Mercurial > hg > sv-dependency-builds
diff osx/include/kj/tuple.h @ 62:0994c39f1e94
Cap'n Proto v0.6 + build for OSX
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Mon, 22 May 2017 10:01:37 +0100 |
parents | 3ab5a40c4e3b |
children |
line wrap: on
line diff
--- a/osx/include/kj/tuple.h Mon Mar 06 13:29:58 2017 +0000 +++ b/osx/include/kj/tuple.h Mon May 22 10:01:37 2017 +0100 @@ -1,364 +1,364 @@ -// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors -// Licensed under the MIT License: -// -// Permission is hereby granted, free of charge, to any person obtaining a copy -// of this software and associated documentation files (the "Software"), to deal -// in the Software without restriction, including without limitation the rights -// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -// copies of the Software, and to permit persons to whom the Software is -// furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -// THE SOFTWARE. - -// This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows: -// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. -// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves -// tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. -// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. -// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples -// in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. -// -// Note that: -// - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the -// type. -// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be -// flattened. -// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause -// with type inference and `tuple()`. - -#ifndef KJ_TUPLE_H_ -#define KJ_TUPLE_H_ - -#if defined(__GNUC__) && !KJ_HEADER_WARNINGS -#pragma GCC system_header -#endif - -#include "common.h" - -namespace kj { -namespace _ { // private - -template <size_t index, typename... T> -struct TypeByIndex_; -template <typename First, typename... Rest> -struct TypeByIndex_<0, First, Rest...> { - typedef First Type; -}; -template <size_t index, typename First, typename... Rest> -struct TypeByIndex_<index, First, Rest...> - : public TypeByIndex_<index - 1, Rest...> {}; -template <size_t index> -struct TypeByIndex_<index> { - static_assert(index != index, "Index out-of-range."); -}; -template <size_t index, typename... T> -using TypeByIndex = typename TypeByIndex_<index, T...>::Type; -// Chose a particular type out of a list of types, by index. - -template <size_t... s> -struct Indexes {}; -// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match -// templates against them and unpack them with '...'. - -template <size_t end, size_t... prefix> -struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; -template <size_t... prefix> -struct MakeIndexes_<0, prefix...> { - typedef Indexes<prefix...> Type; -}; -template <size_t end> -using MakeIndexes = typename MakeIndexes_<end>::Type; -// Equivalent to Indexes<0, 1, 2, ..., end>. - -template <typename... T> -class Tuple; -template <size_t index, typename... U> -inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); -template <size_t index, typename... U> -inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); -template <size_t index, typename... U> -inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); - -template <uint index, typename T> -struct TupleElement { - // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits - // from a TupleElement for each element, which is more efficient than a recursive definition. - - T value; - TupleElement() = default; - constexpr inline TupleElement(const T& value): value(value) {} - constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} -}; - -template <uint index, typename T> -struct TupleElement<index, T&> { - // If tuples contained references, one of the following would have to be true: - // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is - // probably not what you expected. - // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned - // Tuple<Foo, Bar>. - static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references."); -}; - -template <uint index, typename... T> -struct TupleElement<index, Tuple<T...>> { - static_assert(sizeof(Tuple<T...>*) == 0, - "Tuples cannot contain other tuples -- they should be flattened."); -}; - -template <typename Indexes, typename... Types> -struct TupleImpl; - -template <size_t... indexes, typename... Types> -struct TupleImpl<Indexes<indexes...>, Types...> - : public TupleElement<indexes, Types>... { - // Implementation of Tuple. The only reason we need this rather than rolling this into class - // Tuple (below) is so that we can get "indexes" as an unpackable list. - - static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); - - template <typename... Params> - inline TupleImpl(Params&&... params) - : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { - // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes - // segfaults instead.) - static_assert(sizeof...(params) == sizeof...(indexes), - "Wrong number of parameters to Tuple constructor."); - } - - template <typename... U> - constexpr inline TupleImpl(Tuple<U...>&& other) - : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {} - template <typename... U> - constexpr inline TupleImpl(Tuple<U...>& other) - : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} - template <typename... U> - constexpr inline TupleImpl(const Tuple<U...>& other) - : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} -}; - -struct MakeTupleFunc; - -template <typename... T> -class Tuple { - // The actual Tuple class (used for tuples of size other than 1). - -public: - template <typename... U> - constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} - template <typename... U> - constexpr inline Tuple(Tuple<U...>& other): impl(other) {} - template <typename... U> - constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} - -private: - template <typename... Params> - constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} - - TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; - - template <size_t index, typename... U> - friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); - template <size_t index, typename... U> - friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); - template <size_t index, typename... U> - friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); - friend struct MakeTupleFunc; -}; - -template <> -class Tuple<> { - // Simplified zero-member version of Tuple. In particular this is important to make sure that - // Tuple<>() is constexpr. -}; - -template <typename T> -class Tuple<T>; -// Single-element tuple should never be used. The public API should ensure this. - -template <size_t index, typename... T> -inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { - // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. - static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); - return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; -} -template <size_t index, typename... T> -inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { - // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. - static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); - return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); -} -template <size_t index, typename... T> -inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { - // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. - static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); - return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; -} -template <size_t index, typename T> -inline T&& getImpl(T&& value) { - // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. - - // Non-tuples are equivalent to one-element tuples. - static_assert(index == 0, "Tuple element index out-of-bounds."); - return kj::fwd<T>(value); -} - - -template <typename Func, typename SoFar, typename... T> -struct ExpandAndApplyResult_; -// Template which computes the return type of applying Func to T... after flattening tuples. -// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template -// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. - -template <typename Func, typename First, typename... Rest, typename... T> -struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> - : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; -template <typename Func, typename... FirstTypes, typename... Rest, typename... T> -struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> - : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; -template <typename Func, typename... FirstTypes, typename... Rest, typename... T> -struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> - : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; -template <typename Func, typename... FirstTypes, typename... Rest, typename... T> -struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> - : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; -template <typename Func, typename... T> -struct ExpandAndApplyResult_<Func, Tuple<T...>> { - typedef decltype(instance<Func>()(instance<T&&>()...)) Type; -}; -template <typename Func, typename... T> -using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; -// Computes the expected return type of `expandAndApply()`. - -template <typename Func> -inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { - return func(); -} - -template <typename Func, typename First, typename... Rest> -struct ExpandAndApplyFunc { - Func&& func; - First&& first; - ExpandAndApplyFunc(Func&& func, First&& first) - : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} - template <typename... T> - auto operator()(T&&... params) - -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { - return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); - } -}; - -template <typename Func, typename First, typename... Rest> -inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, First, Rest...> { - - return expandAndApply( - ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), - kj::fwd<Rest>(rest)...); -} - -template <typename Func, typename... FirstTypes, typename... Rest> -inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { - return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), - kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); -} - -template <typename Func, typename... FirstTypes, typename... Rest> -inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { - return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), - kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); -} - -template <typename Func, typename... FirstTypes, typename... Rest> -inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { - return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), - kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); -} - -template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> -inline auto expandAndApplyWithIndexes( - Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { - return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., - kj::fwd<Rest>(rest)...); -} - -template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> -inline auto expandAndApplyWithIndexes( - Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) - -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { - return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., - kj::fwd<Rest>(rest)...); -} - -struct MakeTupleFunc { - template <typename... Params> - Tuple<Decay<Params>...> operator()(Params&&... params) { - return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); - } - template <typename Param> - Decay<Param> operator()(Param&& param) { - return kj::fwd<Param>(param); - } -}; - -} // namespace _ (private) - -template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; -template <typename T> struct Tuple_<T> { typedef T Type; }; - -template <typename... T> using Tuple = typename Tuple_<T...>::Type; -// Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size -// other than 1 expand to an internal type. Either way, you can construct a Tuple using -// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple -// as arguments to a function using `kj::apply(func, myTuple)`. -// -// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you -// construct a tuple from other tuples, the elements are flattened and concatenated. - -template <typename... Params> -inline auto tuple(Params&&... params) - -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { - // Construct a new tuple from the given values. Any tuples in the argument list will be - // flattened into the result. - return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); -} - -template <size_t index, typename Tuple> -inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { - // Unpack and return the tuple element at the given index. The index is specified as a template - // parameter, e.g. `kj::get<3>(myTuple)`. - return _::getImpl<index>(kj::fwd<Tuple>(tuple)); -} - -template <typename Func, typename... Params> -inline auto apply(Func&& func, Params&&... params) - -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { - // Apply a function to some arguments, expanding tuples into separate arguments. - return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); -} - -template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; -template <typename... T> struct TupleSize_<_::Tuple<T...>> { - static constexpr size_t size = sizeof...(T); -}; - -template <typename T> -constexpr size_t tupleSize() { return TupleSize_<T>::size; } -// Returns size of the tuple T. - -} // namespace kj - -#endif // KJ_TUPLE_H_ +// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors +// Licensed under the MIT License: +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. + +// This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows: +// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. +// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves +// tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. +// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. +// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples +// in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. +// +// Note that: +// - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the +// type. +// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be +// flattened. +// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause +// with type inference and `tuple()`. + +#ifndef KJ_TUPLE_H_ +#define KJ_TUPLE_H_ + +#if defined(__GNUC__) && !KJ_HEADER_WARNINGS +#pragma GCC system_header +#endif + +#include "common.h" + +namespace kj { +namespace _ { // private + +template <size_t index, typename... T> +struct TypeByIndex_; +template <typename First, typename... Rest> +struct TypeByIndex_<0, First, Rest...> { + typedef First Type; +}; +template <size_t index, typename First, typename... Rest> +struct TypeByIndex_<index, First, Rest...> + : public TypeByIndex_<index - 1, Rest...> {}; +template <size_t index> +struct TypeByIndex_<index> { + static_assert(index != index, "Index out-of-range."); +}; +template <size_t index, typename... T> +using TypeByIndex = typename TypeByIndex_<index, T...>::Type; +// Chose a particular type out of a list of types, by index. + +template <size_t... s> +struct Indexes {}; +// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match +// templates against them and unpack them with '...'. + +template <size_t end, size_t... prefix> +struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; +template <size_t... prefix> +struct MakeIndexes_<0, prefix...> { + typedef Indexes<prefix...> Type; +}; +template <size_t end> +using MakeIndexes = typename MakeIndexes_<end>::Type; +// Equivalent to Indexes<0, 1, 2, ..., end>. + +template <typename... T> +class Tuple; +template <size_t index, typename... U> +inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); +template <size_t index, typename... U> +inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); +template <size_t index, typename... U> +inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); + +template <uint index, typename T> +struct TupleElement { + // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits + // from a TupleElement for each element, which is more efficient than a recursive definition. + + T value; + TupleElement() = default; + constexpr inline TupleElement(const T& value): value(value) {} + constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} +}; + +template <uint index, typename T> +struct TupleElement<index, T&> { + // If tuples contained references, one of the following would have to be true: + // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is + // probably not what you expected. + // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned + // Tuple<Foo, Bar>. + static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references."); +}; + +template <uint index, typename... T> +struct TupleElement<index, Tuple<T...>> { + static_assert(sizeof(Tuple<T...>*) == 0, + "Tuples cannot contain other tuples -- they should be flattened."); +}; + +template <typename Indexes, typename... Types> +struct TupleImpl; + +template <size_t... indexes, typename... Types> +struct TupleImpl<Indexes<indexes...>, Types...> + : public TupleElement<indexes, Types>... { + // Implementation of Tuple. The only reason we need this rather than rolling this into class + // Tuple (below) is so that we can get "indexes" as an unpackable list. + + static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); + + template <typename... Params> + inline TupleImpl(Params&&... params) + : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { + // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes + // segfaults instead.) + static_assert(sizeof...(params) == sizeof...(indexes), + "Wrong number of parameters to Tuple constructor."); + } + + template <typename... U> + constexpr inline TupleImpl(Tuple<U...>&& other) + : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {} + template <typename... U> + constexpr inline TupleImpl(Tuple<U...>& other) + : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} + template <typename... U> + constexpr inline TupleImpl(const Tuple<U...>& other) + : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} +}; + +struct MakeTupleFunc; + +template <typename... T> +class Tuple { + // The actual Tuple class (used for tuples of size other than 1). + +public: + template <typename... U> + constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} + template <typename... U> + constexpr inline Tuple(Tuple<U...>& other): impl(other) {} + template <typename... U> + constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} + +private: + template <typename... Params> + constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} + + TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; + + template <size_t index, typename... U> + friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); + template <size_t index, typename... U> + friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); + template <size_t index, typename... U> + friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); + friend struct MakeTupleFunc; +}; + +template <> +class Tuple<> { + // Simplified zero-member version of Tuple. In particular this is important to make sure that + // Tuple<>() is constexpr. +}; + +template <typename T> +class Tuple<T>; +// Single-element tuple should never be used. The public API should ensure this. + +template <size_t index, typename... T> +inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { + // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. + static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); + return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; +} +template <size_t index, typename... T> +inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { + // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. + static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); + return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); +} +template <size_t index, typename... T> +inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { + // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. + static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); + return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; +} +template <size_t index, typename T> +inline T&& getImpl(T&& value) { + // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. + + // Non-tuples are equivalent to one-element tuples. + static_assert(index == 0, "Tuple element index out-of-bounds."); + return kj::fwd<T>(value); +} + + +template <typename Func, typename SoFar, typename... T> +struct ExpandAndApplyResult_; +// Template which computes the return type of applying Func to T... after flattening tuples. +// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template +// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. + +template <typename Func, typename First, typename... Rest, typename... T> +struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> + : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; +template <typename Func, typename... FirstTypes, typename... Rest, typename... T> +struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> + : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; +template <typename Func, typename... FirstTypes, typename... Rest, typename... T> +struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> + : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; +template <typename Func, typename... FirstTypes, typename... Rest, typename... T> +struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> + : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; +template <typename Func, typename... T> +struct ExpandAndApplyResult_<Func, Tuple<T...>> { + typedef decltype(instance<Func>()(instance<T&&>()...)) Type; +}; +template <typename Func, typename... T> +using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; +// Computes the expected return type of `expandAndApply()`. + +template <typename Func> +inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { + return func(); +} + +template <typename Func, typename First, typename... Rest> +struct ExpandAndApplyFunc { + Func&& func; + First&& first; + ExpandAndApplyFunc(Func&& func, First&& first) + : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} + template <typename... T> + auto operator()(T&&... params) + -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { + return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); + } +}; + +template <typename Func, typename First, typename... Rest> +inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, First, Rest...> { + + return expandAndApply( + ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), + kj::fwd<Rest>(rest)...); +} + +template <typename Func, typename... FirstTypes, typename... Rest> +inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { + return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), + kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); +} + +template <typename Func, typename... FirstTypes, typename... Rest> +inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { + return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), + kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); +} + +template <typename Func, typename... FirstTypes, typename... Rest> +inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { + return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), + kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); +} + +template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> +inline auto expandAndApplyWithIndexes( + Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { + return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., + kj::fwd<Rest>(rest)...); +} + +template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> +inline auto expandAndApplyWithIndexes( + Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) + -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { + return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., + kj::fwd<Rest>(rest)...); +} + +struct MakeTupleFunc { + template <typename... Params> + Tuple<Decay<Params>...> operator()(Params&&... params) { + return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); + } + template <typename Param> + Decay<Param> operator()(Param&& param) { + return kj::fwd<Param>(param); + } +}; + +} // namespace _ (private) + +template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; +template <typename T> struct Tuple_<T> { typedef T Type; }; + +template <typename... T> using Tuple = typename Tuple_<T...>::Type; +// Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size +// other than 1 expand to an internal type. Either way, you can construct a Tuple using +// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple +// as arguments to a function using `kj::apply(func, myTuple)`. +// +// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you +// construct a tuple from other tuples, the elements are flattened and concatenated. + +template <typename... Params> +inline auto tuple(Params&&... params) + -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { + // Construct a new tuple from the given values. Any tuples in the argument list will be + // flattened into the result. + return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); +} + +template <size_t index, typename Tuple> +inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { + // Unpack and return the tuple element at the given index. The index is specified as a template + // parameter, e.g. `kj::get<3>(myTuple)`. + return _::getImpl<index>(kj::fwd<Tuple>(tuple)); +} + +template <typename Func, typename... Params> +inline auto apply(Func&& func, Params&&... params) + -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { + // Apply a function to some arguments, expanding tuples into separate arguments. + return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); +} + +template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; +template <typename... T> struct TupleSize_<_::Tuple<T...>> { + static constexpr size_t size = sizeof...(T); +}; + +template <typename T> +constexpr size_t tupleSize() { return TupleSize_<T>::size; } +// Returns size of the tuple T. + +} // namespace kj + +#endif // KJ_TUPLE_H_