diff osx/include/kj/tuple.h @ 62:0994c39f1e94

Cap'n Proto v0.6 + build for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 10:01:37 +0100
parents 3ab5a40c4e3b
children
line wrap: on
line diff
--- a/osx/include/kj/tuple.h	Mon Mar 06 13:29:58 2017 +0000
+++ b/osx/include/kj/tuple.h	Mon May 22 10:01:37 2017 +0100
@@ -1,364 +1,364 @@
-// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
-// Licensed under the MIT License:
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-// THE SOFTWARE.
-
-// This file defines a notion of tuples that is simpler that `std::tuple`.  It works as follows:
-// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
-// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
-//   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
-// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
-// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
-//   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
-//
-// Note that:
-// - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
-//   type.
-// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
-//   flattened.
-// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
-//   with type inference and `tuple()`.
-
-#ifndef KJ_TUPLE_H_
-#define KJ_TUPLE_H_
-
-#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
-#pragma GCC system_header
-#endif
-
-#include "common.h"
-
-namespace kj {
-namespace _ {  // private
-
-template <size_t index, typename... T>
-struct TypeByIndex_;
-template <typename First, typename... Rest>
-struct TypeByIndex_<0, First, Rest...> {
-  typedef First Type;
-};
-template <size_t index, typename First, typename... Rest>
-struct TypeByIndex_<index, First, Rest...>
-    : public TypeByIndex_<index - 1, Rest...> {};
-template <size_t index>
-struct TypeByIndex_<index> {
-  static_assert(index != index, "Index out-of-range.");
-};
-template <size_t index, typename... T>
-using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
-// Chose a particular type out of a list of types, by index.
-
-template <size_t... s>
-struct Indexes {};
-// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
-// templates against them and unpack them with '...'.
-
-template <size_t end, size_t... prefix>
-struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
-template <size_t... prefix>
-struct MakeIndexes_<0, prefix...> {
-  typedef Indexes<prefix...> Type;
-};
-template <size_t end>
-using MakeIndexes = typename MakeIndexes_<end>::Type;
-// Equivalent to Indexes<0, 1, 2, ..., end>.
-
-template <typename... T>
-class Tuple;
-template <size_t index, typename... U>
-inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
-template <size_t index, typename... U>
-inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
-template <size_t index, typename... U>
-inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
-
-template <uint index, typename T>
-struct TupleElement {
-  // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
-  // from a TupleElement for each element, which is more efficient than a recursive definition.
-
-  T value;
-  TupleElement() = default;
-  constexpr inline TupleElement(const T& value): value(value) {}
-  constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
-};
-
-template <uint index, typename T>
-struct TupleElement<index, T&> {
-  // If tuples contained references, one of the following would have to be true:
-  // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
-  //   probably not what you expected.
-  // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
-  //   Tuple<Foo, Bar>.
-  static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
-};
-
-template <uint index, typename... T>
-struct TupleElement<index, Tuple<T...>> {
-  static_assert(sizeof(Tuple<T...>*) == 0,
-                "Tuples cannot contain other tuples -- they should be flattened.");
-};
-
-template <typename Indexes, typename... Types>
-struct TupleImpl;
-
-template <size_t... indexes, typename... Types>
-struct TupleImpl<Indexes<indexes...>, Types...>
-    : public TupleElement<indexes, Types>... {
-  // Implementation of Tuple.  The only reason we need this rather than rolling this into class
-  // Tuple (below) is so that we can get "indexes" as an unpackable list.
-
-  static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
-
-  template <typename... Params>
-  inline TupleImpl(Params&&... params)
-      : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
-    // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
-    // segfaults instead.)
-    static_assert(sizeof...(params) == sizeof...(indexes),
-                  "Wrong number of parameters to Tuple constructor.");
-  }
-
-  template <typename... U>
-  constexpr inline TupleImpl(Tuple<U...>&& other)
-      : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
-  template <typename... U>
-  constexpr inline TupleImpl(Tuple<U...>& other)
-      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
-  template <typename... U>
-  constexpr inline TupleImpl(const Tuple<U...>& other)
-      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
-};
-
-struct MakeTupleFunc;
-
-template <typename... T>
-class Tuple {
-  // The actual Tuple class (used for tuples of size other than 1).
-
-public:
-  template <typename... U>
-  constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
-  template <typename... U>
-  constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
-  template <typename... U>
-  constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
-
-private:
-  template <typename... Params>
-  constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
-
-  TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
-
-  template <size_t index, typename... U>
-  friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
-  template <size_t index, typename... U>
-  friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
-  template <size_t index, typename... U>
-  friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
-  friend struct MakeTupleFunc;
-};
-
-template <>
-class Tuple<> {
-  // Simplified zero-member version of Tuple.  In particular this is important to make sure that
-  // Tuple<>() is constexpr.
-};
-
-template <typename T>
-class Tuple<T>;
-// Single-element tuple should never be used.  The public API should ensure this.
-
-template <size_t index, typename... T>
-inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
-  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
-  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
-  return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
-}
-template <size_t index, typename... T>
-inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
-  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
-  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
-  return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
-}
-template <size_t index, typename... T>
-inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
-  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
-  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
-  return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
-}
-template <size_t index, typename T>
-inline T&& getImpl(T&& value) {
-  // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
-
-  // Non-tuples are equivalent to one-element tuples.
-  static_assert(index == 0, "Tuple element index out-of-bounds.");
-  return kj::fwd<T>(value);
-}
-
-
-template <typename Func, typename SoFar, typename... T>
-struct ExpandAndApplyResult_;
-// Template which computes the return type of applying Func to T... after flattening tuples.
-// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
-// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
-
-template <typename Func, typename First, typename... Rest, typename... T>
-struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
-    : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
-template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
-struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
-    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
-template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
-struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
-    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
-template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
-struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
-    : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
-template <typename Func, typename... T>
-struct ExpandAndApplyResult_<Func, Tuple<T...>> {
-  typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
-};
-template <typename Func, typename... T>
-using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
-// Computes the expected return type of `expandAndApply()`.
-
-template <typename Func>
-inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
-  return func();
-}
-
-template <typename Func, typename First, typename... Rest>
-struct ExpandAndApplyFunc {
-  Func&& func;
-  First&& first;
-  ExpandAndApplyFunc(Func&& func, First&& first)
-      : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
-  template <typename... T>
-  auto operator()(T&&... params)
-      -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
-    return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
-  }
-};
-
-template <typename Func, typename First, typename... Rest>
-inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, First, Rest...> {
-
-  return expandAndApply(
-      ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
-      kj::fwd<Rest>(rest)...);
-}
-
-template <typename Func, typename... FirstTypes, typename... Rest>
-inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
-  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
-      kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
-}
-
-template <typename Func, typename... FirstTypes, typename... Rest>
-inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
-  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
-      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
-}
-
-template <typename Func, typename... FirstTypes, typename... Rest>
-inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
-  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
-      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
-}
-
-template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
-inline auto expandAndApplyWithIndexes(
-    Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
-  return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
-                        kj::fwd<Rest>(rest)...);
-}
-
-template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
-inline auto expandAndApplyWithIndexes(
-    Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
-  return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
-                       kj::fwd<Rest>(rest)...);
-}
-
-struct MakeTupleFunc {
-  template <typename... Params>
-  Tuple<Decay<Params>...> operator()(Params&&... params) {
-    return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
-  }
-  template <typename Param>
-  Decay<Param> operator()(Param&& param) {
-    return kj::fwd<Param>(param);
-  }
-};
-
-}  // namespace _ (private)
-
-template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
-template <typename T> struct Tuple_<T> { typedef T Type; };
-
-template <typename... T> using Tuple = typename Tuple_<T...>::Type;
-// Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
-// other than 1 expand to an internal type.  Either way, you can construct a Tuple using
-// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
-// as arguments to a function using `kj::apply(func, myTuple)`.
-//
-// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
-// construct a tuple from other tuples, the elements are flattened and concatenated.
-
-template <typename... Params>
-inline auto tuple(Params&&... params)
-    -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
-  // Construct a new tuple from the given values.  Any tuples in the argument list will be
-  // flattened into the result.
-  return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
-}
-
-template <size_t index, typename Tuple>
-inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
-  // Unpack and return the tuple element at the given index.  The index is specified as a template
-  // parameter, e.g. `kj::get<3>(myTuple)`.
-  return _::getImpl<index>(kj::fwd<Tuple>(tuple));
-}
-
-template <typename Func, typename... Params>
-inline auto apply(Func&& func, Params&&... params)
-    -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
-  // Apply a function to some arguments, expanding tuples into separate arguments.
-  return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
-}
-
-template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
-template <typename... T> struct TupleSize_<_::Tuple<T...>> {
-  static constexpr size_t size = sizeof...(T);
-};
-
-template <typename T>
-constexpr size_t tupleSize() { return TupleSize_<T>::size; }
-// Returns size of the tuple T.
-
-}  // namespace kj
-
-#endif  // KJ_TUPLE_H_
+// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
+// Licensed under the MIT License:
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+// This file defines a notion of tuples that is simpler that `std::tuple`.  It works as follows:
+// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
+// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
+//   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
+// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
+// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
+//   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
+//
+// Note that:
+// - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
+//   type.
+// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
+//   flattened.
+// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
+//   with type inference and `tuple()`.
+
+#ifndef KJ_TUPLE_H_
+#define KJ_TUPLE_H_
+
+#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
+#pragma GCC system_header
+#endif
+
+#include "common.h"
+
+namespace kj {
+namespace _ {  // private
+
+template <size_t index, typename... T>
+struct TypeByIndex_;
+template <typename First, typename... Rest>
+struct TypeByIndex_<0, First, Rest...> {
+  typedef First Type;
+};
+template <size_t index, typename First, typename... Rest>
+struct TypeByIndex_<index, First, Rest...>
+    : public TypeByIndex_<index - 1, Rest...> {};
+template <size_t index>
+struct TypeByIndex_<index> {
+  static_assert(index != index, "Index out-of-range.");
+};
+template <size_t index, typename... T>
+using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
+// Chose a particular type out of a list of types, by index.
+
+template <size_t... s>
+struct Indexes {};
+// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
+// templates against them and unpack them with '...'.
+
+template <size_t end, size_t... prefix>
+struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
+template <size_t... prefix>
+struct MakeIndexes_<0, prefix...> {
+  typedef Indexes<prefix...> Type;
+};
+template <size_t end>
+using MakeIndexes = typename MakeIndexes_<end>::Type;
+// Equivalent to Indexes<0, 1, 2, ..., end>.
+
+template <typename... T>
+class Tuple;
+template <size_t index, typename... U>
+inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
+template <size_t index, typename... U>
+inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
+template <size_t index, typename... U>
+inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
+
+template <uint index, typename T>
+struct TupleElement {
+  // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
+  // from a TupleElement for each element, which is more efficient than a recursive definition.
+
+  T value;
+  TupleElement() = default;
+  constexpr inline TupleElement(const T& value): value(value) {}
+  constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
+};
+
+template <uint index, typename T>
+struct TupleElement<index, T&> {
+  // If tuples contained references, one of the following would have to be true:
+  // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
+  //   probably not what you expected.
+  // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
+  //   Tuple<Foo, Bar>.
+  static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
+};
+
+template <uint index, typename... T>
+struct TupleElement<index, Tuple<T...>> {
+  static_assert(sizeof(Tuple<T...>*) == 0,
+                "Tuples cannot contain other tuples -- they should be flattened.");
+};
+
+template <typename Indexes, typename... Types>
+struct TupleImpl;
+
+template <size_t... indexes, typename... Types>
+struct TupleImpl<Indexes<indexes...>, Types...>
+    : public TupleElement<indexes, Types>... {
+  // Implementation of Tuple.  The only reason we need this rather than rolling this into class
+  // Tuple (below) is so that we can get "indexes" as an unpackable list.
+
+  static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
+
+  template <typename... Params>
+  inline TupleImpl(Params&&... params)
+      : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
+    // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
+    // segfaults instead.)
+    static_assert(sizeof...(params) == sizeof...(indexes),
+                  "Wrong number of parameters to Tuple constructor.");
+  }
+
+  template <typename... U>
+  constexpr inline TupleImpl(Tuple<U...>&& other)
+      : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
+  template <typename... U>
+  constexpr inline TupleImpl(Tuple<U...>& other)
+      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
+  template <typename... U>
+  constexpr inline TupleImpl(const Tuple<U...>& other)
+      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
+};
+
+struct MakeTupleFunc;
+
+template <typename... T>
+class Tuple {
+  // The actual Tuple class (used for tuples of size other than 1).
+
+public:
+  template <typename... U>
+  constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
+  template <typename... U>
+  constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
+  template <typename... U>
+  constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
+
+private:
+  template <typename... Params>
+  constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
+
+  TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
+
+  template <size_t index, typename... U>
+  friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
+  template <size_t index, typename... U>
+  friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
+  template <size_t index, typename... U>
+  friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
+  friend struct MakeTupleFunc;
+};
+
+template <>
+class Tuple<> {
+  // Simplified zero-member version of Tuple.  In particular this is important to make sure that
+  // Tuple<>() is constexpr.
+};
+
+template <typename T>
+class Tuple<T>;
+// Single-element tuple should never be used.  The public API should ensure this.
+
+template <size_t index, typename... T>
+inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
+  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
+  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
+  return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
+}
+template <size_t index, typename... T>
+inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
+  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
+  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
+  return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
+}
+template <size_t index, typename... T>
+inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
+  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
+  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
+  return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
+}
+template <size_t index, typename T>
+inline T&& getImpl(T&& value) {
+  // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
+
+  // Non-tuples are equivalent to one-element tuples.
+  static_assert(index == 0, "Tuple element index out-of-bounds.");
+  return kj::fwd<T>(value);
+}
+
+
+template <typename Func, typename SoFar, typename... T>
+struct ExpandAndApplyResult_;
+// Template which computes the return type of applying Func to T... after flattening tuples.
+// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
+// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
+
+template <typename Func, typename First, typename... Rest, typename... T>
+struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
+    : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
+template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
+struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
+    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
+template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
+struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
+    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
+template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
+struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
+    : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
+template <typename Func, typename... T>
+struct ExpandAndApplyResult_<Func, Tuple<T...>> {
+  typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
+};
+template <typename Func, typename... T>
+using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
+// Computes the expected return type of `expandAndApply()`.
+
+template <typename Func>
+inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
+  return func();
+}
+
+template <typename Func, typename First, typename... Rest>
+struct ExpandAndApplyFunc {
+  Func&& func;
+  First&& first;
+  ExpandAndApplyFunc(Func&& func, First&& first)
+      : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
+  template <typename... T>
+  auto operator()(T&&... params)
+      -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
+    return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
+  }
+};
+
+template <typename Func, typename First, typename... Rest>
+inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, First, Rest...> {
+
+  return expandAndApply(
+      ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
+      kj::fwd<Rest>(rest)...);
+}
+
+template <typename Func, typename... FirstTypes, typename... Rest>
+inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
+  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
+      kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
+}
+
+template <typename Func, typename... FirstTypes, typename... Rest>
+inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
+  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
+      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
+}
+
+template <typename Func, typename... FirstTypes, typename... Rest>
+inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
+  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
+      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
+}
+
+template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
+inline auto expandAndApplyWithIndexes(
+    Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
+  return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
+                        kj::fwd<Rest>(rest)...);
+}
+
+template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
+inline auto expandAndApplyWithIndexes(
+    Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
+    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
+  return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
+                       kj::fwd<Rest>(rest)...);
+}
+
+struct MakeTupleFunc {
+  template <typename... Params>
+  Tuple<Decay<Params>...> operator()(Params&&... params) {
+    return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
+  }
+  template <typename Param>
+  Decay<Param> operator()(Param&& param) {
+    return kj::fwd<Param>(param);
+  }
+};
+
+}  // namespace _ (private)
+
+template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
+template <typename T> struct Tuple_<T> { typedef T Type; };
+
+template <typename... T> using Tuple = typename Tuple_<T...>::Type;
+// Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
+// other than 1 expand to an internal type.  Either way, you can construct a Tuple using
+// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
+// as arguments to a function using `kj::apply(func, myTuple)`.
+//
+// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
+// construct a tuple from other tuples, the elements are flattened and concatenated.
+
+template <typename... Params>
+inline auto tuple(Params&&... params)
+    -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
+  // Construct a new tuple from the given values.  Any tuples in the argument list will be
+  // flattened into the result.
+  return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
+}
+
+template <size_t index, typename Tuple>
+inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
+  // Unpack and return the tuple element at the given index.  The index is specified as a template
+  // parameter, e.g. `kj::get<3>(myTuple)`.
+  return _::getImpl<index>(kj::fwd<Tuple>(tuple));
+}
+
+template <typename Func, typename... Params>
+inline auto apply(Func&& func, Params&&... params)
+    -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
+  // Apply a function to some arguments, expanding tuples into separate arguments.
+  return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
+}
+
+template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
+template <typename... T> struct TupleSize_<_::Tuple<T...>> {
+  static constexpr size_t size = sizeof...(T);
+};
+
+template <typename T>
+constexpr size_t tupleSize() { return TupleSize_<T>::size; }
+// Returns size of the tuple T.
+
+}  // namespace kj
+
+#endif  // KJ_TUPLE_H_