Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/n2sv_16.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:19 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2sv_16 -with-ostride 1 -include dft/simd/n2s.h -store-multiple 4 */ | |
29 | |
30 /* | |
31 * This function contains 144 FP additions, 40 FP multiplications, | |
32 * (or, 104 additions, 0 multiplications, 40 fused multiply/add), | |
33 * 74 stack variables, 3 constants, and 72 memory accesses | |
34 */ | |
35 #include "dft/simd/n2s.h" | |
36 | |
37 static void n2sv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT i; | |
44 for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | |
45 V T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; | |
46 V T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; | |
47 V T1U, T1A; | |
48 { | |
49 V T3, TL, Ty, T1k, T6, T1j, TB, TM; | |
50 { | |
51 V T1, T2, Tw, Tx; | |
52 T1 = LD(&(ri[0]), ivs, &(ri[0])); | |
53 T2 = LD(&(ri[WS(is, 8)]), ivs, &(ri[0])); | |
54 T3 = VADD(T1, T2); | |
55 TL = VSUB(T1, T2); | |
56 Tw = LD(&(ii[0]), ivs, &(ii[0])); | |
57 Tx = LD(&(ii[WS(is, 8)]), ivs, &(ii[0])); | |
58 Ty = VADD(Tw, Tx); | |
59 T1k = VSUB(Tw, Tx); | |
60 } | |
61 { | |
62 V T4, T5, Tz, TA; | |
63 T4 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); | |
64 T5 = LD(&(ri[WS(is, 12)]), ivs, &(ri[0])); | |
65 T6 = VADD(T4, T5); | |
66 T1j = VSUB(T4, T5); | |
67 Tz = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); | |
68 TA = LD(&(ii[WS(is, 12)]), ivs, &(ii[0])); | |
69 TB = VADD(Tz, TA); | |
70 TM = VSUB(Tz, TA); | |
71 } | |
72 T7 = VADD(T3, T6); | |
73 T1R = VSUB(T3, T6); | |
74 T25 = VSUB(Ty, TB); | |
75 TC = VADD(Ty, TB); | |
76 TN = VSUB(TL, TM); | |
77 T1x = VADD(TL, TM); | |
78 T1H = VSUB(T1k, T1j); | |
79 T1l = VADD(T1j, T1k); | |
80 } | |
81 { | |
82 V Tp, T1c, T1a, T20, Ts, T17, T1f, T21; | |
83 { | |
84 V Tn, To, T18, T19; | |
85 Tn = LD(&(ri[WS(is, 15)]), ivs, &(ri[WS(is, 1)])); | |
86 To = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); | |
87 Tp = VADD(Tn, To); | |
88 T1c = VSUB(Tn, To); | |
89 T18 = LD(&(ii[WS(is, 15)]), ivs, &(ii[WS(is, 1)])); | |
90 T19 = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); | |
91 T1a = VSUB(T18, T19); | |
92 T20 = VADD(T18, T19); | |
93 } | |
94 { | |
95 V Tq, Tr, T1d, T1e; | |
96 Tq = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); | |
97 Tr = LD(&(ri[WS(is, 11)]), ivs, &(ri[WS(is, 1)])); | |
98 Ts = VADD(Tq, Tr); | |
99 T17 = VSUB(Tq, Tr); | |
100 T1d = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); | |
101 T1e = LD(&(ii[WS(is, 11)]), ivs, &(ii[WS(is, 1)])); | |
102 T1f = VSUB(T1d, T1e); | |
103 T21 = VADD(T1d, T1e); | |
104 } | |
105 Tt = VADD(Tp, Ts); | |
106 T22 = VSUB(T20, T21); | |
107 T2h = VADD(T20, T21); | |
108 T1b = VADD(T17, T1a); | |
109 T1g = VSUB(T1c, T1f); | |
110 T1E = VSUB(T1a, T17); | |
111 T1Z = VSUB(Tp, Ts); | |
112 T1D = VADD(T1c, T1f); | |
113 } | |
114 { | |
115 V Ta, TP, TF, TO, Td, TR, TI, TS; | |
116 { | |
117 V T8, T9, TD, TE; | |
118 T8 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); | |
119 T9 = LD(&(ri[WS(is, 10)]), ivs, &(ri[0])); | |
120 Ta = VADD(T8, T9); | |
121 TP = VSUB(T8, T9); | |
122 TD = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); | |
123 TE = LD(&(ii[WS(is, 10)]), ivs, &(ii[0])); | |
124 TF = VADD(TD, TE); | |
125 TO = VSUB(TD, TE); | |
126 } | |
127 { | |
128 V Tb, Tc, TG, TH; | |
129 Tb = LD(&(ri[WS(is, 14)]), ivs, &(ri[0])); | |
130 Tc = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); | |
131 Td = VADD(Tb, Tc); | |
132 TR = VSUB(Tb, Tc); | |
133 TG = LD(&(ii[WS(is, 14)]), ivs, &(ii[0])); | |
134 TH = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); | |
135 TI = VADD(TG, TH); | |
136 TS = VSUB(TG, TH); | |
137 } | |
138 Te = VADD(Ta, Td); | |
139 T1S = VSUB(TF, TI); | |
140 T26 = VSUB(Td, Ta); | |
141 TJ = VADD(TF, TI); | |
142 TQ = VSUB(TO, TP); | |
143 T1m = VSUB(TR, TS); | |
144 T1n = VADD(TP, TO); | |
145 TT = VADD(TR, TS); | |
146 } | |
147 { | |
148 V Ti, T11, TZ, T1V, Tl, TW, T14, T1W; | |
149 { | |
150 V Tg, Th, TX, TY; | |
151 Tg = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); | |
152 Th = LD(&(ri[WS(is, 9)]), ivs, &(ri[WS(is, 1)])); | |
153 Ti = VADD(Tg, Th); | |
154 T11 = VSUB(Tg, Th); | |
155 TX = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); | |
156 TY = LD(&(ii[WS(is, 9)]), ivs, &(ii[WS(is, 1)])); | |
157 TZ = VSUB(TX, TY); | |
158 T1V = VADD(TX, TY); | |
159 } | |
160 { | |
161 V Tj, Tk, T12, T13; | |
162 Tj = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); | |
163 Tk = LD(&(ri[WS(is, 13)]), ivs, &(ri[WS(is, 1)])); | |
164 Tl = VADD(Tj, Tk); | |
165 TW = VSUB(Tj, Tk); | |
166 T12 = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); | |
167 T13 = LD(&(ii[WS(is, 13)]), ivs, &(ii[WS(is, 1)])); | |
168 T14 = VSUB(T12, T13); | |
169 T1W = VADD(T12, T13); | |
170 } | |
171 Tm = VADD(Ti, Tl); | |
172 T1X = VSUB(T1V, T1W); | |
173 T2g = VADD(T1V, T1W); | |
174 T10 = VADD(TW, TZ); | |
175 T15 = VSUB(T11, T14); | |
176 T1B = VSUB(TZ, TW); | |
177 T1U = VSUB(Ti, Tl); | |
178 T1A = VADD(T11, T14); | |
179 } | |
180 { | |
181 V T2l, T2m, T2n, T2o, T2p, T2q, T2r, T2s; | |
182 { | |
183 V Tf, Tu, T2j, T2k; | |
184 Tf = VADD(T7, Te); | |
185 Tu = VADD(Tm, Tt); | |
186 T2l = VSUB(Tf, Tu); | |
187 STM4(&(ro[8]), T2l, ovs, &(ro[0])); | |
188 T2m = VADD(Tf, Tu); | |
189 STM4(&(ro[0]), T2m, ovs, &(ro[0])); | |
190 T2j = VADD(TC, TJ); | |
191 T2k = VADD(T2g, T2h); | |
192 T2n = VSUB(T2j, T2k); | |
193 STM4(&(io[8]), T2n, ovs, &(io[0])); | |
194 T2o = VADD(T2j, T2k); | |
195 STM4(&(io[0]), T2o, ovs, &(io[0])); | |
196 } | |
197 { | |
198 V Tv, TK, T2f, T2i; | |
199 Tv = VSUB(Tt, Tm); | |
200 TK = VSUB(TC, TJ); | |
201 T2p = VADD(Tv, TK); | |
202 STM4(&(io[4]), T2p, ovs, &(io[0])); | |
203 T2q = VSUB(TK, Tv); | |
204 STM4(&(io[12]), T2q, ovs, &(io[0])); | |
205 T2f = VSUB(T7, Te); | |
206 T2i = VSUB(T2g, T2h); | |
207 T2r = VSUB(T2f, T2i); | |
208 STM4(&(ro[12]), T2r, ovs, &(ro[0])); | |
209 T2s = VADD(T2f, T2i); | |
210 STM4(&(ro[4]), T2s, ovs, &(ro[0])); | |
211 } | |
212 { | |
213 V T2t, T2u, T2v, T2w, T2x, T2y, T2z, T2A; | |
214 { | |
215 V T1T, T27, T24, T28, T1Y, T23; | |
216 T1T = VADD(T1R, T1S); | |
217 T27 = VSUB(T25, T26); | |
218 T1Y = VADD(T1U, T1X); | |
219 T23 = VSUB(T1Z, T22); | |
220 T24 = VADD(T1Y, T23); | |
221 T28 = VSUB(T23, T1Y); | |
222 T2t = VFNMS(LDK(KP707106781), T24, T1T); | |
223 STM4(&(ro[10]), T2t, ovs, &(ro[0])); | |
224 T2u = VFMA(LDK(KP707106781), T28, T27); | |
225 STM4(&(io[6]), T2u, ovs, &(io[0])); | |
226 T2v = VFMA(LDK(KP707106781), T24, T1T); | |
227 STM4(&(ro[2]), T2v, ovs, &(ro[0])); | |
228 T2w = VFNMS(LDK(KP707106781), T28, T27); | |
229 STM4(&(io[14]), T2w, ovs, &(io[0])); | |
230 } | |
231 { | |
232 V T29, T2d, T2c, T2e, T2a, T2b; | |
233 T29 = VSUB(T1R, T1S); | |
234 T2d = VADD(T26, T25); | |
235 T2a = VSUB(T1X, T1U); | |
236 T2b = VADD(T1Z, T22); | |
237 T2c = VSUB(T2a, T2b); | |
238 T2e = VADD(T2a, T2b); | |
239 T2x = VFNMS(LDK(KP707106781), T2c, T29); | |
240 STM4(&(ro[14]), T2x, ovs, &(ro[0])); | |
241 T2y = VFMA(LDK(KP707106781), T2e, T2d); | |
242 STM4(&(io[2]), T2y, ovs, &(io[0])); | |
243 T2z = VFMA(LDK(KP707106781), T2c, T29); | |
244 STM4(&(ro[6]), T2z, ovs, &(ro[0])); | |
245 T2A = VFNMS(LDK(KP707106781), T2e, T2d); | |
246 STM4(&(io[10]), T2A, ovs, &(io[0])); | |
247 } | |
248 { | |
249 V T2B, T2C, T2D, T2E, T2F, T2G, T2H, T2I; | |
250 { | |
251 V TV, T1v, T1p, T1r, T1i, T1q, T1u, T1w, TU, T1o; | |
252 TU = VSUB(TQ, TT); | |
253 TV = VFMA(LDK(KP707106781), TU, TN); | |
254 T1v = VFNMS(LDK(KP707106781), TU, TN); | |
255 T1o = VSUB(T1m, T1n); | |
256 T1p = VFNMS(LDK(KP707106781), T1o, T1l); | |
257 T1r = VFMA(LDK(KP707106781), T1o, T1l); | |
258 { | |
259 V T16, T1h, T1s, T1t; | |
260 T16 = VFMA(LDK(KP414213562), T15, T10); | |
261 T1h = VFNMS(LDK(KP414213562), T1g, T1b); | |
262 T1i = VSUB(T16, T1h); | |
263 T1q = VADD(T16, T1h); | |
264 T1s = VFMA(LDK(KP414213562), T1b, T1g); | |
265 T1t = VFNMS(LDK(KP414213562), T10, T15); | |
266 T1u = VSUB(T1s, T1t); | |
267 T1w = VADD(T1t, T1s); | |
268 } | |
269 T2B = VFNMS(LDK(KP923879532), T1i, TV); | |
270 STM4(&(ro[11]), T2B, ovs, &(ro[1])); | |
271 T2C = VFNMS(LDK(KP923879532), T1u, T1r); | |
272 STM4(&(io[11]), T2C, ovs, &(io[1])); | |
273 T2D = VFMA(LDK(KP923879532), T1i, TV); | |
274 STM4(&(ro[3]), T2D, ovs, &(ro[1])); | |
275 T2E = VFMA(LDK(KP923879532), T1u, T1r); | |
276 STM4(&(io[3]), T2E, ovs, &(io[1])); | |
277 T2F = VFNMS(LDK(KP923879532), T1q, T1p); | |
278 STM4(&(io[7]), T2F, ovs, &(io[1])); | |
279 T2G = VFNMS(LDK(KP923879532), T1w, T1v); | |
280 STM4(&(ro[7]), T2G, ovs, &(ro[1])); | |
281 T2H = VFMA(LDK(KP923879532), T1q, T1p); | |
282 STM4(&(io[15]), T2H, ovs, &(io[1])); | |
283 T2I = VFMA(LDK(KP923879532), T1w, T1v); | |
284 STM4(&(ro[15]), T2I, ovs, &(ro[1])); | |
285 } | |
286 { | |
287 V T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; | |
288 T1y = VADD(T1n, T1m); | |
289 T1z = VFMA(LDK(KP707106781), T1y, T1x); | |
290 T1L = VFNMS(LDK(KP707106781), T1y, T1x); | |
291 T1I = VADD(TQ, TT); | |
292 T1J = VFNMS(LDK(KP707106781), T1I, T1H); | |
293 T1P = VFMA(LDK(KP707106781), T1I, T1H); | |
294 { | |
295 V T1C, T1F, T1M, T1N; | |
296 T1C = VFMA(LDK(KP414213562), T1B, T1A); | |
297 T1F = VFNMS(LDK(KP414213562), T1E, T1D); | |
298 T1G = VADD(T1C, T1F); | |
299 T1K = VSUB(T1F, T1C); | |
300 T1M = VFNMS(LDK(KP414213562), T1A, T1B); | |
301 T1N = VFMA(LDK(KP414213562), T1D, T1E); | |
302 T1O = VSUB(T1M, T1N); | |
303 T1Q = VADD(T1M, T1N); | |
304 } | |
305 { | |
306 V T2J, T2K, T2L, T2M; | |
307 T2J = VFNMS(LDK(KP923879532), T1G, T1z); | |
308 STM4(&(ro[9]), T2J, ovs, &(ro[1])); | |
309 STN4(&(ro[8]), T2l, T2J, T2t, T2B, ovs); | |
310 T2K = VFNMS(LDK(KP923879532), T1Q, T1P); | |
311 STM4(&(io[9]), T2K, ovs, &(io[1])); | |
312 STN4(&(io[8]), T2n, T2K, T2A, T2C, ovs); | |
313 T2L = VFMA(LDK(KP923879532), T1G, T1z); | |
314 STM4(&(ro[1]), T2L, ovs, &(ro[1])); | |
315 STN4(&(ro[0]), T2m, T2L, T2v, T2D, ovs); | |
316 T2M = VFMA(LDK(KP923879532), T1Q, T1P); | |
317 STM4(&(io[1]), T2M, ovs, &(io[1])); | |
318 STN4(&(io[0]), T2o, T2M, T2y, T2E, ovs); | |
319 } | |
320 { | |
321 V T2N, T2O, T2P, T2Q; | |
322 T2N = VFNMS(LDK(KP923879532), T1K, T1J); | |
323 STM4(&(io[13]), T2N, ovs, &(io[1])); | |
324 STN4(&(io[12]), T2q, T2N, T2w, T2H, ovs); | |
325 T2O = VFNMS(LDK(KP923879532), T1O, T1L); | |
326 STM4(&(ro[13]), T2O, ovs, &(ro[1])); | |
327 STN4(&(ro[12]), T2r, T2O, T2x, T2I, ovs); | |
328 T2P = VFMA(LDK(KP923879532), T1K, T1J); | |
329 STM4(&(io[5]), T2P, ovs, &(io[1])); | |
330 STN4(&(io[4]), T2p, T2P, T2u, T2F, ovs); | |
331 T2Q = VFMA(LDK(KP923879532), T1O, T1L); | |
332 STM4(&(ro[5]), T2Q, ovs, &(ro[1])); | |
333 STN4(&(ro[4]), T2s, T2Q, T2z, T2G, ovs); | |
334 } | |
335 } | |
336 } | |
337 } | |
338 } | |
339 } | |
340 } | |
341 VLEAVE(); | |
342 } | |
343 | |
344 static const kdft_desc desc = { 16, XSIMD_STRING("n2sv_16"), {104, 0, 40, 0}, &GENUS, 0, 1, 0, 0 }; | |
345 | |
346 void XSIMD(codelet_n2sv_16) (planner *p) { | |
347 X(kdft_register) (p, n2sv_16, &desc); | |
348 } | |
349 | |
350 #else | |
351 | |
352 /* Generated by: ../../../genfft/gen_notw.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2sv_16 -with-ostride 1 -include dft/simd/n2s.h -store-multiple 4 */ | |
353 | |
354 /* | |
355 * This function contains 144 FP additions, 24 FP multiplications, | |
356 * (or, 136 additions, 16 multiplications, 8 fused multiply/add), | |
357 * 74 stack variables, 3 constants, and 72 memory accesses | |
358 */ | |
359 #include "dft/simd/n2s.h" | |
360 | |
361 static void n2sv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
362 { | |
363 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
364 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
365 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
366 { | |
367 INT i; | |
368 for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | |
369 V T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; | |
370 V T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; | |
371 V T1U, T1A; | |
372 { | |
373 V T3, TL, Ty, T1k, T6, T1j, TB, TM; | |
374 { | |
375 V T1, T2, Tw, Tx; | |
376 T1 = LD(&(ri[0]), ivs, &(ri[0])); | |
377 T2 = LD(&(ri[WS(is, 8)]), ivs, &(ri[0])); | |
378 T3 = VADD(T1, T2); | |
379 TL = VSUB(T1, T2); | |
380 Tw = LD(&(ii[0]), ivs, &(ii[0])); | |
381 Tx = LD(&(ii[WS(is, 8)]), ivs, &(ii[0])); | |
382 Ty = VADD(Tw, Tx); | |
383 T1k = VSUB(Tw, Tx); | |
384 } | |
385 { | |
386 V T4, T5, Tz, TA; | |
387 T4 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); | |
388 T5 = LD(&(ri[WS(is, 12)]), ivs, &(ri[0])); | |
389 T6 = VADD(T4, T5); | |
390 T1j = VSUB(T4, T5); | |
391 Tz = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); | |
392 TA = LD(&(ii[WS(is, 12)]), ivs, &(ii[0])); | |
393 TB = VADD(Tz, TA); | |
394 TM = VSUB(Tz, TA); | |
395 } | |
396 T7 = VADD(T3, T6); | |
397 T1R = VSUB(T3, T6); | |
398 T25 = VSUB(Ty, TB); | |
399 TC = VADD(Ty, TB); | |
400 TN = VSUB(TL, TM); | |
401 T1x = VADD(TL, TM); | |
402 T1H = VSUB(T1k, T1j); | |
403 T1l = VADD(T1j, T1k); | |
404 } | |
405 { | |
406 V Tp, T17, T1f, T20, Ts, T1c, T1a, T21; | |
407 { | |
408 V Tn, To, T1d, T1e; | |
409 Tn = LD(&(ri[WS(is, 15)]), ivs, &(ri[WS(is, 1)])); | |
410 To = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); | |
411 Tp = VADD(Tn, To); | |
412 T17 = VSUB(Tn, To); | |
413 T1d = LD(&(ii[WS(is, 15)]), ivs, &(ii[WS(is, 1)])); | |
414 T1e = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); | |
415 T1f = VSUB(T1d, T1e); | |
416 T20 = VADD(T1d, T1e); | |
417 } | |
418 { | |
419 V Tq, Tr, T18, T19; | |
420 Tq = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); | |
421 Tr = LD(&(ri[WS(is, 11)]), ivs, &(ri[WS(is, 1)])); | |
422 Ts = VADD(Tq, Tr); | |
423 T1c = VSUB(Tq, Tr); | |
424 T18 = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); | |
425 T19 = LD(&(ii[WS(is, 11)]), ivs, &(ii[WS(is, 1)])); | |
426 T1a = VSUB(T18, T19); | |
427 T21 = VADD(T18, T19); | |
428 } | |
429 Tt = VADD(Tp, Ts); | |
430 T22 = VSUB(T20, T21); | |
431 T2h = VADD(T20, T21); | |
432 T1b = VSUB(T17, T1a); | |
433 T1g = VADD(T1c, T1f); | |
434 T1E = VSUB(T1f, T1c); | |
435 T1Z = VSUB(Tp, Ts); | |
436 T1D = VADD(T17, T1a); | |
437 } | |
438 { | |
439 V Ta, TP, TF, TO, Td, TR, TI, TS; | |
440 { | |
441 V T8, T9, TD, TE; | |
442 T8 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); | |
443 T9 = LD(&(ri[WS(is, 10)]), ivs, &(ri[0])); | |
444 Ta = VADD(T8, T9); | |
445 TP = VSUB(T8, T9); | |
446 TD = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); | |
447 TE = LD(&(ii[WS(is, 10)]), ivs, &(ii[0])); | |
448 TF = VADD(TD, TE); | |
449 TO = VSUB(TD, TE); | |
450 } | |
451 { | |
452 V Tb, Tc, TG, TH; | |
453 Tb = LD(&(ri[WS(is, 14)]), ivs, &(ri[0])); | |
454 Tc = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); | |
455 Td = VADD(Tb, Tc); | |
456 TR = VSUB(Tb, Tc); | |
457 TG = LD(&(ii[WS(is, 14)]), ivs, &(ii[0])); | |
458 TH = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); | |
459 TI = VADD(TG, TH); | |
460 TS = VSUB(TG, TH); | |
461 } | |
462 Te = VADD(Ta, Td); | |
463 T1S = VSUB(TF, TI); | |
464 T26 = VSUB(Td, Ta); | |
465 TJ = VADD(TF, TI); | |
466 TQ = VSUB(TO, TP); | |
467 T1m = VSUB(TR, TS); | |
468 T1n = VADD(TP, TO); | |
469 TT = VADD(TR, TS); | |
470 } | |
471 { | |
472 V Ti, T11, TZ, T1V, Tl, TW, T14, T1W; | |
473 { | |
474 V Tg, Th, TX, TY; | |
475 Tg = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); | |
476 Th = LD(&(ri[WS(is, 9)]), ivs, &(ri[WS(is, 1)])); | |
477 Ti = VADD(Tg, Th); | |
478 T11 = VSUB(Tg, Th); | |
479 TX = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); | |
480 TY = LD(&(ii[WS(is, 9)]), ivs, &(ii[WS(is, 1)])); | |
481 TZ = VSUB(TX, TY); | |
482 T1V = VADD(TX, TY); | |
483 } | |
484 { | |
485 V Tj, Tk, T12, T13; | |
486 Tj = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); | |
487 Tk = LD(&(ri[WS(is, 13)]), ivs, &(ri[WS(is, 1)])); | |
488 Tl = VADD(Tj, Tk); | |
489 TW = VSUB(Tj, Tk); | |
490 T12 = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); | |
491 T13 = LD(&(ii[WS(is, 13)]), ivs, &(ii[WS(is, 1)])); | |
492 T14 = VSUB(T12, T13); | |
493 T1W = VADD(T12, T13); | |
494 } | |
495 Tm = VADD(Ti, Tl); | |
496 T1X = VSUB(T1V, T1W); | |
497 T2g = VADD(T1V, T1W); | |
498 T10 = VADD(TW, TZ); | |
499 T15 = VSUB(T11, T14); | |
500 T1B = VADD(T11, T14); | |
501 T1U = VSUB(Ti, Tl); | |
502 T1A = VSUB(TZ, TW); | |
503 } | |
504 { | |
505 V T2l, T2m, T2n, T2o, T2p, T2q, T2r, T2s; | |
506 { | |
507 V Tf, Tu, T2j, T2k; | |
508 Tf = VADD(T7, Te); | |
509 Tu = VADD(Tm, Tt); | |
510 T2l = VSUB(Tf, Tu); | |
511 STM4(&(ro[8]), T2l, ovs, &(ro[0])); | |
512 T2m = VADD(Tf, Tu); | |
513 STM4(&(ro[0]), T2m, ovs, &(ro[0])); | |
514 T2j = VADD(TC, TJ); | |
515 T2k = VADD(T2g, T2h); | |
516 T2n = VSUB(T2j, T2k); | |
517 STM4(&(io[8]), T2n, ovs, &(io[0])); | |
518 T2o = VADD(T2j, T2k); | |
519 STM4(&(io[0]), T2o, ovs, &(io[0])); | |
520 } | |
521 { | |
522 V Tv, TK, T2f, T2i; | |
523 Tv = VSUB(Tt, Tm); | |
524 TK = VSUB(TC, TJ); | |
525 T2p = VADD(Tv, TK); | |
526 STM4(&(io[4]), T2p, ovs, &(io[0])); | |
527 T2q = VSUB(TK, Tv); | |
528 STM4(&(io[12]), T2q, ovs, &(io[0])); | |
529 T2f = VSUB(T7, Te); | |
530 T2i = VSUB(T2g, T2h); | |
531 T2r = VSUB(T2f, T2i); | |
532 STM4(&(ro[12]), T2r, ovs, &(ro[0])); | |
533 T2s = VADD(T2f, T2i); | |
534 STM4(&(ro[4]), T2s, ovs, &(ro[0])); | |
535 } | |
536 { | |
537 V T2t, T2u, T2v, T2w, T2x, T2y, T2z, T2A; | |
538 { | |
539 V T1T, T27, T24, T28, T1Y, T23; | |
540 T1T = VADD(T1R, T1S); | |
541 T27 = VSUB(T25, T26); | |
542 T1Y = VADD(T1U, T1X); | |
543 T23 = VSUB(T1Z, T22); | |
544 T24 = VMUL(LDK(KP707106781), VADD(T1Y, T23)); | |
545 T28 = VMUL(LDK(KP707106781), VSUB(T23, T1Y)); | |
546 T2t = VSUB(T1T, T24); | |
547 STM4(&(ro[10]), T2t, ovs, &(ro[0])); | |
548 T2u = VADD(T27, T28); | |
549 STM4(&(io[6]), T2u, ovs, &(io[0])); | |
550 T2v = VADD(T1T, T24); | |
551 STM4(&(ro[2]), T2v, ovs, &(ro[0])); | |
552 T2w = VSUB(T27, T28); | |
553 STM4(&(io[14]), T2w, ovs, &(io[0])); | |
554 } | |
555 { | |
556 V T29, T2d, T2c, T2e, T2a, T2b; | |
557 T29 = VSUB(T1R, T1S); | |
558 T2d = VADD(T26, T25); | |
559 T2a = VSUB(T1X, T1U); | |
560 T2b = VADD(T1Z, T22); | |
561 T2c = VMUL(LDK(KP707106781), VSUB(T2a, T2b)); | |
562 T2e = VMUL(LDK(KP707106781), VADD(T2a, T2b)); | |
563 T2x = VSUB(T29, T2c); | |
564 STM4(&(ro[14]), T2x, ovs, &(ro[0])); | |
565 T2y = VADD(T2d, T2e); | |
566 STM4(&(io[2]), T2y, ovs, &(io[0])); | |
567 T2z = VADD(T29, T2c); | |
568 STM4(&(ro[6]), T2z, ovs, &(ro[0])); | |
569 T2A = VSUB(T2d, T2e); | |
570 STM4(&(io[10]), T2A, ovs, &(io[0])); | |
571 } | |
572 { | |
573 V T2B, T2C, T2D, T2E, T2F, T2G, T2H, T2I; | |
574 { | |
575 V TV, T1r, T1p, T1v, T1i, T1q, T1u, T1w, TU, T1o; | |
576 TU = VMUL(LDK(KP707106781), VSUB(TQ, TT)); | |
577 TV = VADD(TN, TU); | |
578 T1r = VSUB(TN, TU); | |
579 T1o = VMUL(LDK(KP707106781), VSUB(T1m, T1n)); | |
580 T1p = VSUB(T1l, T1o); | |
581 T1v = VADD(T1l, T1o); | |
582 { | |
583 V T16, T1h, T1s, T1t; | |
584 T16 = VFMA(LDK(KP923879532), T10, VMUL(LDK(KP382683432), T15)); | |
585 T1h = VFNMS(LDK(KP923879532), T1g, VMUL(LDK(KP382683432), T1b)); | |
586 T1i = VADD(T16, T1h); | |
587 T1q = VSUB(T1h, T16); | |
588 T1s = VFNMS(LDK(KP923879532), T15, VMUL(LDK(KP382683432), T10)); | |
589 T1t = VFMA(LDK(KP382683432), T1g, VMUL(LDK(KP923879532), T1b)); | |
590 T1u = VSUB(T1s, T1t); | |
591 T1w = VADD(T1s, T1t); | |
592 } | |
593 T2B = VSUB(TV, T1i); | |
594 STM4(&(ro[11]), T2B, ovs, &(ro[1])); | |
595 T2C = VSUB(T1v, T1w); | |
596 STM4(&(io[11]), T2C, ovs, &(io[1])); | |
597 T2D = VADD(TV, T1i); | |
598 STM4(&(ro[3]), T2D, ovs, &(ro[1])); | |
599 T2E = VADD(T1v, T1w); | |
600 STM4(&(io[3]), T2E, ovs, &(io[1])); | |
601 T2F = VSUB(T1p, T1q); | |
602 STM4(&(io[15]), T2F, ovs, &(io[1])); | |
603 T2G = VSUB(T1r, T1u); | |
604 STM4(&(ro[15]), T2G, ovs, &(ro[1])); | |
605 T2H = VADD(T1p, T1q); | |
606 STM4(&(io[7]), T2H, ovs, &(io[1])); | |
607 T2I = VADD(T1r, T1u); | |
608 STM4(&(ro[7]), T2I, ovs, &(ro[1])); | |
609 } | |
610 { | |
611 V T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; | |
612 T1y = VMUL(LDK(KP707106781), VADD(T1n, T1m)); | |
613 T1z = VADD(T1x, T1y); | |
614 T1L = VSUB(T1x, T1y); | |
615 T1I = VMUL(LDK(KP707106781), VADD(TQ, TT)); | |
616 T1J = VSUB(T1H, T1I); | |
617 T1P = VADD(T1H, T1I); | |
618 { | |
619 V T1C, T1F, T1M, T1N; | |
620 T1C = VFMA(LDK(KP382683432), T1A, VMUL(LDK(KP923879532), T1B)); | |
621 T1F = VFNMS(LDK(KP382683432), T1E, VMUL(LDK(KP923879532), T1D)); | |
622 T1G = VADD(T1C, T1F); | |
623 T1K = VSUB(T1F, T1C); | |
624 T1M = VFNMS(LDK(KP382683432), T1B, VMUL(LDK(KP923879532), T1A)); | |
625 T1N = VFMA(LDK(KP923879532), T1E, VMUL(LDK(KP382683432), T1D)); | |
626 T1O = VSUB(T1M, T1N); | |
627 T1Q = VADD(T1M, T1N); | |
628 } | |
629 { | |
630 V T2J, T2K, T2L, T2M; | |
631 T2J = VSUB(T1z, T1G); | |
632 STM4(&(ro[9]), T2J, ovs, &(ro[1])); | |
633 STN4(&(ro[8]), T2l, T2J, T2t, T2B, ovs); | |
634 T2K = VSUB(T1P, T1Q); | |
635 STM4(&(io[9]), T2K, ovs, &(io[1])); | |
636 STN4(&(io[8]), T2n, T2K, T2A, T2C, ovs); | |
637 T2L = VADD(T1z, T1G); | |
638 STM4(&(ro[1]), T2L, ovs, &(ro[1])); | |
639 STN4(&(ro[0]), T2m, T2L, T2v, T2D, ovs); | |
640 T2M = VADD(T1P, T1Q); | |
641 STM4(&(io[1]), T2M, ovs, &(io[1])); | |
642 STN4(&(io[0]), T2o, T2M, T2y, T2E, ovs); | |
643 } | |
644 { | |
645 V T2N, T2O, T2P, T2Q; | |
646 T2N = VSUB(T1J, T1K); | |
647 STM4(&(io[13]), T2N, ovs, &(io[1])); | |
648 STN4(&(io[12]), T2q, T2N, T2w, T2F, ovs); | |
649 T2O = VSUB(T1L, T1O); | |
650 STM4(&(ro[13]), T2O, ovs, &(ro[1])); | |
651 STN4(&(ro[12]), T2r, T2O, T2x, T2G, ovs); | |
652 T2P = VADD(T1J, T1K); | |
653 STM4(&(io[5]), T2P, ovs, &(io[1])); | |
654 STN4(&(io[4]), T2p, T2P, T2u, T2H, ovs); | |
655 T2Q = VADD(T1L, T1O); | |
656 STM4(&(ro[5]), T2Q, ovs, &(ro[1])); | |
657 STN4(&(ro[4]), T2s, T2Q, T2z, T2I, ovs); | |
658 } | |
659 } | |
660 } | |
661 } | |
662 } | |
663 } | |
664 } | |
665 VLEAVE(); | |
666 } | |
667 | |
668 static const kdft_desc desc = { 16, XSIMD_STRING("n2sv_16"), {136, 16, 8, 0}, &GENUS, 0, 1, 0, 0 }; | |
669 | |
670 void XSIMD(codelet_n2sv_16) (planner *p) { | |
671 X(kdft_register) (p, n2sv_16, &desc); | |
672 } | |
673 | |
674 #endif |