comparison src/portaudio_20140130/examples/paex_ocean_shore.c @ 124:e3d5853d5918

Current stable PortAudio source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:11:05 +0100
parents
children
comparison
equal deleted inserted replaced
123:0cef3a1bd1ae 124:e3d5853d5918
1 /** @file paex_ocean_shore.c
2 @ingroup examples_src
3 @brief Generate Pink Noise using Gardner method, and make "waves". Provides an example of how to
4 post stuff to/from the audio callback using lock-free FIFOs implemented by the PA ringbuffer.
5
6 Optimization suggested by James McCartney uses a tree
7 to select which random value to replace.
8 <pre>
9 x x x x x x x x x x x x x x x x
10 x x x x x x x x
11 x x x x
12 x x
13 x
14 </pre>
15 Tree is generated by counting trailing zeros in an increasing index.
16 When the index is zero, no random number is selected.
17
18 @author Phil Burk http://www.softsynth.com
19 Robert Bielik
20 */
21 /*
22 * $Id: paex_ocean_shore.c 1816 2012-02-22 12:20:26Z robiwan $
23 *
24 * This program uses the PortAudio Portable Audio Library.
25 * For more information see: http://www.portaudio.com
26 * Copyright (c) 1999-2000 Ross Bencina and Phil Burk
27 *
28 * Permission is hereby granted, free of charge, to any person obtaining
29 * a copy of this software and associated documentation files
30 * (the "Software"), to deal in the Software without restriction,
31 * including without limitation the rights to use, copy, modify, merge,
32 * publish, distribute, sublicense, and/or sell copies of the Software,
33 * and to permit persons to whom the Software is furnished to do so,
34 * subject to the following conditions:
35 *
36 * The above copyright notice and this permission notice shall be
37 * included in all copies or substantial portions of the Software.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
40 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
41 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
42 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
43 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
44 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
45 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
46 */
47
48 /*
49 * The text above constitutes the entire PortAudio license; however,
50 * the PortAudio community also makes the following non-binding requests:
51 *
52 * Any person wishing to distribute modifications to the Software is
53 * requested to send the modifications to the original developer so that
54 * they can be incorporated into the canonical version. It is also
55 * requested that these non-binding requests be included along with the
56 * license above.
57 */
58
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <math.h>
63 #include <time.h>
64
65 #include "portaudio.h"
66 #include "pa_ringbuffer.h"
67 #include "pa_util.h"
68
69 #define PINK_MAX_RANDOM_ROWS (30)
70 #define PINK_RANDOM_BITS (24)
71 #define PINK_RANDOM_SHIFT ((sizeof(long)*8)-PINK_RANDOM_BITS)
72
73 typedef struct
74 {
75 long pink_Rows[PINK_MAX_RANDOM_ROWS];
76 long pink_RunningSum; /* Used to optimize summing of generators. */
77 int pink_Index; /* Incremented each sample. */
78 int pink_IndexMask; /* Index wrapped by ANDing with this mask. */
79 float pink_Scalar; /* Used to scale within range of -1.0 to +1.0 */
80 }
81 PinkNoise;
82
83 typedef struct
84 {
85 float bq_b0;
86 float bq_b1;
87 float bq_b2;
88 float bq_a1;
89 float bq_a2;
90 } BiQuad;
91
92 typedef enum
93 {
94 State_kAttack,
95 State_kPreDecay,
96 State_kDecay,
97 State_kCnt,
98 } EnvState;
99
100 typedef struct
101 {
102 PinkNoise wave_left;
103 PinkNoise wave_right;
104
105 BiQuad wave_bq_coeffs;
106 float wave_bq_left[2];
107 float wave_bq_right[2];
108
109 EnvState wave_envelope_state;
110 float wave_envelope_level;
111 float wave_envelope_max_level;
112 float wave_pan_left;
113 float wave_pan_right;
114 float wave_attack_incr;
115 float wave_decay_incr;
116
117 } OceanWave;
118
119 /* Prototypes */
120 static unsigned long GenerateRandomNumber( void );
121 void InitializePinkNoise( PinkNoise *pink, int numRows );
122 float GeneratePinkNoise( PinkNoise *pink );
123 unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames);
124
125 /************************************************************/
126 /* Calculate pseudo-random 32 bit number based on linear congruential method. */
127 static unsigned long GenerateRandomNumber( void )
128 {
129 /* Change this seed for different random sequences. */
130 static unsigned long randSeed = 22222;
131 randSeed = (randSeed * 196314165) + 907633515;
132 return randSeed;
133 }
134
135 /************************************************************/
136 /* Setup PinkNoise structure for N rows of generators. */
137 void InitializePinkNoise( PinkNoise *pink, int numRows )
138 {
139 int i;
140 long pmax;
141 pink->pink_Index = 0;
142 pink->pink_IndexMask = (1<<numRows) - 1;
143 /* Calculate maximum possible signed random value. Extra 1 for white noise always added. */
144 pmax = (numRows + 1) * (1<<(PINK_RANDOM_BITS-1));
145 pink->pink_Scalar = 1.0f / pmax;
146 /* Initialize rows. */
147 for( i=0; i<numRows; i++ ) pink->pink_Rows[i] = 0;
148 pink->pink_RunningSum = 0;
149 }
150
151 /* Generate Pink noise values between -1.0 and +1.0 */
152 float GeneratePinkNoise( PinkNoise *pink )
153 {
154 long newRandom;
155 long sum;
156 float output;
157 /* Increment and mask index. */
158 pink->pink_Index = (pink->pink_Index + 1) & pink->pink_IndexMask;
159 /* If index is zero, don't update any random values. */
160 if( pink->pink_Index != 0 )
161 {
162 /* Determine how many trailing zeros in PinkIndex. */
163 /* This algorithm will hang if n==0 so test first. */
164 int numZeros = 0;
165 int n = pink->pink_Index;
166 while( (n & 1) == 0 )
167 {
168 n = n >> 1;
169 numZeros++;
170 }
171 /* Replace the indexed ROWS random value.
172 * Subtract and add back to RunningSum instead of adding all the random
173 * values together. Only one changes each time.
174 */
175 pink->pink_RunningSum -= pink->pink_Rows[numZeros];
176 newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
177 pink->pink_RunningSum += newRandom;
178 pink->pink_Rows[numZeros] = newRandom;
179 }
180
181 /* Add extra white noise value. */
182 newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
183 sum = pink->pink_RunningSum + newRandom;
184 /* Scale to range of -1.0 to 0.9999. */
185 output = pink->pink_Scalar * sum;
186 return output;
187 }
188
189 float ProcessBiquad(const BiQuad* coeffs, float* memory, float input)
190 {
191 float w = input - coeffs->bq_a1 * memory[0] - coeffs->bq_a2 * memory[1];
192 float out = coeffs->bq_b1 * memory[0] + coeffs->bq_b2 * memory[1] + coeffs->bq_b0 * w;
193 memory[1] = memory[0];
194 memory[0] = w;
195 return out;
196 }
197
198 static const float one_over_2Q_LP = 0.3f;
199 static const float one_over_2Q_HP = 1.0f;
200
201 unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames )
202 {
203 unsigned retval=0,i;
204 float targetLevel, levelIncr, currentLevel;
205 switch (wave->wave_envelope_state)
206 {
207 case State_kAttack:
208 targetLevel = noOfFrames * wave->wave_attack_incr + wave->wave_envelope_level;
209 if (targetLevel >= wave->wave_envelope_max_level)
210 {
211 /* Go to decay state */
212 wave->wave_envelope_state = State_kPreDecay;
213 targetLevel = wave->wave_envelope_max_level;
214 }
215 /* Calculate lowpass biquad coeffs
216
217 alpha = sin(w0)/(2*Q)
218
219 b0 = (1 - cos(w0))/2
220 b1 = 1 - cos(w0)
221 b2 = (1 - cos(w0))/2
222 a0 = 1 + alpha
223 a1 = -2*cos(w0)
224 a2 = 1 - alpha
225
226 w0 = [0 - pi[
227 */
228 {
229 const float w0 = 3.141592654f * targetLevel / wave->wave_envelope_max_level;
230 const float alpha = sinf(w0) * one_over_2Q_LP;
231 const float cosw0 = cosf(w0);
232 const float a0_fact = 1.0f / (1.0f + alpha);
233 wave->wave_bq_coeffs.bq_b1 = (1.0f - cosw0) * a0_fact;
234 wave->wave_bq_coeffs.bq_b0 = wave->wave_bq_coeffs.bq_b1 * 0.5f;
235 wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
236 wave->wave_bq_coeffs.bq_a2 = (1.0f - alpha) * a0_fact;
237 wave->wave_bq_coeffs.bq_a1 = -2.0f * cosw0 * a0_fact;
238 }
239 break;
240
241 case State_kPreDecay:
242 /* Reset biquad state */
243 memset(wave->wave_bq_left, 0, 2 * sizeof(float));
244 memset(wave->wave_bq_right, 0, 2 * sizeof(float));
245 wave->wave_envelope_state = State_kDecay;
246
247 /* Deliberate fall-through */
248
249 case State_kDecay:
250 targetLevel = noOfFrames * wave->wave_decay_incr + wave->wave_envelope_level;
251 if (targetLevel < 0.001f)
252 {
253 /* < -60 dB, we're done */
254 wave->wave_envelope_state = 3;
255 retval = 1;
256 }
257 /* Calculate highpass biquad coeffs
258
259 alpha = sin(w0)/(2*Q)
260
261 b0 = (1 + cos(w0))/2
262 b1 = -(1 + cos(w0))
263 b2 = (1 + cos(w0))/2
264 a0 = 1 + alpha
265 a1 = -2*cos(w0)
266 a2 = 1 - alpha
267
268 w0 = [0 - pi/2[
269 */
270 {
271 const float v = targetLevel / wave->wave_envelope_max_level;
272 const float w0 = 1.5707963f * (1.0f - (v*v));
273 const float alpha = sinf(w0) * one_over_2Q_HP;
274 const float cosw0 = cosf(w0);
275 const float a0_fact = 1.0f / (1.0f + alpha);
276 wave->wave_bq_coeffs.bq_b1 = (float)(- (1 + cosw0) * a0_fact);
277 wave->wave_bq_coeffs.bq_b0 = -wave->wave_bq_coeffs.bq_b1 * 0.5f;
278 wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
279 wave->wave_bq_coeffs.bq_a2 = (float)((1.0 - alpha) * a0_fact);
280 wave->wave_bq_coeffs.bq_a1 = (float)(-2.0 * cosw0 * a0_fact);
281 }
282 break;
283
284 default:
285 break;
286 }
287
288 currentLevel = wave->wave_envelope_level;
289 wave->wave_envelope_level = targetLevel;
290 levelIncr = (targetLevel - currentLevel) / noOfFrames;
291
292 for (i = 0; i < noOfFrames; ++i, currentLevel += levelIncr)
293 {
294 (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_left, (GeneratePinkNoise(&wave->wave_left))) * currentLevel * wave->wave_pan_left;
295 (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_right, (GeneratePinkNoise(&wave->wave_right))) * currentLevel * wave->wave_pan_right;
296 }
297
298 return retval;
299 }
300
301
302 /*******************************************************************/
303
304 /* Context for callback routine. */
305 typedef struct
306 {
307 OceanWave* waves[16]; /* Maximum 16 waves */
308 unsigned noOfActiveWaves;
309
310 /* Ring buffer (FIFO) for "communicating" towards audio callback */
311 PaUtilRingBuffer rBufToRT;
312 void* rBufToRTData;
313
314 /* Ring buffer (FIFO) for "communicating" from audio callback */
315 PaUtilRingBuffer rBufFromRT;
316 void* rBufFromRTData;
317 }
318 paTestData;
319
320 /* This routine will be called by the PortAudio engine when audio is needed.
321 ** It may called at interrupt level on some machines so don't do anything
322 ** that could mess up the system like calling malloc() or free().
323 */
324 static int patestCallback(const void* inputBuffer,
325 void* outputBuffer,
326 unsigned long framesPerBuffer,
327 const PaStreamCallbackTimeInfo* timeInfo,
328 PaStreamCallbackFlags statusFlags,
329 void* userData)
330 {
331 int i;
332 paTestData *data = (paTestData*)userData;
333 float *out = (float*)outputBuffer;
334 (void) inputBuffer; /* Prevent "unused variable" warnings. */
335
336 /* Reset output data first */
337 memset(out, 0, framesPerBuffer * 2 * sizeof(float));
338
339 for (i = 0; i < 16; ++i)
340 {
341 /* Consume the input queue */
342 if (data->waves[i] == 0 && PaUtil_GetRingBufferReadAvailable(&data->rBufToRT))
343 {
344 OceanWave* ptr = 0;
345 PaUtil_ReadRingBuffer(&data->rBufToRT, &ptr, 1);
346 data->waves[i] = ptr;
347 }
348
349 if (data->waves[i] != 0)
350 {
351 if (GenerateWave(data->waves[i], out, framesPerBuffer))
352 {
353 /* If wave is "done", post it back to the main thread for deletion */
354 PaUtil_WriteRingBuffer(&data->rBufFromRT, &data->waves[i], 1);
355 data->waves[i] = 0;
356 }
357 }
358 }
359 return paContinue;
360 }
361
362 #define NEW_ROW_SIZE (12 + (8*rand())/RAND_MAX)
363
364 OceanWave* InitializeWave(double SR, float attackInSeconds, float maxLevel, float positionLeftRight)
365 {
366 OceanWave* wave = NULL;
367 static unsigned lastNoOfRows = 12;
368 unsigned newNoOfRows;
369
370 wave = (OceanWave*)PaUtil_AllocateMemory(sizeof(OceanWave));
371 if (wave != NULL)
372 {
373 InitializePinkNoise(&wave->wave_left, lastNoOfRows);
374 while ((newNoOfRows = NEW_ROW_SIZE) == lastNoOfRows);
375 InitializePinkNoise(&wave->wave_right, newNoOfRows);
376 lastNoOfRows = newNoOfRows;
377
378 wave->wave_envelope_state = State_kAttack;
379 wave->wave_envelope_level = 0.f;
380 wave->wave_envelope_max_level = maxLevel;
381 wave->wave_attack_incr = wave->wave_envelope_max_level / (attackInSeconds * (float)SR);
382 wave->wave_decay_incr = - wave->wave_envelope_max_level / (attackInSeconds * 4 * (float)SR);
383
384 wave->wave_pan_left = sqrtf(1.0 - positionLeftRight);
385 wave->wave_pan_right = sqrtf(positionLeftRight);
386 }
387 return wave;
388 }
389
390 static float GenerateFloatRandom(float minValue, float maxValue)
391 {
392 return minValue + ((maxValue - minValue) * rand()) / RAND_MAX;
393 }
394
395 /*******************************************************************/
396 int main(void);
397 int main(void)
398 {
399 PaStream* stream;
400 PaError err;
401 paTestData data = {0};
402 PaStreamParameters outputParameters;
403 double tstamp;
404 double tstart;
405 double tdelta = 0;
406 static const double SR = 44100.0;
407 static const int FPB = 128; /* Frames per buffer: 2.9 ms buffers. */
408
409 /* Initialize communication buffers (queues) */
410 data.rBufToRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
411 if (data.rBufToRTData == NULL)
412 {
413 return 1;
414 }
415 PaUtil_InitializeRingBuffer(&data.rBufToRT, sizeof(OceanWave*), 256, data.rBufToRTData);
416
417 data.rBufFromRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
418 if (data.rBufFromRTData == NULL)
419 {
420 return 1;
421 }
422 PaUtil_InitializeRingBuffer(&data.rBufFromRT, sizeof(OceanWave*), 256, data.rBufFromRTData);
423
424 err = Pa_Initialize();
425 if( err != paNoError ) goto error;
426
427 /* Open a stereo PortAudio stream so we can hear the result. */
428 outputParameters.device = Pa_GetDefaultOutputDevice(); /* Take the default output device. */
429 if (outputParameters.device == paNoDevice) {
430 fprintf(stderr,"Error: No default output device.\n");
431 goto error;
432 }
433 outputParameters.channelCount = 2; /* Stereo output, most likely supported. */
434 outputParameters.hostApiSpecificStreamInfo = NULL;
435 outputParameters.sampleFormat = paFloat32; /* 32 bit floating point output. */
436 outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency;
437 err = Pa_OpenStream(&stream,
438 NULL, /* No input. */
439 &outputParameters,
440 SR, /* Sample rate. */
441 FPB, /* Frames per buffer. */
442 paDitherOff, /* Clip but don't dither */
443 patestCallback,
444 &data);
445 if( err != paNoError ) goto error;
446
447 err = Pa_StartStream( stream );
448 if( err != paNoError ) goto error;
449
450 printf("Stereo \"ocean waves\" for one minute...\n");
451
452 tstart = PaUtil_GetTime();
453 tstamp = tstart;
454 srand( (unsigned)time(NULL) );
455
456 while( ( err = Pa_IsStreamActive( stream ) ) == 1 )
457 {
458 const double tcurrent = PaUtil_GetTime();
459
460 /* Delete "waves" that the callback is finished with */
461 while (PaUtil_GetRingBufferReadAvailable(&data.rBufFromRT) > 0)
462 {
463 OceanWave* ptr = 0;
464 PaUtil_ReadRingBuffer(&data.rBufFromRT, &ptr, 1);
465 if (ptr != 0)
466 {
467 printf("Wave is deleted...\n");
468 PaUtil_FreeMemory(ptr);
469 --data.noOfActiveWaves;
470 }
471 }
472
473 if (tcurrent - tstart < 60.0) /* Only start new "waves" during one minute */
474 {
475 if (tcurrent >= tstamp)
476 {
477 double tdelta = GenerateFloatRandom(1.0f, 4.0f);
478 tstamp += tdelta;
479
480 if (data.noOfActiveWaves<16)
481 {
482 const float attackTime = GenerateFloatRandom(2.0f, 6.0f);
483 const float level = GenerateFloatRandom(0.1f, 1.0f);
484 const float pos = GenerateFloatRandom(0.0f, 1.0f);
485 OceanWave* p = InitializeWave(SR, attackTime, level, pos);
486 if (p != NULL)
487 {
488 /* Post wave to audio callback */
489 PaUtil_WriteRingBuffer(&data.rBufToRT, &p, 1);
490 ++data.noOfActiveWaves;
491
492 printf("Starting wave at level = %.2f, attack = %.2lf, pos = %.2lf\n", level, attackTime, pos);
493 }
494 }
495 }
496 }
497 else
498 {
499 if (data.noOfActiveWaves == 0)
500 {
501 printf("All waves finished!\n");
502 break;
503 }
504 }
505
506 Pa_Sleep(100);
507 }
508 if( err < 0 ) goto error;
509
510 err = Pa_CloseStream( stream );
511 if( err != paNoError ) goto error;
512
513 if (data.rBufToRTData)
514 {
515 PaUtil_FreeMemory(data.rBufToRTData);
516 }
517 if (data.rBufFromRTData)
518 {
519 PaUtil_FreeMemory(data.rBufFromRTData);
520 }
521
522 Pa_Sleep(1000);
523
524 Pa_Terminate();
525 return 0;
526
527 error:
528 Pa_Terminate();
529 fprintf( stderr, "An error occured while using the portaudio stream\n" );
530 fprintf( stderr, "Error number: %d\n", err );
531 fprintf( stderr, "Error message: %s\n", Pa_GetErrorText( err ) );
532 return 0;
533 }