diff src/fftw-3.3.5/genfft/complex.ml @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/genfft/complex.ml	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,147 @@
+(*
+ * Copyright (c) 1997-1999 Massachusetts Institute of Technology
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ *)
+
+(* abstraction layer for complex operations *)
+open Littlesimp
+open Expr
+
+(* type of complex expressions *)
+type expr = CE of Expr.expr * Expr.expr
+
+let two = CE (makeNum Number.two, makeNum Number.zero)
+let one = CE (makeNum Number.one, makeNum Number.zero)
+let i = CE (makeNum Number.zero, makeNum Number.one)
+let zero = CE (makeNum Number.zero, makeNum Number.zero)
+let make (r, i) = CE (r, i)
+
+let uminus (CE (a, b)) =  CE (makeUminus a, makeUminus b)
+
+let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
+			makeNum Number.zero)
+
+let inverse_int_sqrt n = 
+  CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
+      makeNum Number.zero)
+let int_sqrt n = 
+  CE (makeNum (Number.sqrt (Number.of_int n)),
+      makeNum Number.zero)
+
+let nan x = CE (NaN x, makeNum Number.zero)
+
+let half = inverse_int 2
+
+let times3x3 (CE (a, b)) (CE (c, d)) = 
+  CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
+	        makeTimes (b, makePlus [c; makeUminus (d)])],
+      makePlus [makeTimes (a, makePlus [c; d]);
+	        makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
+
+let times (CE (a, b)) (CE (c, d)) = 
+  if not !Magic.threemult then
+    CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
+        makePlus [makeTimes (a, d); makeTimes (b, c)])
+  else if is_constant c && is_constant d then
+    times3x3 (CE (a, b)) (CE (c, d))
+  else (* hope a and b are constant expressions *)
+    times3x3 (CE (c, d)) (CE (a, b))
+
+let ctimes (CE (a, _)) (CE (c, _)) = 
+  CE (CTimes (a, c), makeNum Number.zero)
+
+let ctimesj (CE (a, _)) (CE (c, _)) = 
+  CE (CTimesJ (a, c), makeNum Number.zero)
+      
+(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
+let exp n i =
+  let (c, s) = Number.cexp n i
+  in CE (makeNum c, makeNum s)
+
+(* various trig functions evaluated at (2*pi*i/n * m) *)
+let sec n m =
+  let (c, s) = Number.cexp n m
+  in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
+let csc n m =
+  let (c, s) = Number.cexp n m
+  in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
+let tan n m =
+  let (c, s) = Number.cexp n m
+  in CE (makeNum (Number.div s c), makeNum Number.zero)
+let cot n m =
+  let (c, s) = Number.cexp n m
+  in CE (makeNum (Number.div c s), makeNum Number.zero)
+    
+(* complex sum *)
+let plus a =
+  let rec unzip_complex = function
+      [] -> ([], [])
+    | ((CE (a, b)) :: s) ->
+        let (r,i) = unzip_complex s
+	in
+	(a::r), (b::i) in
+  let (c, d) = unzip_complex a in
+  CE (makePlus c, makePlus d)
+
+(* extract real/imaginary *)
+let real (CE (a, b)) = CE (a, makeNum Number.zero)
+let imag (CE (a, b)) = CE (b, makeNum Number.zero)
+let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
+let conj (CE (a, b)) = CE (a, makeUminus b)
+
+    
+(* abstraction of sum_{i=0}^{n-1} *)
+let sigma a b f = plus (List.map f (Util.interval a b))
+
+(* store and assignment operations *)
+let store_real v (CE (a, b)) = Expr.Store (v, a)
+let store_imag v (CE (a, b)) = Expr.Store (v, b)
+let store (vr, vi) x = (store_real vr x, store_imag vi x)
+
+let assign_real v (CE (a, b)) = Expr.Assign (v, a)
+let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
+let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
+
+
+(************************
+   shortcuts 
+ ************************)
+let (@*) = times
+let (@+) a b = plus [a; b]
+let (@-) a b = plus [a; uminus b]
+
+(* type of complex signals *)
+type signal = int -> expr
+
+(* make a finite signal infinite *)
+let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
+
+let hermitian n a =
+  Util.array n (fun i ->
+    if (i = 0) then real (a 0)
+    else if (i < n - i)  then (a i)
+    else if (i > n - i)  then conj (a (n - i))
+    else real (a i))
+
+let antihermitian n a =
+  Util.array n (fun i ->
+    if (i = 0) then iimag (a 0)
+    else if (i < n - i)  then (a i)
+    else if (i > n - i)  then uminus (conj (a (n - i)))
+    else iimag (a i))