Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/genfft/complex.ml @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/genfft/complex.ml Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,147 @@ +(* + * Copyright (c) 1997-1999 Massachusetts Institute of Technology + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + *) + +(* abstraction layer for complex operations *) +open Littlesimp +open Expr + +(* type of complex expressions *) +type expr = CE of Expr.expr * Expr.expr + +let two = CE (makeNum Number.two, makeNum Number.zero) +let one = CE (makeNum Number.one, makeNum Number.zero) +let i = CE (makeNum Number.zero, makeNum Number.one) +let zero = CE (makeNum Number.zero, makeNum Number.zero) +let make (r, i) = CE (r, i) + +let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b) + +let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), + makeNum Number.zero) + +let inverse_int_sqrt n = + CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))), + makeNum Number.zero) +let int_sqrt n = + CE (makeNum (Number.sqrt (Number.of_int n)), + makeNum Number.zero) + +let nan x = CE (NaN x, makeNum Number.zero) + +let half = inverse_int 2 + +let times3x3 (CE (a, b)) (CE (c, d)) = + CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]); + makeTimes (b, makePlus [c; makeUminus (d)])], + makePlus [makeTimes (a, makePlus [c; d]); + makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))]) + +let times (CE (a, b)) (CE (c, d)) = + if not !Magic.threemult then + CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], + makePlus [makeTimes (a, d); makeTimes (b, c)]) + else if is_constant c && is_constant d then + times3x3 (CE (a, b)) (CE (c, d)) + else (* hope a and b are constant expressions *) + times3x3 (CE (c, d)) (CE (a, b)) + +let ctimes (CE (a, _)) (CE (c, _)) = + CE (CTimes (a, c), makeNum Number.zero) + +let ctimesj (CE (a, _)) (CE (c, _)) = + CE (CTimesJ (a, c), makeNum Number.zero) + +(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) +let exp n i = + let (c, s) = Number.cexp n i + in CE (makeNum c, makeNum s) + +(* various trig functions evaluated at (2*pi*i/n * m) *) +let sec n m = + let (c, s) = Number.cexp n m + in CE (makeNum (Number.div Number.one c), makeNum Number.zero) +let csc n m = + let (c, s) = Number.cexp n m + in CE (makeNum (Number.div Number.one s), makeNum Number.zero) +let tan n m = + let (c, s) = Number.cexp n m + in CE (makeNum (Number.div s c), makeNum Number.zero) +let cot n m = + let (c, s) = Number.cexp n m + in CE (makeNum (Number.div c s), makeNum Number.zero) + +(* complex sum *) +let plus a = + let rec unzip_complex = function + [] -> ([], []) + | ((CE (a, b)) :: s) -> + let (r,i) = unzip_complex s + in + (a::r), (b::i) in + let (c, d) = unzip_complex a in + CE (makePlus c, makePlus d) + +(* extract real/imaginary *) +let real (CE (a, b)) = CE (a, makeNum Number.zero) +let imag (CE (a, b)) = CE (b, makeNum Number.zero) +let iimag (CE (a, b)) = CE (makeNum Number.zero, b) +let conj (CE (a, b)) = CE (a, makeUminus b) + + +(* abstraction of sum_{i=0}^{n-1} *) +let sigma a b f = plus (List.map f (Util.interval a b)) + +(* store and assignment operations *) +let store_real v (CE (a, b)) = Expr.Store (v, a) +let store_imag v (CE (a, b)) = Expr.Store (v, b) +let store (vr, vi) x = (store_real vr x, store_imag vi x) + +let assign_real v (CE (a, b)) = Expr.Assign (v, a) +let assign_imag v (CE (a, b)) = Expr.Assign (v, b) +let assign (vr, vi) x = (assign_real vr x, assign_imag vi x) + + +(************************ + shortcuts + ************************) +let (@*) = times +let (@+) a b = plus [a; b] +let (@-) a b = plus [a; uminus b] + +(* type of complex signals *) +type signal = int -> expr + +(* make a finite signal infinite *) +let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero + +let hermitian n a = + Util.array n (fun i -> + if (i = 0) then real (a 0) + else if (i < n - i) then (a i) + else if (i > n - i) then conj (a (n - i)) + else real (a i)) + +let antihermitian n a = + Util.array n (fun i -> + if (i = 0) then iimag (a 0) + else if (i < n - i) then (a i) + else if (i > n - i) then uminus (conj (a (n - i))) + else iimag (a i))