
+      else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i
+      else loop (i + 1) f
+    in loop 1 1
+
+  (* second choice: the biggest factor i of n, where i < sqrt(n), if any *)
+  and choose2 n =
+    let rec loop i f =
+      if (i * i > n) then f
+      else if ((n mod i) == 0) then loop (i + 1) i
+      else loop (i + 1) f
+    in loop 1 1
+
+  in let i = choose1 n in
+  if (i > 1) then i
+  else choose2 n
+
+let is_power_of_two n = (n > 0) && ((n - 1) land n == 0)
+  
+let rec dft_prime sign n input = 
+  let sum filter i =
+    sigma 0 n (fun j ->
+      let coeff = filter (exp n (sign * i * j))
+      in coeff @* (input j)) in
+  let computation_even = array n (sum identity)
+  and computation_odd =
+    let sumr = array n (sum real)
+    and sumi = array n (sum ((times Complex.i) @@ imag)) in
+    array n (fun i ->
+      if (i = 0) then
+	(* expose some common subexpressions *)
+	input 0 @+ 
+	sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j))
+      else
+	let i' = min i (n - i) in
+	if (i < n - i) then 
+	  sumr i' @+ sumi i'
+	else
+	  sumr i' @- sumi i') in
+  if (n >= !Magic.rader_min) then
+    dft_rader sign n input
+  else if (n == 2) then
+    computation_even
+  else
+    computation_odd 
+
+
+and dft_rader sign p input =
+  let half = 
+    let one_half = inverse_int 2 in
+    times one_half
+
+  and make_product n a b =
+    let scale_factor = inverse_int n in
+    array n (fun i -> a i @* (scale_factor @* b i)) in
+
+  (* generates a convolution using ffts.  (all arguments are the
+     same as to gen_convolution, below) *)
+  let gen_convolution_by_fft n a b addtoall =
+    let fft_a = dft 1 n a
+    and fft_b = dft 1 n b in 
+
+    let fft_ab = make_product n fft_a fft_b
+    and dc_term i = if (i == 0) then addtoall else zero in
+
+    let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i)
+    and sum = fft_a 0 in
+    let conv = dft (-1) n fft_ab1 in
+    (sum, conv)
+
+  (* alternate routine for convolution.  Seems to work better for
+     small sizes.  I have no idea why. *)
+  and gen_convolution_by_fft_alt n a b addtoall =
+    let ap = array n (fun i -> half (a i @+ a ((n - i) mod n)))
+    and am = array n (fun i -> half (a i @- a ((n - i) mod n)))
+    and bp = array n (fun i -> half (b i @+ b ((n - i) mod n)))
+    and bm = array n (fun i -> half (b i @- b ((n - i) mod n)))
+    in
+
+    let fft_ap = dft 1 n ap
+    and fft_am = dft 1 n am
+    and fft_bp = dft 1 n bp
+    and fft_bm = dft 1 n bm in
+
+    let fft_abpp = make_product n fft_ap fft_bp
+    and fft_abpm = make_product n fft_ap fft_bm
+    and fft_abmp = make_product n fft_am fft_bp
+    and fft_abmm = make_product n fft_am fft_bm 
+    and sum = fft_ap 0 @+ fft_am 0
+    and dc_term i = if (i == 0) then addtoall else zero in
+
+    let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i)
+    and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in
+    let conv1 = dft (-1) n fft_ab1 
+    and conv2 = dft (-1) n fft_ab2 in
+    let conv = array n (fun i ->
+      conv1 i @+ conv2 i) in
+    (sum, conv) 
+
+    (* generator of assignment list assigning conv to the convolution of
+       a and b, all of which are of length n.  addtoall is added to
+       all of the elements of the result.  Returns (sum, convolution) pair
+       where sum is the sum of the elements of a. *)
+
+  in let gen_convolution = 
+    if (p <= !Magic.alternate_convolution) then 
+      gen_convolution_by_fft_alt
+    else
+      gen_convolution_by_fft
+
+  (* fft generator for prime n = p using Rader's algorithm for
+     turning the fft into a convolution, which then can be
+     performed in a variety of ways *)
+  in  
+    let g = find_generator p in
+    let ginv = pow_mod g (p - 2) p in
+    let input_perm = array p (fun i -> input (pow_mod g i p))
+    and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p)))
+    and output_perm = array p (fun i -> pow_mod ginv i p)
+    in let (sum, conv) = 
+      (gen_convolution (p - 1)  input_perm omega_perm (input 0))
+    in array p (fun i ->
+      if (i = 0) then
+	input 0 @+ sum
+      else
+	let i' = suchthat 0 (fun i' -> i = output_perm i')
+	in conv i')
+
+(* our modified version of the conjugate-pair split-radix algorithm,
+   which reduces the number of multiplications by rescaling the 
+   sub-transforms (power-of-two n's only) *)
+and newsplit sign n input =
+  let rec s n k = (* recursive scale factor *)
+    if n <= 4 then
+      one
+    else 
+      let k4 = (abs k) mod (n / 4) in
+      let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
+      (s (n / 4) k4') @* (real (exp n k4'))
+			  
+  and sinv n k = (* 1 / s(n,k) *)
+    if n <= 4 then
+      one
+    else 
+      let k4 = (abs k) mod (n / 4) in
+      let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
+      (sinv (n / 4) k4') @* (sec n k4')
+
+  in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *)
+  and sdiv4 n k = (* s(n,k) / s(4*n,k) *)
+    let k4 = (abs k) mod n in
+    sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4))
+      
+  in let t n k = (exp n k) @* (sdiv4 (n/4) k)
+
+  and dft1 input = input
+  and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k))
+
+  in let rec newsplit0 sign n input =
+    if (n == 1) then dft1 input
+    else if (n == 2) then dft2 input
+    else let u = newsplit0 sign (n / 2) (fun i -> input (i*2))
+    and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
+    and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) 
+    and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in
+    let w = array n (fun k -> twid k @* z (k mod (n / 4)))
+    and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in
+    let ww = array n (fun k -> w k @+ w' k) in
+    array n (fun k -> u (k mod (n / 2)) @+ ww k)
+      
+  and newsplitS sign n input =
+    if (n == 1) then dft1 input
+    else if (n == 2) then dft2 input
+    else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
+    and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
+    and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
+    let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
+    and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
+    let ww = array n (fun k -> w k @+ w' k) in
+    array n (fun k -> u (k mod (n / 2)) @+ ww k)
+      
+  and newsplitS2 sign n input =
+    if (n == 1) then dft1 input
+    else if (n == 2) then dft2 input
+    else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2))
+    and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
+    and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
+    let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
+    and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
+    let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in
+    array n (fun k -> u (k mod (n / 2)) @+ ww k)
+      
+  and newsplitS4 sign n input =
+    if (n == 1) then dft1 input
+    else if (n == 2) then 
+      let f = dft2 input
+      in array 2 (fun k -> (f k) @* (sinv 8 k))
+    else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
+    and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
+    and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
+    let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
+    and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
+    let ww = array n (fun k -> w k @+ w' k) in
+    array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k))
+      
+  in newsplit0 sign n input
+ 
+and dft sign n input =
+  let rec cooley_tukey sign n1 n2 input =
+    let tmp1 = 
+      array n2 (fun i2 -> 
+	dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in
+    let tmp2 =  
+      array n1 (fun i1 ->
+	array n2 (fun i2 ->
+	  exp n (sign * i1 * i2) @* tmp1 i2 i1)) in
+    let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in
+    (fun i -> tmp3 (i mod n1) (i / n1))
+
+  (*
+   * This is "exponent -1" split-radix by Dan Bernstein.
+   *)
+  and split_radix_dit sign n input =
+    let f0 = dft sign (n / 2) (fun i -> input (i * 2))
+    and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1))
+    and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in
+    let g10 = array n (fun k ->
+      exp n (sign * k) @* f10 (k mod (n / 4)))
+    and g11 = array n (fun k ->
+      exp n (- sign * k) @* f11 (k mod (n / 4))) in
+    let g1 = array n (fun k -> g10 k @+ g11 k) in
+    array n (fun k -> f0 (k mod (n / 2)) @+ g1 k)
+
+  and split_radix_dif sign n input =
+    let n2 = n / 2 and n4 = n / 4 in
+    let x0 = array n2 (fun i -> input i @+ input (i + n2))
+    and x10 = array n4 (fun i -> input i @- input (i + n2))
+    and x11 = array n4 (fun i ->
+	input (i + n4) @- input (i + n2 + n4)) in
+    let x1 k i = 
+      exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in
+    let f0 = dft sign n2 x0 
+    and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in
+    array n (fun k ->
+      if k mod 2 = 0 then f0 (k / 2)
+      else let k' = k mod 4 in f1 k' ((k - k') / 4))
+
+  and prime_factor sign n1 n2 input =
+    let tmp1 = array n2 (fun i2 ->
+      dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n)))
+    in let tmp2 = array n1 (fun i1 ->
+      dft sign n2 (fun k2 -> tmp1 k2 i1))
+    in fun i -> tmp2 (i mod n1) (i mod n2)
+
+  in let algorithm sign n =
+    let r = choose_factor n in
+    if List.mem n !Magic.rader_list then
+      (* special cases *)
+      dft_rader sign n
+    else if (r == 1) then  (* n is prime *)
+      dft_prime sign n
+    else if (gcd r (n / r)) == 1 then
+      prime_factor sign r (n / r)
+    else if (n mod 4 = 0 && n > 4) then
+      if !Magic.newsplit && is_power_of_two n then
+	newsplit sign n
+      else if !Magic.dif_split_radix then
+	split_radix_dif sign n
+      else
+	split_radix_dit sign n
+    else 
+      cooley_tukey sign r (n / r)
+  in
+  array n (algorithm sign n input)