comparison src/fftw-3.3.8/kernel/tensor7.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 #include "kernel/ifftw.h"
23
24 static int signof(INT x)
25 {
26 if (x < 0) return -1;
27 if (x == 0) return 0;
28 /* if (x > 0) */ return 1;
29 }
30
31 /* total order among iodim's */
32 int X(dimcmp)(const iodim *a, const iodim *b)
33 {
34 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
35 INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
36 INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);
37
38 /* in descending order of min{istride, ostride} */
39 if (sam != sbm)
40 return signof(sbm - sam);
41
42 /* in case of a tie, in descending order of istride */
43 if (sbi != sai)
44 return signof(sbi - sai);
45
46 /* in case of a tie, in descending order of ostride */
47 if (sbo != sao)
48 return signof(sbo - sao);
49
50 /* in case of a tie, in ascending order of n */
51 return signof(a->n - b->n);
52 }
53
54 static void canonicalize(tensor *x)
55 {
56 if (x->rnk > 1) {
57 qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
58 (int (*)(const void *, const void *))X(dimcmp));
59 }
60 }
61
62 static int compare_by_istride(const iodim *a, const iodim *b)
63 {
64 INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
65
66 /* in descending order of istride */
67 return signof(sbi - sai);
68 }
69
70 static tensor *really_compress(const tensor *sz)
71 {
72 int i, rnk;
73 tensor *x;
74
75 A(FINITE_RNK(sz->rnk));
76 for (i = rnk = 0; i < sz->rnk; ++i) {
77 A(sz->dims[i].n > 0);
78 if (sz->dims[i].n != 1)
79 ++rnk;
80 }
81
82 x = X(mktensor)(rnk);
83 for (i = rnk = 0; i < sz->rnk; ++i) {
84 if (sz->dims[i].n != 1)
85 x->dims[rnk++] = sz->dims[i];
86 }
87 return x;
88 }
89
90 /* Like tensor_copy, but eliminate n == 1 dimensions, which
91 never affect any transform or transform vector.
92
93 Also, we sort the tensor into a canonical order of decreasing
94 strides (see X(dimcmp) for an exact definition). In general,
95 processing a loop/array in order of decreasing stride will improve
96 locality. Both forward and backwards traversal of the tensor are
97 considered e.g. by vrank-geq1, so sorting in increasing
98 vs. decreasing order is not really important. */
99 tensor *X(tensor_compress)(const tensor *sz)
100 {
101 tensor *x = really_compress(sz);
102 canonicalize(x);
103 return x;
104 }
105
106 /* Return whether the strides of a and b are such that they form an
107 effective contiguous 1d array. Assumes that a.is >= b.is. */
108 static int strides_contig(iodim *a, iodim *b)
109 {
110 return (a->is == b->is * b->n && a->os == b->os * b->n);
111 }
112
113 /* Like tensor_compress, but also compress into one dimension any
114 group of dimensions that form a contiguous block of indices with
115 some stride. (This can safely be done for transform vector sizes.) */
116 tensor *X(tensor_compress_contiguous)(const tensor *sz)
117 {
118 int i, rnk;
119 tensor *sz2, *x;
120
121 if (X(tensor_sz)(sz) == 0)
122 return X(mktensor)(RNK_MINFTY);
123
124 sz2 = really_compress(sz);
125 A(FINITE_RNK(sz2->rnk));
126
127 if (sz2->rnk <= 1) { /* nothing to compress. */
128 if (0) {
129 /* this call is redundant, because "sz->rnk <= 1" implies
130 that the tensor is already canonical, but I am writing
131 it explicitly because "logically" we need to canonicalize
132 the tensor before returning. */
133 canonicalize(sz2);
134 }
135 return sz2;
136 }
137
138 /* sort in descending order of |istride|, so that compressible
139 dimensions appear contigously */
140 qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
141 (int (*)(const void *, const void *))compare_by_istride);
142
143 /* compute what the rank will be after compression */
144 for (i = rnk = 1; i < sz2->rnk; ++i)
145 if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
146 ++rnk;
147
148 /* merge adjacent dimensions whenever possible */
149 x = X(mktensor)(rnk);
150 x->dims[0] = sz2->dims[0];
151 for (i = rnk = 1; i < sz2->rnk; ++i) {
152 if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
153 x->dims[rnk - 1].n *= sz2->dims[i].n;
154 x->dims[rnk - 1].is = sz2->dims[i].is;
155 x->dims[rnk - 1].os = sz2->dims[i].os;
156 } else {
157 A(rnk < x->rnk);
158 x->dims[rnk++] = sz2->dims[i];
159 }
160 }
161
162 X(tensor_destroy)(sz2);
163
164 /* reduce to canonical form */
165 canonicalize(x);
166 return x;
167 }
168
169 /* The inverse of X(tensor_append): splits the sz tensor into
170 tensor a followed by tensor b, where a's rank is arnk. */
171 void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
172 {
173 A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
174
175 *a = X(tensor_copy_sub)(sz, 0, arnk);
176 *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
177 }
178
179 /* TRUE if the two tensors are equal */
180 int X(tensor_equal)(const tensor *a, const tensor *b)
181 {
182 if (a->rnk != b->rnk)
183 return 0;
184
185 if (FINITE_RNK(a->rnk)) {
186 int i;
187 for (i = 0; i < a->rnk; ++i)
188 if (0
189 || a->dims[i].n != b->dims[i].n
190 || a->dims[i].is != b->dims[i].is
191 || a->dims[i].os != b->dims[i].os
192 )
193 return 0;
194 }
195
196 return 1;
197 }
198
199 /* TRUE if the sets of input and output locations described by
200 (append sz vecsz) are the same */
201 int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
202 {
203 tensor *t = X(tensor_append)(sz, vecsz);
204 tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
205 tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
206 tensor *tic = X(tensor_compress_contiguous)(ti);
207 tensor *toc = X(tensor_compress_contiguous)(to);
208
209 int retval = X(tensor_equal)(tic, toc);
210
211 X(tensor_destroy)(t);
212 X(tensor_destroy4)(ti, to, tic, toc);
213
214 return retval;
215 }