Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.5/dft/simd/common/t3fv_16.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.5/dft/simd/common/t3fv_16.c Tue Oct 18 13:40:26 2016 +0100 @@ -0,0 +1,435 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 30 16:43:52 EDT 2016 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include t3f.h */ + +/* + * This function contains 98 FP additions, 86 FP multiplications, + * (or, 64 additions, 52 multiplications, 34 fused multiply/add), + * 70 stack variables, 3 constants, and 32 memory accesses + */ +#include "t3f.h" + +static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP414213562, +0.414213562373095048801688724209698078569671875); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { + V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k; + V TH; + { + V T2, T8, Tu, T3; + T2 = LDW(&(W[0])); + T8 = LDW(&(W[TWVL * 2])); + Tu = LDW(&(W[TWVL * 6])); + T3 = LDW(&(W[TWVL * 4])); + { + V Ty, T1o, Tf, T1b, T7, Tr, TR, TX, T1g, Tl, To, Tw, TG, Tz, T1p; + V T1e, TC; + { + V T1, T5, Ta, Td; + T1 = LD(&(x[0]), ms, &(x[0])); + T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Td = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + { + V Tx, TO, TE, Tb, Tm, Tp, TN, Te, T6, TW, TP, TS; + { + V TM, T9, TL, Tc, TU, T4, TV; + TM = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + Tx = VZMULJ(T2, T8); + T9 = VZMUL(T2, T8); + TL = VZMULJ(T2, Tu); + TO = VZMULJ(T8, T3); + Tc = VZMUL(T8, T3); + TU = VZMUL(T2, T3); + T4 = VZMULJ(T2, T3); + TV = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + TE = VZMUL(Tx, T3); + Ty = VZMULJ(Tx, T3); + Tb = VZMULJ(T9, Ta); + Tm = VZMULJ(T9, T3); + Tp = VZMUL(T9, T3); + TN = VZMULJ(TL, TM); + Te = VZMULJ(Tc, Td); + T6 = VZMULJ(T4, T5); + TW = VZMULJ(TU, TV); + } + TP = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + TS = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + { + V TQ, TT, Ti, Tk, Tn, Th, Tq, Tj; + Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + T1o = VSUB(Tb, Te); + Tf = VADD(Tb, Te); + T1b = VSUB(T1, T6); + T7 = VADD(T1, T6); + TQ = VZMULJ(TO, TP); + TT = VZMULJ(Tx, TS); + Ti = VZMULJ(T2, Th); + Tr = VZMULJ(Tp, Tq); + Tk = VZMULJ(T3, Tj); + Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V T1d, T1c, Tv, TF; + Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + T1d = VSUB(TN, TQ); + TR = VADD(TN, TQ); + T1c = VSUB(TT, TW); + TX = VADD(TT, TW); + T1g = VSUB(Ti, Tk); + Tl = VADD(Ti, Tk); + To = VZMULJ(Tm, Tn); + Tw = VZMULJ(Tu, Tv); + TG = VZMULJ(TE, TF); + Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T1p = VSUB(T1d, T1c); + T1e = VADD(T1c, T1d); + TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + } + } + } + } + { + V T1h, Ts, TA, TD; + T13 = VADD(T7, Tf); + Tg = VSUB(T7, Tf); + T1h = VSUB(To, Tr); + Ts = VADD(To, Tr); + TY = VSUB(TR, TX); + T14 = VADD(TX, TR); + TA = VZMULJ(Ty, Tz); + T1A = VFMA(LDK(KP707106781), T1p, T1o); + T1q = VFNMS(LDK(KP707106781), T1p, T1o); + T1f = VFMA(LDK(KP707106781), T1e, T1b); + T1x = VFNMS(LDK(KP707106781), T1e, T1b); + TD = VZMULJ(T8, TC); + T1r = VFMA(LDK(KP414213562), T1g, T1h); + T1i = VFNMS(LDK(KP414213562), T1h, T1g); + Tt = VSUB(Tl, Ts); + T16 = VADD(Tl, Ts); + TB = VADD(Tw, TA); + T1j = VSUB(Tw, TA); + T1k = VSUB(TG, TD); + TH = VADD(TD, TG); + } + } + } + { + V T15, T19, T1l, T1s, TI, T17; + T15 = VADD(T13, T14); + T19 = VSUB(T13, T14); + T1l = VFNMS(LDK(KP414213562), T1k, T1j); + T1s = VFMA(LDK(KP414213562), T1j, T1k); + TI = VSUB(TB, TH); + T17 = VADD(TB, TH); + { + V T1y, T1t, T1B, T1m; + T1y = VADD(T1r, T1s); + T1t = VSUB(T1r, T1s); + T1B = VSUB(T1l, T1i); + T1m = VADD(T1i, T1l); + { + V T18, T1a, TJ, TZ; + T18 = VADD(T16, T17); + T1a = VSUB(T17, T16); + TJ = VADD(Tt, TI); + TZ = VSUB(TI, Tt); + { + V T1u, T1w, T1z, T1D; + T1u = VFNMS(LDK(KP923879532), T1t, T1q); + T1w = VFMA(LDK(KP923879532), T1t, T1q); + T1z = VFNMS(LDK(KP923879532), T1y, T1x); + T1D = VFMA(LDK(KP923879532), T1y, T1x); + { + V T1n, T1v, T1C, T1E; + T1n = VFNMS(LDK(KP923879532), T1m, T1f); + T1v = VFMA(LDK(KP923879532), T1m, T1f); + T1C = VFNMS(LDK(KP923879532), T1B, T1A); + T1E = VFMA(LDK(KP923879532), T1B, T1A); + ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0])); + ST(&(x[0]), VADD(T15, T18), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0])); + { + V T10, T12, TK, T11; + T10 = VFNMS(LDK(KP707106781), TZ, TY); + T12 = VFMA(LDK(KP707106781), TZ, TY); + TK = VFNMS(LDK(KP707106781), TJ, Tg); + T11 = VFMA(LDK(KP707106781), TJ, Tg); + ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0])); + ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0])); + } + } + } + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 15), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_16) (planner *p) { + X(kdft_dit_register) (p, t3fv_16, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include t3f.h */ + +/* + * This function contains 98 FP additions, 64 FP multiplications, + * (or, 94 additions, 60 multiplications, 4 fused multiply/add), + * 51 stack variables, 3 constants, and 32 memory accesses + */ +#include "t3f.h" + +static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP382683432, +0.382683432365089771728459984030398866761344562); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { + V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts; + T4 = LDW(&(W[0])); + T5 = LDW(&(W[TWVL * 2])); + T6 = VZMULJ(T4, T5); + To = VZMUL(T4, T5); + T1 = LDW(&(W[TWVL * 6])); + Ty = VZMULJ(T4, T1); + T7 = LDW(&(W[TWVL * 4])); + T8 = VZMULJ(T6, T7); + TO = VZMUL(T5, T7); + TV = VZMULJ(T4, T7); + Te = VZMUL(T6, T7); + Tp = VZMULJ(To, T7); + TB = VZMULJ(T5, T7); + TH = VZMUL(T4, T7); + Ts = VZMUL(To, T7); + { + V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j; + V T1k, Tw, T11, TU, TX, TW; + TU = LD(&(x[0]), ms, &(x[0])); + TW = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + TX = VZMULJ(TV, TW); + TY = VSUB(TU, TX); + T1f = VADD(TU, TX); + { + V TN, TQ, TM, TP; + TM = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + TN = VZMULJ(To, TM); + TP = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + TQ = VZMULJ(TO, TP); + TR = VSUB(TN, TQ); + T1g = VADD(TN, TQ); + } + { + V TA, TJ, TD, TG, TE, TK; + { + V Tz, TI, TC, TF; + Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + TA = VZMULJ(Ty, Tz); + TI = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + TJ = VZMULJ(TH, TI); + TC = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + TD = VZMULJ(TB, TC); + TF = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + TG = VZMULJ(T6, TF); + } + T1q = VADD(TA, TD); + T1r = VADD(TG, TJ); + TE = VSUB(TA, TD); + TK = VSUB(TG, TJ); + TL = VMUL(LDK(KP707106781), VSUB(TE, TK)); + TZ = VMUL(LDK(KP707106781), VADD(TK, TE)); + } + { + V T3, Tg, Ta, Td, Tb, Th; + { + V T2, Tf, T9, Tc; + T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + T3 = VZMULJ(T1, T2); + Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tg = VZMULJ(Te, Tf); + T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Ta = VZMULJ(T8, T9); + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Td = VZMULJ(T5, Tc); + } + T1l = VADD(T3, Ta); + T1m = VADD(Td, Tg); + T1n = VSUB(T1l, T1m); + Tb = VSUB(T3, Ta); + Th = VSUB(Td, Tg); + Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb)); + T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th)); + } + { + V Tk, Tu, Tm, Tr, Tn, Tv; + { + V Tj, Tt, Tl, Tq; + Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + Tk = VZMULJ(T4, Tj); + Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + Tu = VZMULJ(Ts, Tt); + Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + Tm = VZMULJ(T7, Tl); + Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + Tr = VZMULJ(Tp, Tq); + } + T1i = VADD(Tk, Tm); + T1j = VADD(Tr, Tu); + T1k = VSUB(T1i, T1j); + Tn = VSUB(Tk, Tm); + Tv = VSUB(Tr, Tu); + Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv)); + T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn)); + } + { + V T1p, T1v, T1u, T1w; + { + V T1h, T1o, T1s, T1t; + T1h = VSUB(T1f, T1g); + T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n)); + T1p = VADD(T1h, T1o); + T1v = VSUB(T1h, T1o); + T1s = VSUB(T1q, T1r); + T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k)); + T1u = VBYI(VADD(T1s, T1t)); + T1w = VBYI(VSUB(T1t, T1s)); + } + ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0])); + ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0])); + } + { + V T1z, T1D, T1C, T1E; + { + V T1x, T1y, T1A, T1B; + T1x = VADD(T1f, T1g); + T1y = VADD(T1r, T1q); + T1z = VADD(T1x, T1y); + T1D = VSUB(T1x, T1y); + T1A = VADD(T1i, T1j); + T1B = VADD(T1l, T1m); + T1C = VADD(T1A, T1B); + T1E = VBYI(VSUB(T1B, T1A)); + } + ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0])); + ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0])); + } + { + V TT, T15, T14, T16; + { + V Tx, TS, T10, T13; + Tx = VSUB(Ti, Tw); + TS = VSUB(TL, TR); + TT = VBYI(VSUB(Tx, TS)); + T15 = VBYI(VADD(TS, Tx)); + T10 = VADD(TY, TZ); + T13 = VADD(T11, T12); + T14 = VSUB(T10, T13); + T16 = VADD(T10, T13); + } + ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)])); + } + { + V T19, T1d, T1c, T1e; + { + V T17, T18, T1a, T1b; + T17 = VSUB(TY, TZ); + T18 = VADD(Tw, Ti); + T19 = VADD(T17, T18); + T1d = VSUB(T17, T18); + T1a = VADD(TR, TL); + T1b = VSUB(T12, T11); + T1c = VBYI(VADD(T1a, T1b)); + T1e = VBYI(VSUB(T1b, T1a)); + } + ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 15), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_16) (planner *p) { + X(kdft_dit_register) (p, t3fv_16, &desc); +} +#endif /* HAVE_FMA */