Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/simd-support/simd-avx2.h @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * Modifications by Romain Dolbeau & Erik Lindahl, derived from simd-avx.h | |
6 * Romain Dolbeau hereby places his modifications in the public domain. | |
7 * Erik Lindahl hereby places his modifications in the public domain. | |
8 * | |
9 * This program is free software; you can redistribute it and/or modify | |
10 * it under the terms of the GNU General Public License as published by | |
11 * the Free Software Foundation; either version 2 of the License, or | |
12 * (at your option) any later version. | |
13 * | |
14 * This program is distributed in the hope that it will be useful, | |
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 * GNU General Public License for more details. | |
18 * | |
19 * You should have received a copy of the GNU General Public License | |
20 * along with this program; if not, write to the Free Software | |
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
22 * | |
23 */ | |
24 | |
25 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
26 #error "AVX2 only works in single or double precision" | |
27 #endif | |
28 | |
29 #ifdef FFTW_SINGLE | |
30 # define DS(d,s) s /* single-precision option */ | |
31 # define SUFF(name) name ## s | |
32 #else | |
33 # define DS(d,s) d /* double-precision option */ | |
34 # define SUFF(name) name ## d | |
35 #endif | |
36 | |
37 #define SIMD_SUFFIX _avx2 /* for renaming */ | |
38 #define VL DS(2, 4) /* SIMD complex vector length */ | |
39 #define SIMD_VSTRIDE_OKA(x) ((x) == 2) | |
40 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
41 | |
42 #if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */ | |
43 #error "compiling simd-avx2.h without avx2 support" | |
44 #endif | |
45 | |
46 #ifdef _MSC_VER | |
47 #ifndef inline | |
48 #define inline __inline | |
49 #endif | |
50 #endif | |
51 | |
52 #include <immintrin.h> | |
53 | |
54 typedef DS(__m256d, __m256) V; | |
55 #define VADD SUFF(_mm256_add_p) | |
56 #define VSUB SUFF(_mm256_sub_p) | |
57 #define VMUL SUFF(_mm256_mul_p) | |
58 #define VXOR SUFF(_mm256_xor_p) | |
59 #define VSHUF SUFF(_mm256_shuffle_p) | |
60 #define VPERM1 SUFF(_mm256_permute_p) | |
61 | |
62 #define SHUFVALD(fp0,fp1) \ | |
63 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) | |
64 #define SHUFVALS(fp0,fp1,fp2,fp3) \ | |
65 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | |
66 | |
67 #define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x)) | |
68 #define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x)) | |
69 | |
70 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) | |
71 #define DVK(var, val) V var = VLIT(val, val) | |
72 #define LDK(x) x | |
73 | |
74 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
75 { | |
76 (void)aligned_like; /* UNUSED */ | |
77 (void)ivs; /* UNUSED */ | |
78 return SUFF(_mm256_loadu_p)(x); | |
79 } | |
80 | |
81 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
82 { | |
83 (void)aligned_like; /* UNUSED */ | |
84 (void)ovs; /* UNUSED */ | |
85 SUFF(_mm256_storeu_p)(x, v); | |
86 } | |
87 | |
88 #if FFTW_SINGLE | |
89 | |
90 # ifdef _MSC_VER | |
91 /* Temporarily disable the warning "uninitialized local variable | |
92 'name' used" and runtime checks for using a variable before it is | |
93 defined which is erroneously triggered by the LOADL0 / LOADH macros | |
94 as they only modify VAL partly each. */ | |
95 # ifndef __INTEL_COMPILER | |
96 # pragma warning(disable : 4700) | |
97 # pragma runtime_checks("u", off) | |
98 # endif | |
99 # endif | |
100 # ifdef __INTEL_COMPILER | |
101 # pragma warning(disable : 592) | |
102 # endif | |
103 | |
104 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) | |
105 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) | |
106 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) | |
107 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) | |
108 | |
109 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
110 { | |
111 __m128 l0, l1, h0, h1; | |
112 (void)aligned_like; /* UNUSED */ | |
113 #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8) | |
114 l0 = LOADL(x, SUFF(_mm_undefined_p)()); | |
115 l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)()); | |
116 h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)()); | |
117 h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)()); | |
118 #else | |
119 l0 = LOADL(x, l0); | |
120 l1 = LOADL(x + ivs, l1); | |
121 h0 = LOADL(x + 2*ivs, h0); | |
122 h1 = LOADL(x + 3*ivs, h1); | |
123 #endif | |
124 l0 = SUFF(_mm_movelh_p)(l0,l1); | |
125 h0 = SUFF(_mm_movelh_p)(h0,h1); | |
126 return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1); | |
127 } | |
128 | |
129 # ifdef _MSC_VER | |
130 # ifndef __INTEL_COMPILER | |
131 # pragma warning(default : 4700) | |
132 # pragma runtime_checks("u", restore) | |
133 # endif | |
134 # endif | |
135 # ifdef __INTEL_COMPILER | |
136 # pragma warning(default : 592) | |
137 # endif | |
138 | |
139 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
140 { | |
141 __m128 h = _mm256_extractf128_ps(v, 1); | |
142 __m128 l = _mm256_castps256_ps128(v); | |
143 (void)aligned_like; /* UNUSED */ | |
144 /* WARNING: the extra_iter hack depends upon STOREL occurring | |
145 after STOREH */ | |
146 STOREH(x + 3*ovs, h); | |
147 STOREL(x + 2*ovs, h); | |
148 STOREH(x + ovs, l); | |
149 STOREL(x, l); | |
150 } | |
151 | |
152 #define STM2(x, v, ovs, aligned_like) /* no-op */ | |
153 static inline void STN2(R *x, V v0, V v1, INT ovs) | |
154 { | |
155 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); | |
156 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); | |
157 __m128 h0 = _mm256_extractf128_ps(x0, 1); | |
158 __m128 l0 = _mm256_castps256_ps128(x0); | |
159 __m128 h1 = _mm256_extractf128_ps(x1, 1); | |
160 __m128 l1 = _mm256_castps256_ps128(x1); | |
161 *(__m128 *)(x + 3*ovs) = h1; | |
162 *(__m128 *)(x + 2*ovs) = h0; | |
163 *(__m128 *)(x + 1*ovs) = l1; | |
164 *(__m128 *)(x + 0*ovs) = l0; | |
165 } | |
166 | |
167 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
168 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
169 { \ | |
170 V xxx0, xxx1, xxx2, xxx3; \ | |
171 V yyy0, yyy1, yyy2, yyy3; \ | |
172 xxx0 = _mm256_unpacklo_ps(v0, v2); \ | |
173 xxx1 = _mm256_unpackhi_ps(v0, v2); \ | |
174 xxx2 = _mm256_unpacklo_ps(v1, v3); \ | |
175 xxx3 = _mm256_unpackhi_ps(v1, v3); \ | |
176 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ | |
177 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ | |
178 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ | |
179 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ | |
180 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ | |
181 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ | |
182 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ | |
183 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ | |
184 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ | |
185 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ | |
186 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ | |
187 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ | |
188 } | |
189 | |
190 #else | |
191 static inline __m128d VMOVAPD_LD(const R *x) | |
192 { | |
193 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) | |
194 into a 256-bit vmovapd, which requires 32-byte aligment instead of | |
195 16-byte alignment. | |
196 | |
197 Force the use of vmovapd via asm until compilers stabilize. | |
198 */ | |
199 #if defined(__GNUC__) | |
200 __m128d var; | |
201 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); | |
202 return var; | |
203 #else | |
204 return *(const __m128d *)x; | |
205 #endif | |
206 } | |
207 | |
208 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
209 { | |
210 V var; | |
211 (void)aligned_like; /* UNUSED */ | |
212 var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); | |
213 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); | |
214 return var; | |
215 } | |
216 | |
217 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
218 { | |
219 (void)aligned_like; /* UNUSED */ | |
220 /* WARNING: the extra_iter hack depends upon the store of the low | |
221 part occurring after the store of the high part */ | |
222 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); | |
223 *(__m128d *)x = _mm256_castpd256_pd128(v); | |
224 } | |
225 | |
226 | |
227 #define STM2 ST | |
228 #define STN2(x, v0, v1, ovs) /* nop */ | |
229 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
230 | |
231 /* STN4 is a macro, not a function, thanks to Visual C++ developers | |
232 deciding "it would be infrequent that people would want to pass more | |
233 than 3 [__m128 parameters] by value." Even though the comment | |
234 was made about __m128 parameters, it appears to apply to __m256 | |
235 parameters as well. */ | |
236 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
237 { \ | |
238 V xxx0, xxx1, xxx2, xxx3; \ | |
239 xxx0 = _mm256_unpacklo_pd(v0, v1); \ | |
240 xxx1 = _mm256_unpackhi_pd(v0, v1); \ | |
241 xxx2 = _mm256_unpacklo_pd(v2, v3); \ | |
242 xxx3 = _mm256_unpackhi_pd(v2, v3); \ | |
243 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ | |
244 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ | |
245 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ | |
246 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ | |
247 } | |
248 #endif | |
249 | |
250 static inline V FLIP_RI(V x) | |
251 { | |
252 return VPERM1(x, DS(SHUFVALD(1, 0), SHUFVALS(1, 0, 3, 2))); | |
253 } | |
254 | |
255 static inline V VCONJ(V x) | |
256 { | |
257 /* Produce a SIMD vector[VL] of (0 + -0i). | |
258 | |
259 We really want to write this: | |
260 | |
261 V pmpm = VLIT(-0.0, 0.0); | |
262 | |
263 but historically some compilers have ignored the distiction | |
264 between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0 | |
265 as 0 too. | |
266 */ | |
267 union uvec { | |
268 unsigned u[8]; | |
269 V v; | |
270 }; | |
271 static const union uvec pmpm = { | |
272 #ifdef FFTW_SINGLE | |
273 { 0x00000000, 0x80000000, 0x00000000, 0x80000000, | |
274 0x00000000, 0x80000000, 0x00000000, 0x80000000 } | |
275 #else | |
276 { 0x00000000, 0x00000000, 0x00000000, 0x80000000, | |
277 0x00000000, 0x00000000, 0x00000000, 0x80000000 } | |
278 #endif | |
279 }; | |
280 return VXOR(pmpm.v, x); | |
281 } | |
282 | |
283 static inline V VBYI(V x) | |
284 { | |
285 return FLIP_RI(VCONJ(x)); | |
286 } | |
287 | |
288 /* FMA support */ | |
289 #define VFMA SUFF(_mm256_fmadd_p) | |
290 #define VFNMS SUFF(_mm256_fnmadd_p) | |
291 #define VFMS SUFF(_mm256_fmsub_p) | |
292 #define VFMAI(b, c) SUFF(_mm256_addsub_p)(c, FLIP_RI(b)) /* VADD(c, VBYI(b)) */ | |
293 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
294 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
295 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
296 #define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c, b) /* VSUB(c, VCONJ(b)) */ | |
297 | |
298 static inline V VZMUL(V tx, V sr) | |
299 { | |
300 /* V tr = VDUPL(tx); */ | |
301 /* V ti = VDUPH(tx); */ | |
302 /* tr = VMUL(sr, tr); */ | |
303 /* sr = VBYI(sr); */ | |
304 /* return VFMA(ti, sr, tr); */ | |
305 return SUFF(_mm256_fmaddsub_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx))); | |
306 } | |
307 | |
308 static inline V VZMULJ(V tx, V sr) | |
309 { | |
310 /* V tr = VDUPL(tx); */ | |
311 /* V ti = VDUPH(tx); */ | |
312 /* tr = VMUL(sr, tr); */ | |
313 /* sr = VBYI(sr); */ | |
314 /* return VFNMS(ti, sr, tr); */ | |
315 return SUFF(_mm256_fmsubadd_p)(sr, VDUPL(tx), VMUL(FLIP_RI(sr), VDUPH(tx))); | |
316 } | |
317 | |
318 static inline V VZMULI(V tx, V sr) | |
319 { | |
320 V tr = VDUPL(tx); | |
321 V ti = VDUPH(tx); | |
322 ti = VMUL(ti, sr); | |
323 sr = VBYI(sr); | |
324 return VFMS(tr, sr, ti); | |
325 /* | |
326 * Keep the old version | |
327 * (2 permute, 1 shuffle, 1 constant load (L1), 1 xor, 2 fp), since the below FMA one | |
328 * would be 2 permute, 1 shuffle, 1 xor (setzero), 3 fp), but with a longer pipeline. | |
329 * | |
330 * Alternative new fma version: | |
331 * return SUFF(_mm256_addsub_p)(SUFF(_mm256_fnmadd_p)(sr, VDUPH(tx), SUFF(_mm256_setzero_p)()), | |
332 * VMUL(FLIP_RI(sr), VDUPL(tx))); | |
333 */ | |
334 } | |
335 | |
336 static inline V VZMULIJ(V tx, V sr) | |
337 { | |
338 /* V tr = VDUPL(tx); */ | |
339 /* V ti = VDUPH(tx); */ | |
340 /* ti = VMUL(ti, sr); */ | |
341 /* sr = VBYI(sr); */ | |
342 /* return VFMA(tr, sr, ti); */ | |
343 return SUFF(_mm256_fmaddsub_p)(sr, VDUPH(tx), VMUL(FLIP_RI(sr), VDUPL(tx))); | |
344 } | |
345 | |
346 /* twiddle storage #1: compact, slower */ | |
347 #ifdef FFTW_SINGLE | |
348 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
349 #else | |
350 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
351 #endif | |
352 #define TWVL1 (VL) | |
353 | |
354 static inline V BYTW1(const R *t, V sr) | |
355 { | |
356 return VZMUL(LDA(t, 2, t), sr); | |
357 } | |
358 | |
359 static inline V BYTWJ1(const R *t, V sr) | |
360 { | |
361 return VZMULJ(LDA(t, 2, t), sr); | |
362 } | |
363 | |
364 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
365 #ifdef FFTW_SINGLE | |
366 # define VTW2(v,x) \ | |
367 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
368 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
369 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
370 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
371 #else | |
372 # define VTW2(v,x) \ | |
373 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
374 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
375 #endif | |
376 #define TWVL2 (2 * VL) | |
377 | |
378 static inline V BYTW2(const R *t, V sr) | |
379 { | |
380 const V *twp = (const V *)t; | |
381 V si = FLIP_RI(sr); | |
382 V tr = twp[0], ti = twp[1]; | |
383 return VFMA(tr, sr, VMUL(ti, si)); | |
384 } | |
385 | |
386 static inline V BYTWJ2(const R *t, V sr) | |
387 { | |
388 const V *twp = (const V *)t; | |
389 V si = FLIP_RI(sr); | |
390 V tr = twp[0], ti = twp[1]; | |
391 return VFNMS(ti, si, VMUL(tr, sr)); | |
392 } | |
393 | |
394 /* twiddle storage #3 */ | |
395 #define VTW3 VTW1 | |
396 #define TWVL3 TWVL1 | |
397 | |
398 /* twiddle storage for split arrays */ | |
399 #ifdef FFTW_SINGLE | |
400 # define VTWS(v,x) \ | |
401 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
402 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
403 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
404 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
405 #else | |
406 # define VTWS(v,x) \ | |
407 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
408 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
409 #endif | |
410 #define TWVLS (2 * VL) | |
411 | |
412 #define VLEAVE _mm256_zeroupper | |
413 | |
414 #include "simd-common.h" |