Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_64.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:21 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 1154 FP additions, 840 FP multiplications, | |
32 * (or, 520 additions, 206 multiplications, 634 fused multiply/add), | |
33 * 316 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
43 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
44 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
45 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
46 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
49 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
50 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT m; | |
56 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { | |
57 E T2, T3, Tc, T8, Te, T5, T6, Tr, T7, TJ, T14, T3d, T3i, TG, T10; | |
58 E T3a, T3g, TL, TP, Tb, Td, T17, Tt, Tu, T1i, Ti, T2U, T1t, T7B, T5O; | |
59 E T3N, T3U, T1I, T3G, T3R, T79, T1x, T3D, T2l, T3X, T2d, T1M, T4B, T4x, T4T; | |
60 E T2h, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a, T6e, T7l, T60, T7R, T5A; | |
61 E T6h, T6J, T7o, T5E, T6k, T6N, T7r, T2X, T6t, T6x, TO, TK, TQ, T7c, TU; | |
62 E T2x, T2u, T2y, T7E, T2C, T4b, T48, T4c, T5R, T4g, T3m, T3j, T3n, T4W, T3r; | |
63 E Tx, Ty, TC, T1Z, T23, T4s, T4p, T70, T6W, T19, T41, T44, T1a, T1e, T35; | |
64 E T31, T59, T55, T1k, T1R, T1V, T1l, T1p, T2Q, T2N, T8i, T8e, Th, T4E, T4H; | |
65 E Tj, Tn, T3A, T3w, T5n, T5j; | |
66 { | |
67 E T1H, Tg, Tw, T1s, T2g, TH, T2t, T47, T3h, T28, T4w, T3M, T2c, T4A, T3Q; | |
68 E T1w, T2k, T1L, T5r, T80; | |
69 { | |
70 E TI, T13, TF, TZ, Ta, T4, T9, Ts; | |
71 T2 = W[0]; | |
72 T3 = W[2]; | |
73 T4 = T2 * T3; | |
74 Tc = W[5]; | |
75 TI = T3 * Tc; | |
76 T13 = T2 * Tc; | |
77 T8 = W[4]; | |
78 Te = W[6]; | |
79 TF = T3 * T8; | |
80 T1H = T8 * Te; | |
81 TZ = T2 * T8; | |
82 T5 = W[1]; | |
83 T6 = W[3]; | |
84 Ta = T2 * T6; | |
85 Tr = FMA(T5, T6, T4); | |
86 T7 = FNMS(T5, T6, T4); | |
87 Tg = T7 * Tc; | |
88 Tw = Tr * Tc; | |
89 T1s = T3 * Te; | |
90 T2g = T2 * Te; | |
91 TJ = FMA(T6, T8, TI); | |
92 T14 = FNMS(T5, T8, T13); | |
93 T3d = FMA(T5, T8, T13); | |
94 T3i = FNMS(T6, T8, TI); | |
95 TG = FNMS(T6, Tc, TF); | |
96 TH = TG * Te; | |
97 T10 = FMA(T5, Tc, TZ); | |
98 T2t = T10 * Te; | |
99 T3a = FNMS(T5, Tc, TZ); | |
100 T47 = T3a * Te; | |
101 T3g = FMA(T6, Tc, TF); | |
102 T3h = T3g * Te; | |
103 TL = W[8]; | |
104 T28 = T3 * TL; | |
105 T4w = T8 * TL; | |
106 T3M = T2 * TL; | |
107 TP = W[9]; | |
108 T2c = T3 * TP; | |
109 T4A = T8 * TP; | |
110 T3Q = T2 * TP; | |
111 T9 = T7 * T8; | |
112 Tb = FMA(T5, T3, Ta); | |
113 Td = FMA(Tb, Tc, T9); | |
114 T17 = FNMS(Tb, Tc, T9); | |
115 Ts = Tr * T8; | |
116 Tt = FNMS(T5, T3, Ta); | |
117 Tu = FNMS(Tt, Tc, Ts); | |
118 T1i = FMA(Tt, Tc, Ts); | |
119 Ti = W[7]; | |
120 T1w = T3 * Ti; | |
121 T2k = T2 * Ti; | |
122 T1L = T8 * Ti; | |
123 T2U = FMA(Tc, Ti, T1H); | |
124 } | |
125 T1t = FMA(T6, Ti, T1s); | |
126 T7B = FNMS(T14, Ti, T2t); | |
127 T5O = FNMS(T3d, Ti, T47); | |
128 T3N = FMA(T5, TP, T3M); | |
129 T3U = FNMS(T6, Ti, T1s); | |
130 T1I = FNMS(Tc, Ti, T1H); | |
131 T3G = FNMS(T5, Te, T2k); | |
132 T3R = FNMS(T5, TL, T3Q); | |
133 T79 = FNMS(TJ, Ti, TH); | |
134 T1x = FNMS(T6, Te, T1w); | |
135 T3D = FMA(T5, Ti, T2g); | |
136 T2l = FMA(T5, Te, T2k); | |
137 T3X = FMA(T6, Te, T1w); | |
138 T2d = FNMS(T6, TL, T2c); | |
139 T1M = FMA(Tc, Te, T1L); | |
140 T4B = FNMS(Tc, TL, T4A); | |
141 T4x = FMA(Tc, TP, T4w); | |
142 T4T = FNMS(T3i, Ti, T3h); | |
143 T2h = FNMS(T5, Ti, T2g); | |
144 T29 = FMA(T6, TP, T28); | |
145 T5r = T3g * TL; | |
146 T5s = FMA(T3i, TP, T5r); | |
147 T80 = T7 * TP; | |
148 T81 = FNMS(Tb, TL, T80); | |
149 { | |
150 E T5v, T7W, T7M, T7g, T63; | |
151 T5v = T3g * TP; | |
152 T5w = FNMS(T3i, TL, T5v); | |
153 T7W = T7 * TL; | |
154 T7X = FMA(Tb, TP, T7W); | |
155 T7M = TG * TL; | |
156 T7N = FMA(TJ, TP, T7M); | |
157 T7g = T10 * TL; | |
158 T7h = FMA(T14, TP, T7g); | |
159 T63 = T3a * TP; | |
160 T64 = FNMS(T3d, TL, T63); | |
161 } | |
162 { | |
163 E T69, T6d, T7k, T5Z, T7Q, T5z; | |
164 T69 = Tr * TL; | |
165 T6a = FMA(Tt, TP, T69); | |
166 T6d = Tr * TP; | |
167 T6e = FNMS(Tt, TL, T6d); | |
168 T7k = T10 * TP; | |
169 T7l = FNMS(T14, TL, T7k); | |
170 T5Z = T3a * TL; | |
171 T60 = FMA(T3d, TP, T5Z); | |
172 T7Q = TG * TP; | |
173 T7R = FNMS(TJ, TL, T7Q); | |
174 T5z = Tr * Te; | |
175 T5A = FMA(Tt, Ti, T5z); | |
176 T6h = FNMS(Tt, Ti, T5z); | |
177 } | |
178 { | |
179 E T6I, T5D, T6M, T6s, T6w; | |
180 T6I = T7 * Te; | |
181 T6J = FNMS(Tb, Ti, T6I); | |
182 T7o = FMA(Tb, Ti, T6I); | |
183 T5D = Tr * Ti; | |
184 T5E = FNMS(Tt, Te, T5D); | |
185 T6k = FMA(Tt, Te, T5D); | |
186 T6M = T7 * Ti; | |
187 T6N = FMA(Tb, Te, T6M); | |
188 T7r = FNMS(Tb, Te, T6M); | |
189 T6s = T2U * TL; | |
190 T6w = T2U * TP; | |
191 T2X = FNMS(Tc, Te, T1L); | |
192 T6t = FMA(T2X, TP, T6s); | |
193 T6x = FNMS(T2X, TL, T6w); | |
194 { | |
195 E TN, TM, TT, T2w, T2v, T2B; | |
196 TN = TG * Ti; | |
197 TO = FNMS(TJ, Te, TN); | |
198 TK = FMA(TJ, Ti, TH); | |
199 TM = TK * TL; | |
200 TT = TK * TP; | |
201 TQ = FMA(TO, TP, TM); | |
202 T7c = FMA(TJ, Te, TN); | |
203 TU = FNMS(TO, TL, TT); | |
204 T2w = T10 * Ti; | |
205 T2x = FNMS(T14, Te, T2w); | |
206 T2u = FMA(T14, Ti, T2t); | |
207 T2v = T2u * TL; | |
208 T2B = T2u * TP; | |
209 T2y = FMA(T2x, TP, T2v); | |
210 T7E = FMA(T14, Te, T2w); | |
211 T2C = FNMS(T2x, TL, T2B); | |
212 } | |
213 } | |
214 { | |
215 E T4a, T49, T4f, T3l, T3k, T3q; | |
216 T4a = T3a * Ti; | |
217 T4b = FNMS(T3d, Te, T4a); | |
218 T48 = FMA(T3d, Ti, T47); | |
219 T49 = T48 * TL; | |
220 T4f = T48 * TP; | |
221 T4c = FMA(T4b, TP, T49); | |
222 T5R = FMA(T3d, Te, T4a); | |
223 T4g = FNMS(T4b, TL, T4f); | |
224 T3l = T3g * Ti; | |
225 T3m = FNMS(T3i, Te, T3l); | |
226 T3j = FMA(T3i, Ti, T3h); | |
227 T3k = T3j * TL; | |
228 T3q = T3j * TP; | |
229 T3n = FMA(T3m, TP, T3k); | |
230 T4W = FMA(T3i, Te, T3l); | |
231 T3r = FNMS(T3m, TL, T3q); | |
232 { | |
233 E T1Y, T22, Tv, TB, T6Z, T6V; | |
234 T1Y = Tu * TL; | |
235 T22 = Tu * TP; | |
236 Tv = Tu * Te; | |
237 TB = Tu * Ti; | |
238 Tx = FMA(Tt, T8, Tw); | |
239 Ty = FMA(Tx, Ti, Tv); | |
240 TC = FNMS(Tx, Te, TB); | |
241 T1Z = FMA(Tx, TP, T1Y); | |
242 T23 = FNMS(Tx, TL, T22); | |
243 T4s = FMA(Tx, Te, TB); | |
244 T4p = FNMS(Tx, Ti, Tv); | |
245 T6Z = Ty * TP; | |
246 T70 = FNMS(TC, TL, T6Z); | |
247 T6V = Ty * TL; | |
248 T6W = FMA(TC, TP, T6V); | |
249 } | |
250 } | |
251 { | |
252 E T30, T34, T18, T1d, T58, T54; | |
253 T30 = T17 * TL; | |
254 T34 = T17 * TP; | |
255 T18 = T17 * Te; | |
256 T1d = T17 * Ti; | |
257 T19 = FMA(Tb, T8, Tg); | |
258 T41 = FMA(T19, Ti, T18); | |
259 T44 = FNMS(T19, Te, T1d); | |
260 T1a = FNMS(T19, Ti, T18); | |
261 T1e = FMA(T19, Te, T1d); | |
262 T35 = FNMS(T19, TL, T34); | |
263 T31 = FMA(T19, TP, T30); | |
264 T58 = T41 * TP; | |
265 T59 = FNMS(T44, TL, T58); | |
266 T54 = T41 * TL; | |
267 T55 = FMA(T44, TP, T54); | |
268 } | |
269 { | |
270 E T1j, T1o, T1Q, T1U, T8h, T8d; | |
271 T1j = T1i * TL; | |
272 T1o = T1i * TP; | |
273 T1Q = T1i * Te; | |
274 T1U = T1i * Ti; | |
275 T1k = FNMS(Tt, T8, Tw); | |
276 T1R = FMA(T1k, Ti, T1Q); | |
277 T1V = FNMS(T1k, Te, T1U); | |
278 T1l = FMA(T1k, TP, T1j); | |
279 T1p = FNMS(T1k, TL, T1o); | |
280 T2Q = FMA(T1k, Te, T1U); | |
281 T2N = FNMS(T1k, Ti, T1Q); | |
282 T8h = T1R * TP; | |
283 T8i = FNMS(T1V, TL, T8h); | |
284 T8d = T1R * TL; | |
285 T8e = FMA(T1V, TP, T8d); | |
286 } | |
287 { | |
288 E T3v, T3z, Tf, Tm, T5m, T5i; | |
289 T3v = Td * TL; | |
290 T3z = Td * TP; | |
291 Tf = Td * Te; | |
292 Tm = Td * Ti; | |
293 Th = FNMS(Tb, T8, Tg); | |
294 T4E = FMA(Th, Ti, Tf); | |
295 T4H = FNMS(Th, Te, Tm); | |
296 Tj = FNMS(Th, Ti, Tf); | |
297 Tn = FMA(Th, Te, Tm); | |
298 T3A = FNMS(Th, TL, T3z); | |
299 T3w = FMA(Th, TP, T3v); | |
300 T5m = T4E * TP; | |
301 T5n = FNMS(T4H, TL, T5m); | |
302 T5i = T4E * TL; | |
303 T5j = FMA(T4H, TP, T5i); | |
304 } | |
305 } | |
306 { | |
307 E TY, Tg4, Tl9, TlD, T8w, TdS, Tkd, TkE, T2G, Tge, Tgh, TiK, T98, Te1, T9f; | |
308 E Te0, T39, Tgq, Tgn, TiN, T9p, Te5, T9M, Te8, T74, Thr, Thc, Tja, TbI, TeE; | |
309 E TcB, TeP, T1B, TkD, Tg7, Tk7, T8D, TdT, T8K, TdU, T27, Tg9, Tgc, TiJ, T8T; | |
310 E TdY, T90, TdX, T4k, TgB, Tgy, TiT, T9Y, Tec, Tal, Tef, T5d, Th0, TgL, TiZ; | |
311 E Taz, Tel, Tbs, Tew, T3K, Tgo, Tgt, TiO, T9E, Te9, T9P, Te6, T4L, Tgz, TgE; | |
312 E TiU, Tad, Teg, Tao, Ted, T5I, TgM, Th3, Tj0, TaO, Tex, Tbv, Tem, T7v, Thd; | |
313 E Thu, Tjb, TbX, TeQ, TcE, TeF, T68, Tj5, TgS, Th5, Tbj, Tez, Tbx, Teq, T6B; | |
314 E Tj6, TgX, Th6, Tb4, TeA, Tby, Tet, T7V, Tjg, Thj, Thw, Tcs, TeS, TcG, TeJ; | |
315 E T8m, Tjh, Tho, Thx, Tcd, TeT, TcH, TeM; | |
316 { | |
317 E T1, Tkb, Tp, Tka, TE, T8s, TW, T8u; | |
318 T1 = ri[0]; | |
319 Tkb = ii[0]; | |
320 { | |
321 E Tk, Tl, To, Tk9; | |
322 Tk = ri[WS(rs, 32)]; | |
323 Tl = Tj * Tk; | |
324 To = ii[WS(rs, 32)]; | |
325 Tk9 = Tj * To; | |
326 Tp = FMA(Tn, To, Tl); | |
327 Tka = FNMS(Tn, Tk, Tk9); | |
328 } | |
329 { | |
330 E Tz, TA, TD, T8r; | |
331 Tz = ri[WS(rs, 16)]; | |
332 TA = Ty * Tz; | |
333 TD = ii[WS(rs, 16)]; | |
334 T8r = Ty * TD; | |
335 TE = FMA(TC, TD, TA); | |
336 T8s = FNMS(TC, Tz, T8r); | |
337 } | |
338 { | |
339 E TR, TS, TV, T8t; | |
340 TR = ri[WS(rs, 48)]; | |
341 TS = TQ * TR; | |
342 TV = ii[WS(rs, 48)]; | |
343 T8t = TQ * TV; | |
344 TW = FMA(TU, TV, TS); | |
345 T8u = FNMS(TU, TR, T8t); | |
346 } | |
347 { | |
348 E Tq, TX, Tl7, Tl8; | |
349 Tq = T1 + Tp; | |
350 TX = TE + TW; | |
351 TY = Tq + TX; | |
352 Tg4 = Tq - TX; | |
353 Tl7 = Tkb - Tka; | |
354 Tl8 = TE - TW; | |
355 Tl9 = Tl7 - Tl8; | |
356 TlD = Tl8 + Tl7; | |
357 } | |
358 { | |
359 E T8q, T8v, Tk8, Tkc; | |
360 T8q = T1 - Tp; | |
361 T8v = T8s - T8u; | |
362 T8w = T8q - T8v; | |
363 TdS = T8q + T8v; | |
364 Tk8 = T8s + T8u; | |
365 Tkc = Tka + Tkb; | |
366 Tkd = Tk8 + Tkc; | |
367 TkE = Tkc - Tk8; | |
368 } | |
369 } | |
370 { | |
371 E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; | |
372 { | |
373 E T2a, T2b, T2e, T92; | |
374 T2a = ri[WS(rs, 60)]; | |
375 T2b = T29 * T2a; | |
376 T2e = ii[WS(rs, 60)]; | |
377 T92 = T29 * T2e; | |
378 T2f = FMA(T2d, T2e, T2b); | |
379 T93 = FNMS(T2d, T2a, T92); | |
380 } | |
381 { | |
382 E T2z, T2A, T2D, T9c; | |
383 T2z = ri[WS(rs, 44)]; | |
384 T2A = T2y * T2z; | |
385 T2D = ii[WS(rs, 44)]; | |
386 T9c = T2y * T2D; | |
387 T2E = FMA(T2C, T2D, T2A); | |
388 T9d = FNMS(T2C, T2z, T9c); | |
389 } | |
390 { | |
391 E T2i, T2j, T2m, T94; | |
392 T2i = ri[WS(rs, 28)]; | |
393 T2j = T2h * T2i; | |
394 T2m = ii[WS(rs, 28)]; | |
395 T94 = T2h * T2m; | |
396 T2n = FMA(T2l, T2m, T2j); | |
397 T95 = FNMS(T2l, T2i, T94); | |
398 } | |
399 { | |
400 E T2p, T2q, T2r, T9a; | |
401 T2p = ri[WS(rs, 12)]; | |
402 T2q = TG * T2p; | |
403 T2r = ii[WS(rs, 12)]; | |
404 T9a = TG * T2r; | |
405 T2s = FMA(TJ, T2r, T2q); | |
406 T9b = FNMS(TJ, T2p, T9a); | |
407 } | |
408 { | |
409 E T2o, T2F, Tgf, Tgg; | |
410 T2o = T2f + T2n; | |
411 T2F = T2s + T2E; | |
412 T2G = T2o + T2F; | |
413 Tge = T2o - T2F; | |
414 Tgf = T93 + T95; | |
415 Tgg = T9b + T9d; | |
416 Tgh = Tgf - Tgg; | |
417 TiK = Tgf + Tgg; | |
418 } | |
419 { | |
420 E T96, T97, T99, T9e; | |
421 T96 = T93 - T95; | |
422 T97 = T2s - T2E; | |
423 T98 = T96 + T97; | |
424 Te1 = T96 - T97; | |
425 T99 = T2f - T2n; | |
426 T9e = T9b - T9d; | |
427 T9f = T99 - T9e; | |
428 Te0 = T99 + T9e; | |
429 } | |
430 } | |
431 { | |
432 E T2M, T9k, T37, T9K, T2S, T9m, T2Z, T9I; | |
433 { | |
434 E T2J, T2K, T2L, T9j; | |
435 T2J = ri[WS(rs, 2)]; | |
436 T2K = Tr * T2J; | |
437 T2L = ii[WS(rs, 2)]; | |
438 T9j = Tr * T2L; | |
439 T2M = FMA(Tt, T2L, T2K); | |
440 T9k = FNMS(Tt, T2J, T9j); | |
441 } | |
442 { | |
443 E T32, T33, T36, T9J; | |
444 T32 = ri[WS(rs, 50)]; | |
445 T33 = T31 * T32; | |
446 T36 = ii[WS(rs, 50)]; | |
447 T9J = T31 * T36; | |
448 T37 = FMA(T35, T36, T33); | |
449 T9K = FNMS(T35, T32, T9J); | |
450 } | |
451 { | |
452 E T2O, T2P, T2R, T9l; | |
453 T2O = ri[WS(rs, 34)]; | |
454 T2P = T2N * T2O; | |
455 T2R = ii[WS(rs, 34)]; | |
456 T9l = T2N * T2R; | |
457 T2S = FMA(T2Q, T2R, T2P); | |
458 T9m = FNMS(T2Q, T2O, T9l); | |
459 } | |
460 { | |
461 E T2V, T2W, T2Y, T9H; | |
462 T2V = ri[WS(rs, 18)]; | |
463 T2W = T2U * T2V; | |
464 T2Y = ii[WS(rs, 18)]; | |
465 T9H = T2U * T2Y; | |
466 T2Z = FMA(T2X, T2Y, T2W); | |
467 T9I = FNMS(T2X, T2V, T9H); | |
468 } | |
469 { | |
470 E T2T, T38, Tgl, Tgm; | |
471 T2T = T2M + T2S; | |
472 T38 = T2Z + T37; | |
473 T39 = T2T + T38; | |
474 Tgq = T2T - T38; | |
475 Tgl = T9k + T9m; | |
476 Tgm = T9I + T9K; | |
477 Tgn = Tgl - Tgm; | |
478 TiN = Tgl + Tgm; | |
479 } | |
480 { | |
481 E T9n, T9o, T9G, T9L; | |
482 T9n = T9k - T9m; | |
483 T9o = T2Z - T37; | |
484 T9p = T9n + T9o; | |
485 Te5 = T9n - T9o; | |
486 T9G = T2M - T2S; | |
487 T9L = T9I - T9K; | |
488 T9M = T9G - T9L; | |
489 Te8 = T9G + T9L; | |
490 } | |
491 } | |
492 { | |
493 E T6H, TbD, T72, Tcz, T6P, TbF, T6U, Tcx; | |
494 { | |
495 E T6E, T6F, T6G, TbC; | |
496 T6E = ri[WS(rs, 63)]; | |
497 T6F = TL * T6E; | |
498 T6G = ii[WS(rs, 63)]; | |
499 TbC = TL * T6G; | |
500 T6H = FMA(TP, T6G, T6F); | |
501 TbD = FNMS(TP, T6E, TbC); | |
502 } | |
503 { | |
504 E T6X, T6Y, T71, Tcy; | |
505 T6X = ri[WS(rs, 47)]; | |
506 T6Y = T6W * T6X; | |
507 T71 = ii[WS(rs, 47)]; | |
508 Tcy = T6W * T71; | |
509 T72 = FMA(T70, T71, T6Y); | |
510 Tcz = FNMS(T70, T6X, Tcy); | |
511 } | |
512 { | |
513 E T6K, T6L, T6O, TbE; | |
514 T6K = ri[WS(rs, 31)]; | |
515 T6L = T6J * T6K; | |
516 T6O = ii[WS(rs, 31)]; | |
517 TbE = T6J * T6O; | |
518 T6P = FMA(T6N, T6O, T6L); | |
519 TbF = FNMS(T6N, T6K, TbE); | |
520 } | |
521 { | |
522 E T6R, T6S, T6T, Tcw; | |
523 T6R = ri[WS(rs, 15)]; | |
524 T6S = TK * T6R; | |
525 T6T = ii[WS(rs, 15)]; | |
526 Tcw = TK * T6T; | |
527 T6U = FMA(TO, T6T, T6S); | |
528 Tcx = FNMS(TO, T6R, Tcw); | |
529 } | |
530 { | |
531 E T6Q, T73, Tha, Thb; | |
532 T6Q = T6H + T6P; | |
533 T73 = T6U + T72; | |
534 T74 = T6Q + T73; | |
535 Thr = T6Q - T73; | |
536 Tha = TbD + TbF; | |
537 Thb = Tcx + Tcz; | |
538 Thc = Tha - Thb; | |
539 Tja = Tha + Thb; | |
540 } | |
541 { | |
542 E TbG, TbH, Tcv, TcA; | |
543 TbG = TbD - TbF; | |
544 TbH = T6U - T72; | |
545 TbI = TbG + TbH; | |
546 TeE = TbG - TbH; | |
547 Tcv = T6H - T6P; | |
548 TcA = Tcx - Tcz; | |
549 TcB = Tcv - TcA; | |
550 TeP = Tcv + TcA; | |
551 } | |
552 } | |
553 { | |
554 E T16, T8y, T1z, T8I, T1g, T8A, T1r, T8G; | |
555 { | |
556 E T11, T12, T15, T8x; | |
557 T11 = ri[WS(rs, 8)]; | |
558 T12 = T10 * T11; | |
559 T15 = ii[WS(rs, 8)]; | |
560 T8x = T10 * T15; | |
561 T16 = FMA(T14, T15, T12); | |
562 T8y = FNMS(T14, T11, T8x); | |
563 } | |
564 { | |
565 E T1u, T1v, T1y, T8H; | |
566 T1u = ri[WS(rs, 24)]; | |
567 T1v = T1t * T1u; | |
568 T1y = ii[WS(rs, 24)]; | |
569 T8H = T1t * T1y; | |
570 T1z = FMA(T1x, T1y, T1v); | |
571 T8I = FNMS(T1x, T1u, T8H); | |
572 } | |
573 { | |
574 E T1b, T1c, T1f, T8z; | |
575 T1b = ri[WS(rs, 40)]; | |
576 T1c = T1a * T1b; | |
577 T1f = ii[WS(rs, 40)]; | |
578 T8z = T1a * T1f; | |
579 T1g = FMA(T1e, T1f, T1c); | |
580 T8A = FNMS(T1e, T1b, T8z); | |
581 } | |
582 { | |
583 E T1m, T1n, T1q, T8F; | |
584 T1m = ri[WS(rs, 56)]; | |
585 T1n = T1l * T1m; | |
586 T1q = ii[WS(rs, 56)]; | |
587 T8F = T1l * T1q; | |
588 T1r = FMA(T1p, T1q, T1n); | |
589 T8G = FNMS(T1p, T1m, T8F); | |
590 } | |
591 { | |
592 E T1h, T1A, Tg5, Tg6; | |
593 T1h = T16 + T1g; | |
594 T1A = T1r + T1z; | |
595 T1B = T1h + T1A; | |
596 TkD = T1A - T1h; | |
597 Tg5 = T8y + T8A; | |
598 Tg6 = T8G + T8I; | |
599 Tg7 = Tg5 - Tg6; | |
600 Tk7 = Tg5 + Tg6; | |
601 } | |
602 { | |
603 E T8B, T8C, T8E, T8J; | |
604 T8B = T8y - T8A; | |
605 T8C = T16 - T1g; | |
606 T8D = T8B - T8C; | |
607 TdT = T8C + T8B; | |
608 T8E = T1r - T1z; | |
609 T8J = T8G - T8I; | |
610 T8K = T8E + T8J; | |
611 TdU = T8E - T8J; | |
612 } | |
613 } | |
614 { | |
615 E T1G, T8O, T25, T8Y, T1O, T8Q, T1X, T8W; | |
616 { | |
617 E T1D, T1E, T1F, T8N; | |
618 T1D = ri[WS(rs, 4)]; | |
619 T1E = T7 * T1D; | |
620 T1F = ii[WS(rs, 4)]; | |
621 T8N = T7 * T1F; | |
622 T1G = FMA(Tb, T1F, T1E); | |
623 T8O = FNMS(Tb, T1D, T8N); | |
624 } | |
625 { | |
626 E T20, T21, T24, T8X; | |
627 T20 = ri[WS(rs, 52)]; | |
628 T21 = T1Z * T20; | |
629 T24 = ii[WS(rs, 52)]; | |
630 T8X = T1Z * T24; | |
631 T25 = FMA(T23, T24, T21); | |
632 T8Y = FNMS(T23, T20, T8X); | |
633 } | |
634 { | |
635 E T1J, T1K, T1N, T8P; | |
636 T1J = ri[WS(rs, 36)]; | |
637 T1K = T1I * T1J; | |
638 T1N = ii[WS(rs, 36)]; | |
639 T8P = T1I * T1N; | |
640 T1O = FMA(T1M, T1N, T1K); | |
641 T8Q = FNMS(T1M, T1J, T8P); | |
642 } | |
643 { | |
644 E T1S, T1T, T1W, T8V; | |
645 T1S = ri[WS(rs, 20)]; | |
646 T1T = T1R * T1S; | |
647 T1W = ii[WS(rs, 20)]; | |
648 T8V = T1R * T1W; | |
649 T1X = FMA(T1V, T1W, T1T); | |
650 T8W = FNMS(T1V, T1S, T8V); | |
651 } | |
652 { | |
653 E T1P, T26, Tga, Tgb; | |
654 T1P = T1G + T1O; | |
655 T26 = T1X + T25; | |
656 T27 = T1P + T26; | |
657 Tg9 = T1P - T26; | |
658 Tga = T8O + T8Q; | |
659 Tgb = T8W + T8Y; | |
660 Tgc = Tga - Tgb; | |
661 TiJ = Tga + Tgb; | |
662 } | |
663 { | |
664 E T8R, T8S, T8U, T8Z; | |
665 T8R = T8O - T8Q; | |
666 T8S = T1X - T25; | |
667 T8T = T8R + T8S; | |
668 TdY = T8R - T8S; | |
669 T8U = T1G - T1O; | |
670 T8Z = T8W - T8Y; | |
671 T90 = T8U - T8Z; | |
672 TdX = T8U + T8Z; | |
673 } | |
674 } | |
675 { | |
676 E T3T, T9T, T4i, Taj, T3Z, T9V, T46, Tah; | |
677 { | |
678 E T3O, T3P, T3S, T9S; | |
679 T3O = ri[WS(rs, 62)]; | |
680 T3P = T3N * T3O; | |
681 T3S = ii[WS(rs, 62)]; | |
682 T9S = T3N * T3S; | |
683 T3T = FMA(T3R, T3S, T3P); | |
684 T9T = FNMS(T3R, T3O, T9S); | |
685 } | |
686 { | |
687 E T4d, T4e, T4h, Tai; | |
688 T4d = ri[WS(rs, 46)]; | |
689 T4e = T4c * T4d; | |
690 T4h = ii[WS(rs, 46)]; | |
691 Tai = T4c * T4h; | |
692 T4i = FMA(T4g, T4h, T4e); | |
693 Taj = FNMS(T4g, T4d, Tai); | |
694 } | |
695 { | |
696 E T3V, T3W, T3Y, T9U; | |
697 T3V = ri[WS(rs, 30)]; | |
698 T3W = T3U * T3V; | |
699 T3Y = ii[WS(rs, 30)]; | |
700 T9U = T3U * T3Y; | |
701 T3Z = FMA(T3X, T3Y, T3W); | |
702 T9V = FNMS(T3X, T3V, T9U); | |
703 } | |
704 { | |
705 E T42, T43, T45, Tag; | |
706 T42 = ri[WS(rs, 14)]; | |
707 T43 = T41 * T42; | |
708 T45 = ii[WS(rs, 14)]; | |
709 Tag = T41 * T45; | |
710 T46 = FMA(T44, T45, T43); | |
711 Tah = FNMS(T44, T42, Tag); | |
712 } | |
713 { | |
714 E T40, T4j, Tgw, Tgx; | |
715 T40 = T3T + T3Z; | |
716 T4j = T46 + T4i; | |
717 T4k = T40 + T4j; | |
718 TgB = T40 - T4j; | |
719 Tgw = T9T + T9V; | |
720 Tgx = Tah + Taj; | |
721 Tgy = Tgw - Tgx; | |
722 TiT = Tgw + Tgx; | |
723 } | |
724 { | |
725 E T9W, T9X, Taf, Tak; | |
726 T9W = T9T - T9V; | |
727 T9X = T46 - T4i; | |
728 T9Y = T9W + T9X; | |
729 Tec = T9W - T9X; | |
730 Taf = T3T - T3Z; | |
731 Tak = Tah - Taj; | |
732 Tal = Taf - Tak; | |
733 Tef = Taf + Tak; | |
734 } | |
735 } | |
736 { | |
737 E T4S, Tau, T5b, Tbq, T4Y, Taw, T53, Tbo; | |
738 { | |
739 E T4P, T4Q, T4R, Tat; | |
740 T4P = ri[WS(rs, 1)]; | |
741 T4Q = T2 * T4P; | |
742 T4R = ii[WS(rs, 1)]; | |
743 Tat = T2 * T4R; | |
744 T4S = FMA(T5, T4R, T4Q); | |
745 Tau = FNMS(T5, T4P, Tat); | |
746 } | |
747 { | |
748 E T56, T57, T5a, Tbp; | |
749 T56 = ri[WS(rs, 49)]; | |
750 T57 = T55 * T56; | |
751 T5a = ii[WS(rs, 49)]; | |
752 Tbp = T55 * T5a; | |
753 T5b = FMA(T59, T5a, T57); | |
754 Tbq = FNMS(T59, T56, Tbp); | |
755 } | |
756 { | |
757 E T4U, T4V, T4X, Tav; | |
758 T4U = ri[WS(rs, 33)]; | |
759 T4V = T4T * T4U; | |
760 T4X = ii[WS(rs, 33)]; | |
761 Tav = T4T * T4X; | |
762 T4Y = FMA(T4W, T4X, T4V); | |
763 Taw = FNMS(T4W, T4U, Tav); | |
764 } | |
765 { | |
766 E T50, T51, T52, Tbn; | |
767 T50 = ri[WS(rs, 17)]; | |
768 T51 = T48 * T50; | |
769 T52 = ii[WS(rs, 17)]; | |
770 Tbn = T48 * T52; | |
771 T53 = FMA(T4b, T52, T51); | |
772 Tbo = FNMS(T4b, T50, Tbn); | |
773 } | |
774 { | |
775 E T4Z, T5c, TgJ, TgK; | |
776 T4Z = T4S + T4Y; | |
777 T5c = T53 + T5b; | |
778 T5d = T4Z + T5c; | |
779 Th0 = T4Z - T5c; | |
780 TgJ = Tau + Taw; | |
781 TgK = Tbo + Tbq; | |
782 TgL = TgJ - TgK; | |
783 TiZ = TgJ + TgK; | |
784 } | |
785 { | |
786 E Tax, Tay, Tbm, Tbr; | |
787 Tax = Tau - Taw; | |
788 Tay = T53 - T5b; | |
789 Taz = Tax + Tay; | |
790 Tel = Tax - Tay; | |
791 Tbm = T4S - T4Y; | |
792 Tbr = Tbo - Tbq; | |
793 Tbs = Tbm - Tbr; | |
794 Tew = Tbm + Tbr; | |
795 } | |
796 } | |
797 { | |
798 E T3f, T9s, T3I, T9B, T3t, T9u, T3C, T9z; | |
799 { | |
800 E T3b, T3c, T3e, T9r; | |
801 T3b = ri[WS(rs, 10)]; | |
802 T3c = T3a * T3b; | |
803 T3e = ii[WS(rs, 10)]; | |
804 T9r = T3a * T3e; | |
805 T3f = FMA(T3d, T3e, T3c); | |
806 T9s = FNMS(T3d, T3b, T9r); | |
807 } | |
808 { | |
809 E T3E, T3F, T3H, T9A; | |
810 T3E = ri[WS(rs, 26)]; | |
811 T3F = T3D * T3E; | |
812 T3H = ii[WS(rs, 26)]; | |
813 T9A = T3D * T3H; | |
814 T3I = FMA(T3G, T3H, T3F); | |
815 T9B = FNMS(T3G, T3E, T9A); | |
816 } | |
817 { | |
818 E T3o, T3p, T3s, T9t; | |
819 T3o = ri[WS(rs, 42)]; | |
820 T3p = T3n * T3o; | |
821 T3s = ii[WS(rs, 42)]; | |
822 T9t = T3n * T3s; | |
823 T3t = FMA(T3r, T3s, T3p); | |
824 T9u = FNMS(T3r, T3o, T9t); | |
825 } | |
826 { | |
827 E T3x, T3y, T3B, T9y; | |
828 T3x = ri[WS(rs, 58)]; | |
829 T3y = T3w * T3x; | |
830 T3B = ii[WS(rs, 58)]; | |
831 T9y = T3w * T3B; | |
832 T3C = FMA(T3A, T3B, T3y); | |
833 T9z = FNMS(T3A, T3x, T9y); | |
834 } | |
835 { | |
836 E T3u, T3J, Tgr, Tgs; | |
837 T3u = T3f + T3t; | |
838 T3J = T3C + T3I; | |
839 T3K = T3u + T3J; | |
840 Tgo = T3J - T3u; | |
841 Tgr = T9s + T9u; | |
842 Tgs = T9z + T9B; | |
843 Tgt = Tgr - Tgs; | |
844 TiO = Tgr + Tgs; | |
845 { | |
846 E T9w, T9O, T9D, T9N; | |
847 { | |
848 E T9q, T9v, T9x, T9C; | |
849 T9q = T3f - T3t; | |
850 T9v = T9s - T9u; | |
851 T9w = T9q + T9v; | |
852 T9O = T9v - T9q; | |
853 T9x = T3C - T3I; | |
854 T9C = T9z - T9B; | |
855 T9D = T9x - T9C; | |
856 T9N = T9x + T9C; | |
857 } | |
858 T9E = T9w - T9D; | |
859 Te9 = T9w + T9D; | |
860 T9P = T9N - T9O; | |
861 Te6 = T9O + T9N; | |
862 } | |
863 } | |
864 } | |
865 { | |
866 E T4o, Ta1, T4J, Taa, T4u, Ta3, T4D, Ta8; | |
867 { | |
868 E T4l, T4m, T4n, Ta0; | |
869 T4l = ri[WS(rs, 6)]; | |
870 T4m = T3g * T4l; | |
871 T4n = ii[WS(rs, 6)]; | |
872 Ta0 = T3g * T4n; | |
873 T4o = FMA(T3i, T4n, T4m); | |
874 Ta1 = FNMS(T3i, T4l, Ta0); | |
875 } | |
876 { | |
877 E T4F, T4G, T4I, Ta9; | |
878 T4F = ri[WS(rs, 22)]; | |
879 T4G = T4E * T4F; | |
880 T4I = ii[WS(rs, 22)]; | |
881 Ta9 = T4E * T4I; | |
882 T4J = FMA(T4H, T4I, T4G); | |
883 Taa = FNMS(T4H, T4F, Ta9); | |
884 } | |
885 { | |
886 E T4q, T4r, T4t, Ta2; | |
887 T4q = ri[WS(rs, 38)]; | |
888 T4r = T4p * T4q; | |
889 T4t = ii[WS(rs, 38)]; | |
890 Ta2 = T4p * T4t; | |
891 T4u = FMA(T4s, T4t, T4r); | |
892 Ta3 = FNMS(T4s, T4q, Ta2); | |
893 } | |
894 { | |
895 E T4y, T4z, T4C, Ta7; | |
896 T4y = ri[WS(rs, 54)]; | |
897 T4z = T4x * T4y; | |
898 T4C = ii[WS(rs, 54)]; | |
899 Ta7 = T4x * T4C; | |
900 T4D = FMA(T4B, T4C, T4z); | |
901 Ta8 = FNMS(T4B, T4y, Ta7); | |
902 } | |
903 { | |
904 E T4v, T4K, TgC, TgD; | |
905 T4v = T4o + T4u; | |
906 T4K = T4D + T4J; | |
907 T4L = T4v + T4K; | |
908 Tgz = T4K - T4v; | |
909 TgC = Ta1 + Ta3; | |
910 TgD = Ta8 + Taa; | |
911 TgE = TgC - TgD; | |
912 TiU = TgC + TgD; | |
913 { | |
914 E Ta5, Tan, Tac, Tam; | |
915 { | |
916 E T9Z, Ta4, Ta6, Tab; | |
917 T9Z = T4o - T4u; | |
918 Ta4 = Ta1 - Ta3; | |
919 Ta5 = T9Z + Ta4; | |
920 Tan = Ta4 - T9Z; | |
921 Ta6 = T4D - T4J; | |
922 Tab = Ta8 - Taa; | |
923 Tac = Ta6 - Tab; | |
924 Tam = Ta6 + Tab; | |
925 } | |
926 Tad = Ta5 - Tac; | |
927 Teg = Ta5 + Tac; | |
928 Tao = Tam - Tan; | |
929 Ted = Tan + Tam; | |
930 } | |
931 } | |
932 } | |
933 { | |
934 E T5h, TaC, T5G, TaL, T5p, TaE, T5y, TaJ; | |
935 { | |
936 E T5e, T5f, T5g, TaB; | |
937 T5e = ri[WS(rs, 9)]; | |
938 T5f = T8 * T5e; | |
939 T5g = ii[WS(rs, 9)]; | |
940 TaB = T8 * T5g; | |
941 T5h = FMA(Tc, T5g, T5f); | |
942 TaC = FNMS(Tc, T5e, TaB); | |
943 } | |
944 { | |
945 E T5B, T5C, T5F, TaK; | |
946 T5B = ri[WS(rs, 25)]; | |
947 T5C = T5A * T5B; | |
948 T5F = ii[WS(rs, 25)]; | |
949 TaK = T5A * T5F; | |
950 T5G = FMA(T5E, T5F, T5C); | |
951 TaL = FNMS(T5E, T5B, TaK); | |
952 } | |
953 { | |
954 E T5k, T5l, T5o, TaD; | |
955 T5k = ri[WS(rs, 41)]; | |
956 T5l = T5j * T5k; | |
957 T5o = ii[WS(rs, 41)]; | |
958 TaD = T5j * T5o; | |
959 T5p = FMA(T5n, T5o, T5l); | |
960 TaE = FNMS(T5n, T5k, TaD); | |
961 } | |
962 { | |
963 E T5t, T5u, T5x, TaI; | |
964 T5t = ri[WS(rs, 57)]; | |
965 T5u = T5s * T5t; | |
966 T5x = ii[WS(rs, 57)]; | |
967 TaI = T5s * T5x; | |
968 T5y = FMA(T5w, T5x, T5u); | |
969 TaJ = FNMS(T5w, T5t, TaI); | |
970 } | |
971 { | |
972 E T5q, T5H, Th1, Th2; | |
973 T5q = T5h + T5p; | |
974 T5H = T5y + T5G; | |
975 T5I = T5q + T5H; | |
976 TgM = T5H - T5q; | |
977 Th1 = TaC + TaE; | |
978 Th2 = TaJ + TaL; | |
979 Th3 = Th1 - Th2; | |
980 Tj0 = Th1 + Th2; | |
981 { | |
982 E TaG, Tbu, TaN, Tbt; | |
983 { | |
984 E TaA, TaF, TaH, TaM; | |
985 TaA = T5h - T5p; | |
986 TaF = TaC - TaE; | |
987 TaG = TaA + TaF; | |
988 Tbu = TaF - TaA; | |
989 TaH = T5y - T5G; | |
990 TaM = TaJ - TaL; | |
991 TaN = TaH - TaM; | |
992 Tbt = TaH + TaM; | |
993 } | |
994 TaO = TaG - TaN; | |
995 Tex = TaG + TaN; | |
996 Tbv = Tbt - Tbu; | |
997 Tem = Tbu + Tbt; | |
998 } | |
999 } | |
1000 } | |
1001 { | |
1002 E T78, TbL, T7t, TbU, T7e, TbN, T7n, TbS; | |
1003 { | |
1004 E T75, T76, T77, TbK; | |
1005 T75 = ri[WS(rs, 7)]; | |
1006 T76 = T1i * T75; | |
1007 T77 = ii[WS(rs, 7)]; | |
1008 TbK = T1i * T77; | |
1009 T78 = FMA(T1k, T77, T76); | |
1010 TbL = FNMS(T1k, T75, TbK); | |
1011 } | |
1012 { | |
1013 E T7p, T7q, T7s, TbT; | |
1014 T7p = ri[WS(rs, 23)]; | |
1015 T7q = T7o * T7p; | |
1016 T7s = ii[WS(rs, 23)]; | |
1017 TbT = T7o * T7s; | |
1018 T7t = FMA(T7r, T7s, T7q); | |
1019 TbU = FNMS(T7r, T7p, TbT); | |
1020 } | |
1021 { | |
1022 E T7a, T7b, T7d, TbM; | |
1023 T7a = ri[WS(rs, 39)]; | |
1024 T7b = T79 * T7a; | |
1025 T7d = ii[WS(rs, 39)]; | |
1026 TbM = T79 * T7d; | |
1027 T7e = FMA(T7c, T7d, T7b); | |
1028 TbN = FNMS(T7c, T7a, TbM); | |
1029 } | |
1030 { | |
1031 E T7i, T7j, T7m, TbR; | |
1032 T7i = ri[WS(rs, 55)]; | |
1033 T7j = T7h * T7i; | |
1034 T7m = ii[WS(rs, 55)]; | |
1035 TbR = T7h * T7m; | |
1036 T7n = FMA(T7l, T7m, T7j); | |
1037 TbS = FNMS(T7l, T7i, TbR); | |
1038 } | |
1039 { | |
1040 E T7f, T7u, Ths, Tht; | |
1041 T7f = T78 + T7e; | |
1042 T7u = T7n + T7t; | |
1043 T7v = T7f + T7u; | |
1044 Thd = T7u - T7f; | |
1045 Ths = TbL + TbN; | |
1046 Tht = TbS + TbU; | |
1047 Thu = Ths - Tht; | |
1048 Tjb = Ths + Tht; | |
1049 { | |
1050 E TbP, TcD, TbW, TcC; | |
1051 { | |
1052 E TbJ, TbO, TbQ, TbV; | |
1053 TbJ = T78 - T7e; | |
1054 TbO = TbL - TbN; | |
1055 TbP = TbJ + TbO; | |
1056 TcD = TbO - TbJ; | |
1057 TbQ = T7n - T7t; | |
1058 TbV = TbS - TbU; | |
1059 TbW = TbQ - TbV; | |
1060 TcC = TbQ + TbV; | |
1061 } | |
1062 TbX = TbP - TbW; | |
1063 TeQ = TbP + TbW; | |
1064 TcE = TcC - TcD; | |
1065 TeF = TcD + TcC; | |
1066 } | |
1067 } | |
1068 } | |
1069 { | |
1070 E T5N, Tbd, T66, Tb9, T5T, Tbf, T5Y, Tb7; | |
1071 { | |
1072 E T5K, T5L, T5M, Tbc; | |
1073 T5K = ri[WS(rs, 5)]; | |
1074 T5L = Td * T5K; | |
1075 T5M = ii[WS(rs, 5)]; | |
1076 Tbc = Td * T5M; | |
1077 T5N = FMA(Th, T5M, T5L); | |
1078 Tbd = FNMS(Th, T5K, Tbc); | |
1079 } | |
1080 { | |
1081 E T61, T62, T65, Tb8; | |
1082 T61 = ri[WS(rs, 53)]; | |
1083 T62 = T60 * T61; | |
1084 T65 = ii[WS(rs, 53)]; | |
1085 Tb8 = T60 * T65; | |
1086 T66 = FMA(T64, T65, T62); | |
1087 Tb9 = FNMS(T64, T61, Tb8); | |
1088 } | |
1089 { | |
1090 E T5P, T5Q, T5S, Tbe; | |
1091 T5P = ri[WS(rs, 37)]; | |
1092 T5Q = T5O * T5P; | |
1093 T5S = ii[WS(rs, 37)]; | |
1094 Tbe = T5O * T5S; | |
1095 T5T = FMA(T5R, T5S, T5Q); | |
1096 Tbf = FNMS(T5R, T5P, Tbe); | |
1097 } | |
1098 { | |
1099 E T5V, T5W, T5X, Tb6; | |
1100 T5V = ri[WS(rs, 21)]; | |
1101 T5W = T3j * T5V; | |
1102 T5X = ii[WS(rs, 21)]; | |
1103 Tb6 = T3j * T5X; | |
1104 T5Y = FMA(T3m, T5X, T5W); | |
1105 Tb7 = FNMS(T3m, T5V, Tb6); | |
1106 } | |
1107 { | |
1108 E T5U, T67, TgR, TgO, TgP, TgQ; | |
1109 T5U = T5N + T5T; | |
1110 T67 = T5Y + T66; | |
1111 TgR = T5U - T67; | |
1112 TgO = Tbd + Tbf; | |
1113 TgP = Tb7 + Tb9; | |
1114 TgQ = TgO - TgP; | |
1115 T68 = T5U + T67; | |
1116 Tj5 = TgO + TgP; | |
1117 TgS = TgQ - TgR; | |
1118 Th5 = TgR + TgQ; | |
1119 } | |
1120 { | |
1121 E Tbb, Tep, Tbi, Teo; | |
1122 { | |
1123 E Tb5, Tba, Tbg, Tbh; | |
1124 Tb5 = T5N - T5T; | |
1125 Tba = Tb7 - Tb9; | |
1126 Tbb = Tb5 - Tba; | |
1127 Tep = Tb5 + Tba; | |
1128 Tbg = Tbd - Tbf; | |
1129 Tbh = T5Y - T66; | |
1130 Tbi = Tbg + Tbh; | |
1131 Teo = Tbg - Tbh; | |
1132 } | |
1133 Tbj = FNMS(KP414213562, Tbi, Tbb); | |
1134 Tez = FMA(KP414213562, Teo, Tep); | |
1135 Tbx = FMA(KP414213562, Tbb, Tbi); | |
1136 Teq = FNMS(KP414213562, Tep, Teo); | |
1137 } | |
1138 } | |
1139 { | |
1140 E T6g, TaY, T6z, TaU, T6m, Tb0, T6r, TaS; | |
1141 { | |
1142 E T6b, T6c, T6f, TaX; | |
1143 T6b = ri[WS(rs, 61)]; | |
1144 T6c = T6a * T6b; | |
1145 T6f = ii[WS(rs, 61)]; | |
1146 TaX = T6a * T6f; | |
1147 T6g = FMA(T6e, T6f, T6c); | |
1148 TaY = FNMS(T6e, T6b, TaX); | |
1149 } | |
1150 { | |
1151 E T6u, T6v, T6y, TaT; | |
1152 T6u = ri[WS(rs, 45)]; | |
1153 T6v = T6t * T6u; | |
1154 T6y = ii[WS(rs, 45)]; | |
1155 TaT = T6t * T6y; | |
1156 T6z = FMA(T6x, T6y, T6v); | |
1157 TaU = FNMS(T6x, T6u, TaT); | |
1158 } | |
1159 { | |
1160 E T6i, T6j, T6l, TaZ; | |
1161 T6i = ri[WS(rs, 29)]; | |
1162 T6j = T6h * T6i; | |
1163 T6l = ii[WS(rs, 29)]; | |
1164 TaZ = T6h * T6l; | |
1165 T6m = FMA(T6k, T6l, T6j); | |
1166 Tb0 = FNMS(T6k, T6i, TaZ); | |
1167 } | |
1168 { | |
1169 E T6o, T6p, T6q, TaR; | |
1170 T6o = ri[WS(rs, 13)]; | |
1171 T6p = T17 * T6o; | |
1172 T6q = ii[WS(rs, 13)]; | |
1173 TaR = T17 * T6q; | |
1174 T6r = FMA(T19, T6q, T6p); | |
1175 TaS = FNMS(T19, T6o, TaR); | |
1176 } | |
1177 { | |
1178 E T6n, T6A, TgT, TgU, TgV, TgW; | |
1179 T6n = T6g + T6m; | |
1180 T6A = T6r + T6z; | |
1181 TgT = T6n - T6A; | |
1182 TgU = TaY + Tb0; | |
1183 TgV = TaS + TaU; | |
1184 TgW = TgU - TgV; | |
1185 T6B = T6n + T6A; | |
1186 Tj6 = TgU + TgV; | |
1187 TgX = TgT + TgW; | |
1188 Th6 = TgT - TgW; | |
1189 } | |
1190 { | |
1191 E TaW, Tes, Tb3, Ter; | |
1192 { | |
1193 E TaQ, TaV, Tb1, Tb2; | |
1194 TaQ = T6g - T6m; | |
1195 TaV = TaS - TaU; | |
1196 TaW = TaQ - TaV; | |
1197 Tes = TaQ + TaV; | |
1198 Tb1 = TaY - Tb0; | |
1199 Tb2 = T6r - T6z; | |
1200 Tb3 = Tb1 + Tb2; | |
1201 Ter = Tb1 - Tb2; | |
1202 } | |
1203 Tb4 = FMA(KP414213562, Tb3, TaW); | |
1204 TeA = FNMS(KP414213562, Ter, Tes); | |
1205 Tby = FNMS(KP414213562, TaW, Tb3); | |
1206 Tet = FMA(KP414213562, Tes, Ter); | |
1207 } | |
1208 } | |
1209 { | |
1210 E T7A, Tcm, T7T, Tci, T7G, Tco, T7L, Tcg; | |
1211 { | |
1212 E T7x, T7y, T7z, Tcl; | |
1213 T7x = ri[WS(rs, 3)]; | |
1214 T7y = T3 * T7x; | |
1215 T7z = ii[WS(rs, 3)]; | |
1216 Tcl = T3 * T7z; | |
1217 T7A = FMA(T6, T7z, T7y); | |
1218 Tcm = FNMS(T6, T7x, Tcl); | |
1219 } | |
1220 { | |
1221 E T7O, T7P, T7S, Tch; | |
1222 T7O = ri[WS(rs, 51)]; | |
1223 T7P = T7N * T7O; | |
1224 T7S = ii[WS(rs, 51)]; | |
1225 Tch = T7N * T7S; | |
1226 T7T = FMA(T7R, T7S, T7P); | |
1227 Tci = FNMS(T7R, T7O, Tch); | |
1228 } | |
1229 { | |
1230 E T7C, T7D, T7F, Tcn; | |
1231 T7C = ri[WS(rs, 35)]; | |
1232 T7D = T7B * T7C; | |
1233 T7F = ii[WS(rs, 35)]; | |
1234 Tcn = T7B * T7F; | |
1235 T7G = FMA(T7E, T7F, T7D); | |
1236 Tco = FNMS(T7E, T7C, Tcn); | |
1237 } | |
1238 { | |
1239 E T7I, T7J, T7K, Tcf; | |
1240 T7I = ri[WS(rs, 19)]; | |
1241 T7J = T2u * T7I; | |
1242 T7K = ii[WS(rs, 19)]; | |
1243 Tcf = T2u * T7K; | |
1244 T7L = FMA(T2x, T7K, T7J); | |
1245 Tcg = FNMS(T2x, T7I, Tcf); | |
1246 } | |
1247 { | |
1248 E T7H, T7U, Thi, Thf, Thg, Thh; | |
1249 T7H = T7A + T7G; | |
1250 T7U = T7L + T7T; | |
1251 Thi = T7H - T7U; | |
1252 Thf = Tcm + Tco; | |
1253 Thg = Tcg + Tci; | |
1254 Thh = Thf - Thg; | |
1255 T7V = T7H + T7U; | |
1256 Tjg = Thf + Thg; | |
1257 Thj = Thh - Thi; | |
1258 Thw = Thi + Thh; | |
1259 } | |
1260 { | |
1261 E Tck, TeI, Tcr, TeH; | |
1262 { | |
1263 E Tce, Tcj, Tcp, Tcq; | |
1264 Tce = T7A - T7G; | |
1265 Tcj = Tcg - Tci; | |
1266 Tck = Tce - Tcj; | |
1267 TeI = Tce + Tcj; | |
1268 Tcp = Tcm - Tco; | |
1269 Tcq = T7L - T7T; | |
1270 Tcr = Tcp + Tcq; | |
1271 TeH = Tcp - Tcq; | |
1272 } | |
1273 Tcs = FNMS(KP414213562, Tcr, Tck); | |
1274 TeS = FMA(KP414213562, TeH, TeI); | |
1275 TcG = FMA(KP414213562, Tck, Tcr); | |
1276 TeJ = FNMS(KP414213562, TeI, TeH); | |
1277 } | |
1278 } | |
1279 { | |
1280 E T83, Tc7, T8k, Tc3, T87, Tc9, T8c, Tc1; | |
1281 { | |
1282 E T7Y, T7Z, T82, Tc6; | |
1283 T7Y = ri[WS(rs, 59)]; | |
1284 T7Z = T7X * T7Y; | |
1285 T82 = ii[WS(rs, 59)]; | |
1286 Tc6 = T7X * T82; | |
1287 T83 = FMA(T81, T82, T7Z); | |
1288 Tc7 = FNMS(T81, T7Y, Tc6); | |
1289 } | |
1290 { | |
1291 E T8f, T8g, T8j, Tc2; | |
1292 T8f = ri[WS(rs, 43)]; | |
1293 T8g = T8e * T8f; | |
1294 T8j = ii[WS(rs, 43)]; | |
1295 Tc2 = T8e * T8j; | |
1296 T8k = FMA(T8i, T8j, T8g); | |
1297 Tc3 = FNMS(T8i, T8f, Tc2); | |
1298 } | |
1299 { | |
1300 E T84, T85, T86, Tc8; | |
1301 T84 = ri[WS(rs, 27)]; | |
1302 T85 = Te * T84; | |
1303 T86 = ii[WS(rs, 27)]; | |
1304 Tc8 = Te * T86; | |
1305 T87 = FMA(Ti, T86, T85); | |
1306 Tc9 = FNMS(Ti, T84, Tc8); | |
1307 } | |
1308 { | |
1309 E T89, T8a, T8b, Tc0; | |
1310 T89 = ri[WS(rs, 11)]; | |
1311 T8a = Tu * T89; | |
1312 T8b = ii[WS(rs, 11)]; | |
1313 Tc0 = Tu * T8b; | |
1314 T8c = FMA(Tx, T8b, T8a); | |
1315 Tc1 = FNMS(Tx, T89, Tc0); | |
1316 } | |
1317 { | |
1318 E T88, T8l, Thk, Thl, Thm, Thn; | |
1319 T88 = T83 + T87; | |
1320 T8l = T8c + T8k; | |
1321 Thk = T88 - T8l; | |
1322 Thl = Tc7 + Tc9; | |
1323 Thm = Tc1 + Tc3; | |
1324 Thn = Thl - Thm; | |
1325 T8m = T88 + T8l; | |
1326 Tjh = Thl + Thm; | |
1327 Tho = Thk + Thn; | |
1328 Thx = Thk - Thn; | |
1329 } | |
1330 { | |
1331 E Tc5, TeL, Tcc, TeK; | |
1332 { | |
1333 E TbZ, Tc4, Tca, Tcb; | |
1334 TbZ = T83 - T87; | |
1335 Tc4 = Tc1 - Tc3; | |
1336 Tc5 = TbZ - Tc4; | |
1337 TeL = TbZ + Tc4; | |
1338 Tca = Tc7 - Tc9; | |
1339 Tcb = T8c - T8k; | |
1340 Tcc = Tca + Tcb; | |
1341 TeK = Tca - Tcb; | |
1342 } | |
1343 Tcd = FMA(KP414213562, Tcc, Tc5); | |
1344 TeT = FNMS(KP414213562, TeK, TeL); | |
1345 TcH = FNMS(KP414213562, Tc5, Tcc); | |
1346 TeM = FMA(KP414213562, TeL, TeK); | |
1347 } | |
1348 } | |
1349 { | |
1350 E T2I, TjG, T4N, Tkj, Tkf, Tkk, TjJ, Tk5, T8o, Tk2, TjU, TjY, T6D, Tk1, TjP; | |
1351 E TjX; | |
1352 { | |
1353 E T1C, T2H, TjH, TjI; | |
1354 T1C = TY + T1B; | |
1355 T2H = T27 + T2G; | |
1356 T2I = T1C + T2H; | |
1357 TjG = T1C - T2H; | |
1358 { | |
1359 E T3L, T4M, Tk6, Tke; | |
1360 T3L = T39 + T3K; | |
1361 T4M = T4k + T4L; | |
1362 T4N = T3L + T4M; | |
1363 Tkj = T4M - T3L; | |
1364 Tk6 = TiJ + TiK; | |
1365 Tke = Tk7 + Tkd; | |
1366 Tkf = Tk6 + Tke; | |
1367 Tkk = Tke - Tk6; | |
1368 } | |
1369 TjH = TiN + TiO; | |
1370 TjI = TiT + TiU; | |
1371 TjJ = TjH - TjI; | |
1372 Tk5 = TjH + TjI; | |
1373 { | |
1374 E T7w, T8n, TjQ, TjR, TjS, TjT; | |
1375 T7w = T74 + T7v; | |
1376 T8n = T7V + T8m; | |
1377 TjQ = T7w - T8n; | |
1378 TjR = Tja + Tjb; | |
1379 TjS = Tjg + Tjh; | |
1380 TjT = TjR - TjS; | |
1381 T8o = T7w + T8n; | |
1382 Tk2 = TjR + TjS; | |
1383 TjU = TjQ - TjT; | |
1384 TjY = TjQ + TjT; | |
1385 } | |
1386 { | |
1387 E T5J, T6C, TjL, TjM, TjN, TjO; | |
1388 T5J = T5d + T5I; | |
1389 T6C = T68 + T6B; | |
1390 TjL = T5J - T6C; | |
1391 TjM = TiZ + Tj0; | |
1392 TjN = Tj5 + Tj6; | |
1393 TjO = TjM - TjN; | |
1394 T6D = T5J + T6C; | |
1395 Tk1 = TjM + TjN; | |
1396 TjP = TjL + TjO; | |
1397 TjX = TjO - TjL; | |
1398 } | |
1399 } | |
1400 { | |
1401 E T4O, T8p, Tk4, Tkg; | |
1402 T4O = T2I + T4N; | |
1403 T8p = T6D + T8o; | |
1404 ri[WS(rs, 32)] = T4O - T8p; | |
1405 ri[0] = T4O + T8p; | |
1406 Tk4 = Tk1 + Tk2; | |
1407 Tkg = Tk5 + Tkf; | |
1408 ii[0] = Tk4 + Tkg; | |
1409 ii[WS(rs, 32)] = Tkg - Tk4; | |
1410 } | |
1411 { | |
1412 E TjK, TjV, Tkl, Tkm; | |
1413 TjK = TjG + TjJ; | |
1414 TjV = TjP + TjU; | |
1415 ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK); | |
1416 ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK); | |
1417 Tkl = Tkj + Tkk; | |
1418 Tkm = TjX + TjY; | |
1419 ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl); | |
1420 ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl); | |
1421 } | |
1422 { | |
1423 E TjW, TjZ, Tkn, Tko; | |
1424 TjW = TjG - TjJ; | |
1425 TjZ = TjX - TjY; | |
1426 ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW); | |
1427 ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW); | |
1428 Tkn = Tkk - Tkj; | |
1429 Tko = TjU - TjP; | |
1430 ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn); | |
1431 ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn); | |
1432 } | |
1433 { | |
1434 E Tk0, Tk3, Tkh, Tki; | |
1435 Tk0 = T2I - T4N; | |
1436 Tk3 = Tk1 - Tk2; | |
1437 ri[WS(rs, 48)] = Tk0 - Tk3; | |
1438 ri[WS(rs, 16)] = Tk0 + Tk3; | |
1439 Tkh = T8o - T6D; | |
1440 Tki = Tkf - Tk5; | |
1441 ii[WS(rs, 16)] = Tkh + Tki; | |
1442 ii[WS(rs, 48)] = Tki - Tkh; | |
1443 } | |
1444 } | |
1445 { | |
1446 E TiM, Tjq, Tkr, Tkx, TiX, Tky, Tjt, Tks, Tj9, TjD, Tjn, Tjx, Tjk, TjE, Tjo; | |
1447 E TjA; | |
1448 { | |
1449 E TiI, TiL, Tkp, Tkq; | |
1450 TiI = TY - T1B; | |
1451 TiL = TiJ - TiK; | |
1452 TiM = TiI - TiL; | |
1453 Tjq = TiI + TiL; | |
1454 Tkp = T2G - T27; | |
1455 Tkq = Tkd - Tk7; | |
1456 Tkr = Tkp + Tkq; | |
1457 Tkx = Tkq - Tkp; | |
1458 } | |
1459 { | |
1460 E TiR, Tjr, TiW, Tjs; | |
1461 { | |
1462 E TiP, TiQ, TiS, TiV; | |
1463 TiP = TiN - TiO; | |
1464 TiQ = T39 - T3K; | |
1465 TiR = TiP - TiQ; | |
1466 Tjr = TiQ + TiP; | |
1467 TiS = T4k - T4L; | |
1468 TiV = TiT - TiU; | |
1469 TiW = TiS + TiV; | |
1470 Tjs = TiS - TiV; | |
1471 } | |
1472 TiX = TiR - TiW; | |
1473 Tky = Tjs - Tjr; | |
1474 Tjt = Tjr + Tjs; | |
1475 Tks = TiR + TiW; | |
1476 } | |
1477 { | |
1478 E Tj3, Tjw, Tj8, Tjv; | |
1479 { | |
1480 E Tj1, Tj2, Tj4, Tj7; | |
1481 Tj1 = TiZ - Tj0; | |
1482 Tj2 = T6B - T68; | |
1483 Tj3 = Tj1 - Tj2; | |
1484 Tjw = Tj1 + Tj2; | |
1485 Tj4 = T5d - T5I; | |
1486 Tj7 = Tj5 - Tj6; | |
1487 Tj8 = Tj4 - Tj7; | |
1488 Tjv = Tj4 + Tj7; | |
1489 } | |
1490 Tj9 = FMA(KP414213562, Tj8, Tj3); | |
1491 TjD = FNMS(KP414213562, Tjv, Tjw); | |
1492 Tjn = FNMS(KP414213562, Tj3, Tj8); | |
1493 Tjx = FMA(KP414213562, Tjw, Tjv); | |
1494 } | |
1495 { | |
1496 E Tje, Tjz, Tjj, Tjy; | |
1497 { | |
1498 E Tjc, Tjd, Tjf, Tji; | |
1499 Tjc = Tja - Tjb; | |
1500 Tjd = T8m - T7V; | |
1501 Tje = Tjc - Tjd; | |
1502 Tjz = Tjc + Tjd; | |
1503 Tjf = T74 - T7v; | |
1504 Tji = Tjg - Tjh; | |
1505 Tjj = Tjf - Tji; | |
1506 Tjy = Tjf + Tji; | |
1507 } | |
1508 Tjk = FNMS(KP414213562, Tjj, Tje); | |
1509 TjE = FMA(KP414213562, Tjy, Tjz); | |
1510 Tjo = FMA(KP414213562, Tje, Tjj); | |
1511 TjA = FNMS(KP414213562, Tjz, Tjy); | |
1512 } | |
1513 { | |
1514 E TiY, Tjl, Tkz, TkA; | |
1515 TiY = FMA(KP707106781, TiX, TiM); | |
1516 Tjl = Tj9 - Tjk; | |
1517 ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY); | |
1518 ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY); | |
1519 Tkz = FMA(KP707106781, Tky, Tkx); | |
1520 TkA = Tjo - Tjn; | |
1521 ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz); | |
1522 ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz); | |
1523 } | |
1524 { | |
1525 E Tjm, Tjp, TkB, TkC; | |
1526 Tjm = FNMS(KP707106781, TiX, TiM); | |
1527 Tjp = Tjn + Tjo; | |
1528 ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm); | |
1529 ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm); | |
1530 TkB = FNMS(KP707106781, Tky, Tkx); | |
1531 TkC = Tj9 + Tjk; | |
1532 ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB); | |
1533 ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB); | |
1534 } | |
1535 { | |
1536 E Tju, TjB, Tkt, Tku; | |
1537 Tju = FMA(KP707106781, Tjt, Tjq); | |
1538 TjB = Tjx + TjA; | |
1539 ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju); | |
1540 ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju); | |
1541 Tkt = FMA(KP707106781, Tks, Tkr); | |
1542 Tku = TjD + TjE; | |
1543 ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt); | |
1544 ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt); | |
1545 } | |
1546 { | |
1547 E TjC, TjF, Tkv, Tkw; | |
1548 TjC = FNMS(KP707106781, Tjt, Tjq); | |
1549 TjF = TjD - TjE; | |
1550 ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC); | |
1551 ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC); | |
1552 Tkv = FNMS(KP707106781, Tks, Tkr); | |
1553 Tkw = TjA - Tjx; | |
1554 ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv); | |
1555 ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv); | |
1556 } | |
1557 } | |
1558 { | |
1559 E Tgk, Tl1, ThG, TkV, Ti0, TkN, Tis, TkH, TgH, TkO, ThJ, TkI, Tim, TiG, Tiq; | |
1560 E TiC, Th9, ThT, ThD, ThN, Ti7, Tl2, Tiv, TkW, Tif, TiF, Tip, Tiz, ThA, ThU; | |
1561 E ThE, ThQ; | |
1562 { | |
1563 E Tg8, TkT, Tgj, TkU, Tgd, Tgi; | |
1564 Tg8 = Tg4 + Tg7; | |
1565 TkT = TkE - TkD; | |
1566 Tgd = Tg9 + Tgc; | |
1567 Tgi = Tge - Tgh; | |
1568 Tgj = Tgd + Tgi; | |
1569 TkU = Tgi - Tgd; | |
1570 Tgk = FNMS(KP707106781, Tgj, Tg8); | |
1571 Tl1 = FNMS(KP707106781, TkU, TkT); | |
1572 ThG = FMA(KP707106781, Tgj, Tg8); | |
1573 TkV = FMA(KP707106781, TkU, TkT); | |
1574 } | |
1575 { | |
1576 E ThW, TkF, ThZ, TkG, ThX, ThY; | |
1577 ThW = Tg4 - Tg7; | |
1578 TkF = TkD + TkE; | |
1579 ThX = Tgc - Tg9; | |
1580 ThY = Tge + Tgh; | |
1581 ThZ = ThX - ThY; | |
1582 TkG = ThX + ThY; | |
1583 Ti0 = FMA(KP707106781, ThZ, ThW); | |
1584 TkN = FNMS(KP707106781, TkG, TkF); | |
1585 Tis = FNMS(KP707106781, ThZ, ThW); | |
1586 TkH = FMA(KP707106781, TkG, TkF); | |
1587 } | |
1588 { | |
1589 E Tgv, ThH, TgG, ThI; | |
1590 { | |
1591 E Tgp, Tgu, TgA, TgF; | |
1592 Tgp = Tgn + Tgo; | |
1593 Tgu = Tgq + Tgt; | |
1594 Tgv = FNMS(KP414213562, Tgu, Tgp); | |
1595 ThH = FMA(KP414213562, Tgp, Tgu); | |
1596 TgA = Tgy + Tgz; | |
1597 TgF = TgB + TgE; | |
1598 TgG = FMA(KP414213562, TgF, TgA); | |
1599 ThI = FNMS(KP414213562, TgA, TgF); | |
1600 } | |
1601 TgH = Tgv - TgG; | |
1602 TkO = ThI - ThH; | |
1603 ThJ = ThH + ThI; | |
1604 TkI = Tgv + TgG; | |
1605 } | |
1606 { | |
1607 E Tii, TiB, Til, TiA; | |
1608 { | |
1609 E Tig, Tih, Tij, Tik; | |
1610 Tig = Thr - Thu; | |
1611 Tih = Tho - Thj; | |
1612 Tii = FNMS(KP707106781, Tih, Tig); | |
1613 TiB = FMA(KP707106781, Tih, Tig); | |
1614 Tij = Thc - Thd; | |
1615 Tik = Thw - Thx; | |
1616 Til = FNMS(KP707106781, Tik, Tij); | |
1617 TiA = FMA(KP707106781, Tik, Tij); | |
1618 } | |
1619 Tim = FNMS(KP668178637, Til, Tii); | |
1620 TiG = FMA(KP198912367, TiA, TiB); | |
1621 Tiq = FMA(KP668178637, Tii, Til); | |
1622 TiC = FNMS(KP198912367, TiB, TiA); | |
1623 } | |
1624 { | |
1625 E TgZ, ThM, Th8, ThL; | |
1626 { | |
1627 E TgN, TgY, Th4, Th7; | |
1628 TgN = TgL + TgM; | |
1629 TgY = TgS + TgX; | |
1630 TgZ = FNMS(KP707106781, TgY, TgN); | |
1631 ThM = FMA(KP707106781, TgY, TgN); | |
1632 Th4 = Th0 + Th3; | |
1633 Th7 = Th5 + Th6; | |
1634 Th8 = FNMS(KP707106781, Th7, Th4); | |
1635 ThL = FMA(KP707106781, Th7, Th4); | |
1636 } | |
1637 Th9 = FMA(KP668178637, Th8, TgZ); | |
1638 ThT = FNMS(KP198912367, ThL, ThM); | |
1639 ThD = FNMS(KP668178637, TgZ, Th8); | |
1640 ThN = FMA(KP198912367, ThM, ThL); | |
1641 } | |
1642 { | |
1643 E Ti3, Tit, Ti6, Tiu; | |
1644 { | |
1645 E Ti1, Ti2, Ti4, Ti5; | |
1646 Ti1 = Tgn - Tgo; | |
1647 Ti2 = Tgq - Tgt; | |
1648 Ti3 = FMA(KP414213562, Ti2, Ti1); | |
1649 Tit = FNMS(KP414213562, Ti1, Ti2); | |
1650 Ti4 = Tgy - Tgz; | |
1651 Ti5 = TgB - TgE; | |
1652 Ti6 = FNMS(KP414213562, Ti5, Ti4); | |
1653 Tiu = FMA(KP414213562, Ti4, Ti5); | |
1654 } | |
1655 Ti7 = Ti3 - Ti6; | |
1656 Tl2 = Ti3 + Ti6; | |
1657 Tiv = Tit + Tiu; | |
1658 TkW = Tiu - Tit; | |
1659 } | |
1660 { | |
1661 E Tib, Tiy, Tie, Tix; | |
1662 { | |
1663 E Ti9, Tia, Tic, Tid; | |
1664 Ti9 = Th0 - Th3; | |
1665 Tia = TgX - TgS; | |
1666 Tib = FNMS(KP707106781, Tia, Ti9); | |
1667 Tiy = FMA(KP707106781, Tia, Ti9); | |
1668 Tic = TgL - TgM; | |
1669 Tid = Th5 - Th6; | |
1670 Tie = FNMS(KP707106781, Tid, Tic); | |
1671 Tix = FMA(KP707106781, Tid, Tic); | |
1672 } | |
1673 Tif = FMA(KP668178637, Tie, Tib); | |
1674 TiF = FNMS(KP198912367, Tix, Tiy); | |
1675 Tip = FNMS(KP668178637, Tib, Tie); | |
1676 Tiz = FMA(KP198912367, Tiy, Tix); | |
1677 } | |
1678 { | |
1679 E Thq, ThP, Thz, ThO; | |
1680 { | |
1681 E The, Thp, Thv, Thy; | |
1682 The = Thc + Thd; | |
1683 Thp = Thj + Tho; | |
1684 Thq = FNMS(KP707106781, Thp, The); | |
1685 ThP = FMA(KP707106781, Thp, The); | |
1686 Thv = Thr + Thu; | |
1687 Thy = Thw + Thx; | |
1688 Thz = FNMS(KP707106781, Thy, Thv); | |
1689 ThO = FMA(KP707106781, Thy, Thv); | |
1690 } | |
1691 ThA = FNMS(KP668178637, Thz, Thq); | |
1692 ThU = FMA(KP198912367, ThO, ThP); | |
1693 ThE = FMA(KP668178637, Thq, Thz); | |
1694 ThQ = FNMS(KP198912367, ThP, ThO); | |
1695 } | |
1696 { | |
1697 E TgI, ThB, TkP, TkQ; | |
1698 TgI = FMA(KP923879532, TgH, Tgk); | |
1699 ThB = Th9 - ThA; | |
1700 ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI); | |
1701 ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI); | |
1702 TkP = FMA(KP923879532, TkO, TkN); | |
1703 TkQ = ThE - ThD; | |
1704 ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP); | |
1705 ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP); | |
1706 } | |
1707 { | |
1708 E ThC, ThF, TkR, TkS; | |
1709 ThC = FNMS(KP923879532, TgH, Tgk); | |
1710 ThF = ThD + ThE; | |
1711 ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC); | |
1712 ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC); | |
1713 TkR = FNMS(KP923879532, TkO, TkN); | |
1714 TkS = Th9 + ThA; | |
1715 ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR); | |
1716 ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR); | |
1717 } | |
1718 { | |
1719 E ThK, ThR, TkJ, TkK; | |
1720 ThK = FMA(KP923879532, ThJ, ThG); | |
1721 ThR = ThN + ThQ; | |
1722 ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK); | |
1723 ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK); | |
1724 TkJ = FMA(KP923879532, TkI, TkH); | |
1725 TkK = ThT + ThU; | |
1726 ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ); | |
1727 ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ); | |
1728 } | |
1729 { | |
1730 E ThS, ThV, TkL, TkM; | |
1731 ThS = FNMS(KP923879532, ThJ, ThG); | |
1732 ThV = ThT - ThU; | |
1733 ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS); | |
1734 ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS); | |
1735 TkL = FNMS(KP923879532, TkI, TkH); | |
1736 TkM = ThQ - ThN; | |
1737 ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL); | |
1738 ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL); | |
1739 } | |
1740 { | |
1741 E Ti8, Tin, TkX, TkY; | |
1742 Ti8 = FMA(KP923879532, Ti7, Ti0); | |
1743 Tin = Tif + Tim; | |
1744 ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8); | |
1745 ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8); | |
1746 TkX = FMA(KP923879532, TkW, TkV); | |
1747 TkY = Tip + Tiq; | |
1748 ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX); | |
1749 ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX); | |
1750 } | |
1751 { | |
1752 E Tio, Tir, TkZ, Tl0; | |
1753 Tio = FNMS(KP923879532, Ti7, Ti0); | |
1754 Tir = Tip - Tiq; | |
1755 ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio); | |
1756 ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio); | |
1757 TkZ = FNMS(KP923879532, TkW, TkV); | |
1758 Tl0 = Tim - Tif; | |
1759 ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ); | |
1760 ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ); | |
1761 } | |
1762 { | |
1763 E Tiw, TiD, Tl3, Tl4; | |
1764 Tiw = FNMS(KP923879532, Tiv, Tis); | |
1765 TiD = Tiz - TiC; | |
1766 ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw); | |
1767 ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw); | |
1768 Tl3 = FNMS(KP923879532, Tl2, Tl1); | |
1769 Tl4 = TiG - TiF; | |
1770 ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3); | |
1771 ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3); | |
1772 } | |
1773 { | |
1774 E TiE, TiH, Tl5, Tl6; | |
1775 TiE = FMA(KP923879532, Tiv, Tis); | |
1776 TiH = TiF + TiG; | |
1777 ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE); | |
1778 ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE); | |
1779 Tl5 = FMA(KP923879532, Tl2, Tl1); | |
1780 Tl6 = Tiz + TiC; | |
1781 ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5); | |
1782 ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5); | |
1783 } | |
1784 } | |
1785 { | |
1786 E Tar, TlO, TcT, TlI, TbB, Td3, TcN, TcX, Tdw, TdQ, TdA, TdM, Tdp, TdP, Tdz; | |
1787 E TdJ, Tdh, Tm2, TdF, TlW, TcK, Td4, TcO, Td0, T9i, TlV, Tm1, TcQ, Tda, TlH; | |
1788 E TlN, TdC; | |
1789 { | |
1790 E T9R, TcR, Taq, TcS; | |
1791 { | |
1792 E T9F, T9Q, Tae, Tap; | |
1793 T9F = FNMS(KP707106781, T9E, T9p); | |
1794 T9Q = FNMS(KP707106781, T9P, T9M); | |
1795 T9R = FNMS(KP668178637, T9Q, T9F); | |
1796 TcR = FMA(KP668178637, T9F, T9Q); | |
1797 Tae = FNMS(KP707106781, Tad, T9Y); | |
1798 Tap = FNMS(KP707106781, Tao, Tal); | |
1799 Taq = FMA(KP668178637, Tap, Tae); | |
1800 TcS = FNMS(KP668178637, Tae, Tap); | |
1801 } | |
1802 Tar = T9R - Taq; | |
1803 TlO = TcS - TcR; | |
1804 TcT = TcR + TcS; | |
1805 TlI = T9R + Taq; | |
1806 } | |
1807 { | |
1808 E Tbl, TcW, TbA, TcV; | |
1809 { | |
1810 E TaP, Tbk, Tbw, Tbz; | |
1811 TaP = FNMS(KP707106781, TaO, Taz); | |
1812 Tbk = Tb4 - Tbj; | |
1813 Tbl = FNMS(KP923879532, Tbk, TaP); | |
1814 TcW = FMA(KP923879532, Tbk, TaP); | |
1815 Tbw = FNMS(KP707106781, Tbv, Tbs); | |
1816 Tbz = Tbx - Tby; | |
1817 TbA = FNMS(KP923879532, Tbz, Tbw); | |
1818 TcV = FMA(KP923879532, Tbz, Tbw); | |
1819 } | |
1820 TbB = FMA(KP534511135, TbA, Tbl); | |
1821 Td3 = FNMS(KP303346683, TcV, TcW); | |
1822 TcN = FNMS(KP534511135, Tbl, TbA); | |
1823 TcX = FMA(KP303346683, TcW, TcV); | |
1824 } | |
1825 { | |
1826 E Tds, TdL, Tdv, TdK; | |
1827 { | |
1828 E Tdq, Tdr, Tdt, Tdu; | |
1829 Tdq = FMA(KP707106781, TcE, TcB); | |
1830 Tdr = Tcs + Tcd; | |
1831 Tds = FNMS(KP923879532, Tdr, Tdq); | |
1832 TdL = FMA(KP923879532, Tdr, Tdq); | |
1833 Tdt = FMA(KP707106781, TbX, TbI); | |
1834 Tdu = TcG + TcH; | |
1835 Tdv = FNMS(KP923879532, Tdu, Tdt); | |
1836 TdK = FMA(KP923879532, Tdu, Tdt); | |
1837 } | |
1838 Tdw = FNMS(KP820678790, Tdv, Tds); | |
1839 TdQ = FMA(KP098491403, TdK, TdL); | |
1840 TdA = FMA(KP820678790, Tds, Tdv); | |
1841 TdM = FNMS(KP098491403, TdL, TdK); | |
1842 } | |
1843 { | |
1844 E Tdl, TdI, Tdo, TdH; | |
1845 { | |
1846 E Tdj, Tdk, Tdm, Tdn; | |
1847 Tdj = FMA(KP707106781, Tbv, Tbs); | |
1848 Tdk = Tbj + Tb4; | |
1849 Tdl = FNMS(KP923879532, Tdk, Tdj); | |
1850 TdI = FMA(KP923879532, Tdk, Tdj); | |
1851 Tdm = FMA(KP707106781, TaO, Taz); | |
1852 Tdn = Tbx + Tby; | |
1853 Tdo = FNMS(KP923879532, Tdn, Tdm); | |
1854 TdH = FMA(KP923879532, Tdn, Tdm); | |
1855 } | |
1856 Tdp = FMA(KP820678790, Tdo, Tdl); | |
1857 TdP = FNMS(KP098491403, TdH, TdI); | |
1858 Tdz = FNMS(KP820678790, Tdl, Tdo); | |
1859 TdJ = FMA(KP098491403, TdI, TdH); | |
1860 } | |
1861 { | |
1862 E Tdd, TdD, Tdg, TdE; | |
1863 { | |
1864 E Tdb, Tdc, Tde, Tdf; | |
1865 Tdb = FMA(KP707106781, T9E, T9p); | |
1866 Tdc = FMA(KP707106781, T9P, T9M); | |
1867 Tdd = FMA(KP198912367, Tdc, Tdb); | |
1868 TdD = FNMS(KP198912367, Tdb, Tdc); | |
1869 Tde = FMA(KP707106781, Tad, T9Y); | |
1870 Tdf = FMA(KP707106781, Tao, Tal); | |
1871 Tdg = FNMS(KP198912367, Tdf, Tde); | |
1872 TdE = FMA(KP198912367, Tde, Tdf); | |
1873 } | |
1874 Tdh = Tdd - Tdg; | |
1875 Tm2 = Tdd + Tdg; | |
1876 TdF = TdD + TdE; | |
1877 TlW = TdE - TdD; | |
1878 } | |
1879 { | |
1880 E Tcu, TcZ, TcJ, TcY; | |
1881 { | |
1882 E TbY, Tct, TcF, TcI; | |
1883 TbY = FNMS(KP707106781, TbX, TbI); | |
1884 Tct = Tcd - Tcs; | |
1885 Tcu = FNMS(KP923879532, Tct, TbY); | |
1886 TcZ = FMA(KP923879532, Tct, TbY); | |
1887 TcF = FNMS(KP707106781, TcE, TcB); | |
1888 TcI = TcG - TcH; | |
1889 TcJ = FNMS(KP923879532, TcI, TcF); | |
1890 TcY = FMA(KP923879532, TcI, TcF); | |
1891 } | |
1892 TcK = FNMS(KP534511135, TcJ, Tcu); | |
1893 Td4 = FMA(KP303346683, TcY, TcZ); | |
1894 TcO = FMA(KP534511135, Tcu, TcJ); | |
1895 Td0 = FNMS(KP303346683, TcZ, TcY); | |
1896 } | |
1897 { | |
1898 E T8M, Td6, TlF, TlT, T9h, TlU, Td9, TlG, T8L, TlE; | |
1899 T8L = T8D - T8K; | |
1900 T8M = FMA(KP707106781, T8L, T8w); | |
1901 Td6 = FNMS(KP707106781, T8L, T8w); | |
1902 TlE = TdU - TdT; | |
1903 TlF = FMA(KP707106781, TlE, TlD); | |
1904 TlT = FNMS(KP707106781, TlE, TlD); | |
1905 { | |
1906 E T91, T9g, Td7, Td8; | |
1907 T91 = FMA(KP414213562, T90, T8T); | |
1908 T9g = FNMS(KP414213562, T9f, T98); | |
1909 T9h = T91 - T9g; | |
1910 TlU = T91 + T9g; | |
1911 Td7 = FNMS(KP414213562, T8T, T90); | |
1912 Td8 = FMA(KP414213562, T98, T9f); | |
1913 Td9 = Td7 + Td8; | |
1914 TlG = Td8 - Td7; | |
1915 } | |
1916 T9i = FNMS(KP923879532, T9h, T8M); | |
1917 TlV = FNMS(KP923879532, TlU, TlT); | |
1918 Tm1 = FMA(KP923879532, TlU, TlT); | |
1919 TcQ = FMA(KP923879532, T9h, T8M); | |
1920 Tda = FNMS(KP923879532, Td9, Td6); | |
1921 TlH = FMA(KP923879532, TlG, TlF); | |
1922 TlN = FNMS(KP923879532, TlG, TlF); | |
1923 TdC = FMA(KP923879532, Td9, Td6); | |
1924 } | |
1925 { | |
1926 E Tas, TcL, TlP, TlQ; | |
1927 Tas = FMA(KP831469612, Tar, T9i); | |
1928 TcL = TbB - TcK; | |
1929 ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas); | |
1930 ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas); | |
1931 TlP = FMA(KP831469612, TlO, TlN); | |
1932 TlQ = TcO - TcN; | |
1933 ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP); | |
1934 ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP); | |
1935 } | |
1936 { | |
1937 E TcM, TcP, TlR, TlS; | |
1938 TcM = FNMS(KP831469612, Tar, T9i); | |
1939 TcP = TcN + TcO; | |
1940 ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM); | |
1941 ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM); | |
1942 TlR = FNMS(KP831469612, TlO, TlN); | |
1943 TlS = TbB + TcK; | |
1944 ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR); | |
1945 ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR); | |
1946 } | |
1947 { | |
1948 E TcU, Td1, TlJ, TlK; | |
1949 TcU = FMA(KP831469612, TcT, TcQ); | |
1950 Td1 = TcX + Td0; | |
1951 ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU); | |
1952 ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU); | |
1953 TlJ = FMA(KP831469612, TlI, TlH); | |
1954 TlK = Td3 + Td4; | |
1955 ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ); | |
1956 ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ); | |
1957 } | |
1958 { | |
1959 E Td2, Td5, TlL, TlM; | |
1960 Td2 = FNMS(KP831469612, TcT, TcQ); | |
1961 Td5 = Td3 - Td4; | |
1962 ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2); | |
1963 ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2); | |
1964 TlL = FNMS(KP831469612, TlI, TlH); | |
1965 TlM = Td0 - TcX; | |
1966 ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL); | |
1967 ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL); | |
1968 } | |
1969 { | |
1970 E Tdi, Tdx, TlX, TlY; | |
1971 Tdi = FMA(KP980785280, Tdh, Tda); | |
1972 Tdx = Tdp + Tdw; | |
1973 ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi); | |
1974 ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi); | |
1975 TlX = FMA(KP980785280, TlW, TlV); | |
1976 TlY = Tdz + TdA; | |
1977 ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX); | |
1978 ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX); | |
1979 } | |
1980 { | |
1981 E Tdy, TdB, TlZ, Tm0; | |
1982 Tdy = FNMS(KP980785280, Tdh, Tda); | |
1983 TdB = Tdz - TdA; | |
1984 ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy); | |
1985 ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy); | |
1986 TlZ = FNMS(KP980785280, TlW, TlV); | |
1987 Tm0 = Tdw - Tdp; | |
1988 ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ); | |
1989 ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ); | |
1990 } | |
1991 { | |
1992 E TdG, TdN, Tm3, Tm4; | |
1993 TdG = FNMS(KP980785280, TdF, TdC); | |
1994 TdN = TdJ - TdM; | |
1995 ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG); | |
1996 ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG); | |
1997 Tm3 = FNMS(KP980785280, Tm2, Tm1); | |
1998 Tm4 = TdQ - TdP; | |
1999 ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3); | |
2000 ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3); | |
2001 } | |
2002 { | |
2003 E TdO, TdR, Tm5, Tm6; | |
2004 TdO = FMA(KP980785280, TdF, TdC); | |
2005 TdR = TdP + TdQ; | |
2006 ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO); | |
2007 ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO); | |
2008 Tm5 = FMA(KP980785280, Tm2, Tm1); | |
2009 Tm6 = TdJ + TdM; | |
2010 ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5); | |
2011 ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5); | |
2012 } | |
2013 } | |
2014 { | |
2015 E Tej, Tlk, Tf5, Tle, TeD, Tff, TeZ, Tf9, TfI, Tg2, TfM, TfY, TfB, Tg1, TfL; | |
2016 E TfV, Tft, Tly, TfR, Tls, TeW, Tfg, Tf0, Tfc, Te4, Tlr, Tlx, Tf2, Tfm, Tld; | |
2017 E Tlj, TfO; | |
2018 { | |
2019 E Teb, Tf3, Tei, Tf4; | |
2020 { | |
2021 E Te7, Tea, Tee, Teh; | |
2022 Te7 = FMA(KP707106781, Te6, Te5); | |
2023 Tea = FMA(KP707106781, Te9, Te8); | |
2024 Teb = FNMS(KP198912367, Tea, Te7); | |
2025 Tf3 = FMA(KP198912367, Te7, Tea); | |
2026 Tee = FMA(KP707106781, Ted, Tec); | |
2027 Teh = FMA(KP707106781, Teg, Tef); | |
2028 Tei = FMA(KP198912367, Teh, Tee); | |
2029 Tf4 = FNMS(KP198912367, Tee, Teh); | |
2030 } | |
2031 Tej = Teb - Tei; | |
2032 Tlk = Tf4 - Tf3; | |
2033 Tf5 = Tf3 + Tf4; | |
2034 Tle = Teb + Tei; | |
2035 } | |
2036 { | |
2037 E Tev, Tf8, TeC, Tf7; | |
2038 { | |
2039 E Ten, Teu, Tey, TeB; | |
2040 Ten = FMA(KP707106781, Tem, Tel); | |
2041 Teu = Teq + Tet; | |
2042 Tev = FNMS(KP923879532, Teu, Ten); | |
2043 Tf8 = FMA(KP923879532, Teu, Ten); | |
2044 Tey = FMA(KP707106781, Tex, Tew); | |
2045 TeB = Tez + TeA; | |
2046 TeC = FNMS(KP923879532, TeB, Tey); | |
2047 Tf7 = FMA(KP923879532, TeB, Tey); | |
2048 } | |
2049 TeD = FMA(KP820678790, TeC, Tev); | |
2050 Tff = FNMS(KP098491403, Tf7, Tf8); | |
2051 TeZ = FNMS(KP820678790, Tev, TeC); | |
2052 Tf9 = FMA(KP098491403, Tf8, Tf7); | |
2053 } | |
2054 { | |
2055 E TfE, TfX, TfH, TfW; | |
2056 { | |
2057 E TfC, TfD, TfF, TfG; | |
2058 TfC = FNMS(KP707106781, TeQ, TeP); | |
2059 TfD = TeM - TeJ; | |
2060 TfE = FNMS(KP923879532, TfD, TfC); | |
2061 TfX = FMA(KP923879532, TfD, TfC); | |
2062 TfF = FNMS(KP707106781, TeF, TeE); | |
2063 TfG = TeS - TeT; | |
2064 TfH = FNMS(KP923879532, TfG, TfF); | |
2065 TfW = FMA(KP923879532, TfG, TfF); | |
2066 } | |
2067 TfI = FNMS(KP534511135, TfH, TfE); | |
2068 Tg2 = FMA(KP303346683, TfW, TfX); | |
2069 TfM = FMA(KP534511135, TfE, TfH); | |
2070 TfY = FNMS(KP303346683, TfX, TfW); | |
2071 } | |
2072 { | |
2073 E Tfx, TfU, TfA, TfT; | |
2074 { | |
2075 E Tfv, Tfw, Tfy, Tfz; | |
2076 Tfv = FNMS(KP707106781, Tex, Tew); | |
2077 Tfw = Tet - Teq; | |
2078 Tfx = FNMS(KP923879532, Tfw, Tfv); | |
2079 TfU = FMA(KP923879532, Tfw, Tfv); | |
2080 Tfy = FNMS(KP707106781, Tem, Tel); | |
2081 Tfz = Tez - TeA; | |
2082 TfA = FNMS(KP923879532, Tfz, Tfy); | |
2083 TfT = FMA(KP923879532, Tfz, Tfy); | |
2084 } | |
2085 TfB = FMA(KP534511135, TfA, Tfx); | |
2086 Tg1 = FNMS(KP303346683, TfT, TfU); | |
2087 TfL = FNMS(KP534511135, Tfx, TfA); | |
2088 TfV = FMA(KP303346683, TfU, TfT); | |
2089 } | |
2090 { | |
2091 E Tfp, TfP, Tfs, TfQ; | |
2092 { | |
2093 E Tfn, Tfo, Tfq, Tfr; | |
2094 Tfn = FNMS(KP707106781, Te6, Te5); | |
2095 Tfo = FNMS(KP707106781, Te9, Te8); | |
2096 Tfp = FMA(KP668178637, Tfo, Tfn); | |
2097 TfP = FNMS(KP668178637, Tfn, Tfo); | |
2098 Tfq = FNMS(KP707106781, Ted, Tec); | |
2099 Tfr = FNMS(KP707106781, Teg, Tef); | |
2100 Tfs = FNMS(KP668178637, Tfr, Tfq); | |
2101 TfQ = FMA(KP668178637, Tfq, Tfr); | |
2102 } | |
2103 Tft = Tfp - Tfs; | |
2104 Tly = Tfp + Tfs; | |
2105 TfR = TfP + TfQ; | |
2106 Tls = TfQ - TfP; | |
2107 } | |
2108 { | |
2109 E TeO, Tfb, TeV, Tfa; | |
2110 { | |
2111 E TeG, TeN, TeR, TeU; | |
2112 TeG = FMA(KP707106781, TeF, TeE); | |
2113 TeN = TeJ + TeM; | |
2114 TeO = FNMS(KP923879532, TeN, TeG); | |
2115 Tfb = FMA(KP923879532, TeN, TeG); | |
2116 TeR = FMA(KP707106781, TeQ, TeP); | |
2117 TeU = TeS + TeT; | |
2118 TeV = FNMS(KP923879532, TeU, TeR); | |
2119 Tfa = FMA(KP923879532, TeU, TeR); | |
2120 } | |
2121 TeW = FNMS(KP820678790, TeV, TeO); | |
2122 Tfg = FMA(KP098491403, Tfa, Tfb); | |
2123 Tf0 = FMA(KP820678790, TeO, TeV); | |
2124 Tfc = FNMS(KP098491403, Tfb, Tfa); | |
2125 } | |
2126 { | |
2127 E TdW, Tfi, Tlb, Tlp, Te3, Tlq, Tfl, Tlc, TdV, Tla; | |
2128 TdV = TdT + TdU; | |
2129 TdW = FMA(KP707106781, TdV, TdS); | |
2130 Tfi = FNMS(KP707106781, TdV, TdS); | |
2131 Tla = T8D + T8K; | |
2132 Tlb = FMA(KP707106781, Tla, Tl9); | |
2133 Tlp = FNMS(KP707106781, Tla, Tl9); | |
2134 { | |
2135 E TdZ, Te2, Tfj, Tfk; | |
2136 TdZ = FMA(KP414213562, TdY, TdX); | |
2137 Te2 = FNMS(KP414213562, Te1, Te0); | |
2138 Te3 = TdZ + Te2; | |
2139 Tlq = Te2 - TdZ; | |
2140 Tfj = FNMS(KP414213562, TdX, TdY); | |
2141 Tfk = FMA(KP414213562, Te0, Te1); | |
2142 Tfl = Tfj - Tfk; | |
2143 Tlc = Tfj + Tfk; | |
2144 } | |
2145 Te4 = FNMS(KP923879532, Te3, TdW); | |
2146 Tlr = FMA(KP923879532, Tlq, Tlp); | |
2147 Tlx = FNMS(KP923879532, Tlq, Tlp); | |
2148 Tf2 = FMA(KP923879532, Te3, TdW); | |
2149 Tfm = FMA(KP923879532, Tfl, Tfi); | |
2150 Tld = FMA(KP923879532, Tlc, Tlb); | |
2151 Tlj = FNMS(KP923879532, Tlc, Tlb); | |
2152 TfO = FNMS(KP923879532, Tfl, Tfi); | |
2153 } | |
2154 { | |
2155 E Tek, TeX, Tll, Tlm; | |
2156 Tek = FMA(KP980785280, Tej, Te4); | |
2157 TeX = TeD - TeW; | |
2158 ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek); | |
2159 ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek); | |
2160 Tll = FMA(KP980785280, Tlk, Tlj); | |
2161 Tlm = Tf0 - TeZ; | |
2162 ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll); | |
2163 ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll); | |
2164 } | |
2165 { | |
2166 E TeY, Tf1, Tln, Tlo; | |
2167 TeY = FNMS(KP980785280, Tej, Te4); | |
2168 Tf1 = TeZ + Tf0; | |
2169 ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY); | |
2170 ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY); | |
2171 Tln = FNMS(KP980785280, Tlk, Tlj); | |
2172 Tlo = TeD + TeW; | |
2173 ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln); | |
2174 ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln); | |
2175 } | |
2176 { | |
2177 E Tf6, Tfd, Tlf, Tlg; | |
2178 Tf6 = FMA(KP980785280, Tf5, Tf2); | |
2179 Tfd = Tf9 + Tfc; | |
2180 ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6); | |
2181 ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6); | |
2182 Tlf = FMA(KP980785280, Tle, Tld); | |
2183 Tlg = Tff + Tfg; | |
2184 ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf); | |
2185 ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf); | |
2186 } | |
2187 { | |
2188 E Tfe, Tfh, Tlh, Tli; | |
2189 Tfe = FNMS(KP980785280, Tf5, Tf2); | |
2190 Tfh = Tff - Tfg; | |
2191 ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe); | |
2192 ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe); | |
2193 Tlh = FNMS(KP980785280, Tle, Tld); | |
2194 Tli = Tfc - Tf9; | |
2195 ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh); | |
2196 ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh); | |
2197 } | |
2198 { | |
2199 E Tfu, TfJ, Tlt, Tlu; | |
2200 Tfu = FMA(KP831469612, Tft, Tfm); | |
2201 TfJ = TfB + TfI; | |
2202 ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu); | |
2203 ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu); | |
2204 Tlt = FMA(KP831469612, Tls, Tlr); | |
2205 Tlu = TfL + TfM; | |
2206 ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt); | |
2207 ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt); | |
2208 } | |
2209 { | |
2210 E TfK, TfN, Tlv, Tlw; | |
2211 TfK = FNMS(KP831469612, Tft, Tfm); | |
2212 TfN = TfL - TfM; | |
2213 ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK); | |
2214 ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK); | |
2215 Tlv = FNMS(KP831469612, Tls, Tlr); | |
2216 Tlw = TfI - TfB; | |
2217 ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv); | |
2218 ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv); | |
2219 } | |
2220 { | |
2221 E TfS, TfZ, Tlz, TlA; | |
2222 TfS = FNMS(KP831469612, TfR, TfO); | |
2223 TfZ = TfV - TfY; | |
2224 ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS); | |
2225 ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS); | |
2226 Tlz = FNMS(KP831469612, Tly, Tlx); | |
2227 TlA = Tg2 - Tg1; | |
2228 ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz); | |
2229 ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz); | |
2230 } | |
2231 { | |
2232 E Tg0, Tg3, TlB, TlC; | |
2233 Tg0 = FMA(KP831469612, TfR, TfO); | |
2234 Tg3 = Tg1 + Tg2; | |
2235 ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0); | |
2236 ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0); | |
2237 TlB = FMA(KP831469612, Tly, Tlx); | |
2238 TlC = TfV + TfY; | |
2239 ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB); | |
2240 ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB); | |
2241 } | |
2242 } | |
2243 } | |
2244 } | |
2245 } | |
2246 } | |
2247 | |
2248 static const tw_instr twinstr[] = { | |
2249 {TW_CEXP, 0, 1}, | |
2250 {TW_CEXP, 0, 3}, | |
2251 {TW_CEXP, 0, 9}, | |
2252 {TW_CEXP, 0, 27}, | |
2253 {TW_CEXP, 0, 63}, | |
2254 {TW_NEXT, 1, 0} | |
2255 }; | |
2256 | |
2257 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 }; | |
2258 | |
2259 void X(codelet_t2_64) (planner *p) { | |
2260 X(kdft_dit_register) (p, t2_64, &desc); | |
2261 } | |
2262 #else | |
2263 | |
2264 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ | |
2265 | |
2266 /* | |
2267 * This function contains 1154 FP additions, 660 FP multiplications, | |
2268 * (or, 880 additions, 386 multiplications, 274 fused multiply/add), | |
2269 * 302 stack variables, 15 constants, and 256 memory accesses | |
2270 */ | |
2271 #include "dft/scalar/t.h" | |
2272 | |
2273 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
2274 { | |
2275 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
2276 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
2277 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
2278 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
2279 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
2280 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
2281 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
2282 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
2283 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
2284 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
2285 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
2286 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
2287 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
2288 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
2289 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
2290 { | |
2291 INT m; | |
2292 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { | |
2293 E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; | |
2294 E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; | |
2295 E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; | |
2296 E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; | |
2297 E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; | |
2298 E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; | |
2299 E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; | |
2300 E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; | |
2301 E T3F, T5r, T3s, T4W, T3Z, T5p; | |
2302 { | |
2303 E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; | |
2304 E T1F, T2p, T2k, T1U, T1P; | |
2305 { | |
2306 E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; | |
2307 T2 = W[0]; | |
2308 T5 = W[1]; | |
2309 T3 = W[2]; | |
2310 T6 = W[3]; | |
2311 Te = W[5]; | |
2312 T9 = W[4]; | |
2313 T4 = T2 * T3; | |
2314 T1d = T5 * T9; | |
2315 T19 = T5 * Te; | |
2316 Tb = T2 * T6; | |
2317 T1c = T2 * Te; | |
2318 T7 = T5 * T6; | |
2319 Tc = T5 * T3; | |
2320 T18 = T2 * T9; | |
2321 TR = T3 * Te; | |
2322 TO = T6 * Te; | |
2323 TS = T6 * T9; | |
2324 TN = T3 * T9; | |
2325 TP = TN - TO; | |
2326 T3e = TR - TS; | |
2327 T1e = T1c - T1d; | |
2328 T39 = T1c + T1d; | |
2329 T3c = TN + TO; | |
2330 TT = TR + TS; | |
2331 T1a = T18 + T19; | |
2332 T37 = T18 - T19; | |
2333 T8 = T4 - T7; | |
2334 Ta = T8 * T9; | |
2335 Tj = T8 * Te; | |
2336 Tw = T4 + T7; | |
2337 Tx = Tw * T9; | |
2338 TC = Tw * Te; | |
2339 Td = Tb + Tc; | |
2340 Tf = Td * Te; | |
2341 Tk = Td * T9; | |
2342 Ty = Tb - Tc; | |
2343 Tz = Ty * Te; | |
2344 TD = Ty * T9; | |
2345 Tm = W[7]; | |
2346 T1B = T6 * Tm; | |
2347 T1E = T3 * Tm; | |
2348 T2o = T2 * Tm; | |
2349 T2l = T5 * Tm; | |
2350 T1T = T9 * Tm; | |
2351 T1Q = Te * Tm; | |
2352 Th = W[6]; | |
2353 T1A = T3 * Th; | |
2354 T1F = T6 * Th; | |
2355 T2p = T5 * Th; | |
2356 T2k = T2 * Th; | |
2357 T1U = Te * Th; | |
2358 T1P = T9 * Th; | |
2359 } | |
2360 T1C = T1A + T1B; | |
2361 T3K = T1E + T1F; | |
2362 T1V = T1T + T1U; | |
2363 T3x = T2o - T2p; | |
2364 T3I = T1A - T1B; | |
2365 T1G = T1E - T1F; | |
2366 T1R = T1P - T1Q; | |
2367 { | |
2368 E T5W, T5X, T55, T56; | |
2369 T3v = T2k + T2l; | |
2370 T2m = T2k - T2l; | |
2371 T2q = T2o + T2p; | |
2372 T5W = T8 * Th; | |
2373 T5X = Td * Tm; | |
2374 T5Y = T5W - T5X; | |
2375 T6u = T5W + T5X; | |
2376 { | |
2377 E T51, T52, T60, T61; | |
2378 T51 = Tw * Th; | |
2379 T52 = Ty * Tm; | |
2380 T53 = T51 + T52; | |
2381 T5B = T51 - T52; | |
2382 T60 = T8 * Tm; | |
2383 T61 = Td * Th; | |
2384 T62 = T60 + T61; | |
2385 T6w = T60 - T61; | |
2386 } | |
2387 T55 = Tw * Tm; | |
2388 T56 = Ty * Th; | |
2389 T57 = T55 - T56; | |
2390 T5D = T55 + T56; | |
2391 { | |
2392 E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; | |
2393 E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; | |
2394 E T1i, T1n; | |
2395 T2V = T1P + T1Q; | |
2396 T2X = T1T - T1U; | |
2397 Tg = Ta + Tf; | |
2398 Ti = Tg * Th; | |
2399 Tq = Tg * Tm; | |
2400 TE = TC + TD; | |
2401 TF = TE * Tm; | |
2402 TJ = TE * Th; | |
2403 T3W = T37 * Tm; | |
2404 T3X = T39 * Th; | |
2405 T3Y = T3W - T3X; | |
2406 T3T = T37 * Th; | |
2407 T3U = T39 * Tm; | |
2408 T3V = T3T + T3U; | |
2409 T3h = T3c * Tm; | |
2410 T3i = T3e * Th; | |
2411 T3j = T3h - T3i; | |
2412 Tl = Tj - Tk; | |
2413 Tn = Tl * Tm; | |
2414 Tr = Tl * Th; | |
2415 TA = Tx - Tz; | |
2416 TB = TA * Th; | |
2417 TI = TA * Tm; | |
2418 T3d = T3c * Th; | |
2419 T3f = T3e * Tm; | |
2420 T3g = T3d + T3f; | |
2421 T1j = Tj + Tk; | |
2422 T1k = T1j * Tm; | |
2423 T1o = T1j * Th; | |
2424 T1t = Tx + Tz; | |
2425 T1Z = T1t * Th; | |
2426 T23 = T1t * Tm; | |
2427 TQ = TP * Th; | |
2428 TU = TT * Tm; | |
2429 TV = TQ + TU; | |
2430 T2A = T1a * Tm; | |
2431 T2B = T1e * Th; | |
2432 T2C = T2A - T2B; | |
2433 T2x = T1a * Th; | |
2434 T2y = T1e * Tm; | |
2435 T2z = T2x + T2y; | |
2436 T1u = TC - TD; | |
2437 T20 = T1u * Tm; | |
2438 T24 = T1u * Th; | |
2439 TX = TP * Tm; | |
2440 TY = TT * Th; | |
2441 TZ = TX - TY; | |
2442 T1h = Ta - Tf; | |
2443 T1i = T1h * Th; | |
2444 T1n = T1h * Tm; | |
2445 To = Ti - Tn; | |
2446 T1p = T1n + T1o; | |
2447 T6j = TQ - TU; | |
2448 T6H = T2A + T2B; | |
2449 Ts = Tq + Tr; | |
2450 T1l = T1i - T1k; | |
2451 T6l = TX + TY; | |
2452 T6F = T2x - T2y; | |
2453 T2P = T1Z - T20; | |
2454 T4b = TI + TJ; | |
2455 T4x = T3d - T3f; | |
2456 T5i = T3W + T3X; | |
2457 T2R = T23 + T24; | |
2458 T49 = TB - TF; | |
2459 T4z = T3h + T3i; | |
2460 T5g = T3T - T3U; | |
2461 TG = TB + TF; | |
2462 T4k = Ti + Tn; | |
2463 T4m = Tq - Tr; | |
2464 TK = TI - TJ; | |
2465 T21 = T1Z + T20; | |
2466 T3O = T1i + T1k; | |
2467 T3Q = T1n - T1o; | |
2468 T25 = T23 - T24; | |
2469 TW = W[8]; | |
2470 T10 = W[9]; | |
2471 T11 = FMA(TV, TW, TZ * T10); | |
2472 T79 = FNMS(T25, TW, T21 * T10); | |
2473 T6X = FNMS(Td, TW, T8 * T10); | |
2474 T5M = FNMS(T2X, TW, T2V * T10); | |
2475 T6b = FNMS(TK, TW, TG * T10); | |
2476 T1v = FMA(T1t, TW, T1u * T10); | |
2477 T30 = FMA(T1h, TW, T1j * T10); | |
2478 T69 = FMA(TG, TW, TK * T10); | |
2479 T77 = FMA(T21, TW, T25 * T10); | |
2480 T13 = FNMS(TZ, TW, TV * T10); | |
2481 T2F = FNMS(T2C, TW, T2z * T10); | |
2482 T2D = FMA(T2z, TW, T2C * T10); | |
2483 T6p = FMA(T1a, TW, T1e * T10); | |
2484 T6O = FMA(TP, TW, TT * T10); | |
2485 T1x = FNMS(T1u, TW, T1t * T10); | |
2486 T2a = FNMS(TE, TW, TA * T10); | |
2487 T2f = FMA(T3, TW, T6 * T10); | |
2488 T6V = FMA(T8, TW, Td * T10); | |
2489 T28 = FMA(TA, TW, TE * T10); | |
2490 T6r = FNMS(T1e, TW, T1a * T10); | |
2491 T2h = FNMS(T6, TW, T3 * T10); | |
2492 T6Q = FNMS(TT, TW, TP * T10); | |
2493 T32 = FNMS(T1j, TW, T1h * T10); | |
2494 T5K = FMA(T2V, TW, T2X * T10); | |
2495 T5w = FMA(Tw, TW, Ty * T10); | |
2496 T4G = FMA(T3O, TW, T3Q * T10); | |
2497 T4Q = FMA(T4k, TW, T4m * T10); | |
2498 T3m = FNMS(T3j, TW, T3g * T10); | |
2499 T4h = FNMS(Te, TW, T9 * T10); | |
2500 T4I = FNMS(T3Q, TW, T3O * T10); | |
2501 T5y = FNMS(Ty, TW, Tw * T10); | |
2502 T3k = FMA(T3g, TW, T3j * T10); | |
2503 T4f = FMA(T9, TW, Te * T10); | |
2504 T41 = FNMS(T3Y, TW, T3V * T10); | |
2505 T4S = FNMS(T4m, TW, T4k * T10); | |
2506 T4Y = FNMS(T3e, TW, T3c * T10); | |
2507 T3q = FMA(Tg, TW, Tl * T10); | |
2508 T3D = FMA(T2, TW, T5 * T10); | |
2509 T3F = FNMS(T5, TW, T2 * T10); | |
2510 T5r = FNMS(T39, TW, T37 * T10); | |
2511 T3s = FNMS(Tl, TW, Tg * T10); | |
2512 T4W = FMA(T3c, TW, T3e * T10); | |
2513 T3Z = FMA(T3V, TW, T3Y * T10); | |
2514 T5p = FMA(T37, TW, T39 * T10); | |
2515 } | |
2516 } | |
2517 } | |
2518 { | |
2519 E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; | |
2520 E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; | |
2521 E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; | |
2522 E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; | |
2523 E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; | |
2524 E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; | |
2525 E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; | |
2526 E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; | |
2527 E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; | |
2528 { | |
2529 E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; | |
2530 T1 = ri[0]; | |
2531 Ti1 = ii[0]; | |
2532 Tp = ri[WS(rs, 32)]; | |
2533 Tt = ii[WS(rs, 32)]; | |
2534 Tu = FMA(To, Tp, Ts * Tt); | |
2535 Ti0 = FNMS(Ts, Tp, To * Tt); | |
2536 { | |
2537 E TH, TL, T12, T14; | |
2538 TH = ri[WS(rs, 16)]; | |
2539 TL = ii[WS(rs, 16)]; | |
2540 TM = FMA(TG, TH, TK * TL); | |
2541 T7i = FNMS(TK, TH, TG * TL); | |
2542 T12 = ri[WS(rs, 48)]; | |
2543 T14 = ii[WS(rs, 48)]; | |
2544 T15 = FMA(T11, T12, T13 * T14); | |
2545 T7j = FNMS(T13, T12, T11 * T14); | |
2546 } | |
2547 { | |
2548 E Tv, T16, Tj1, Tj2; | |
2549 Tv = T1 + Tu; | |
2550 T16 = TM + T15; | |
2551 T17 = Tv + T16; | |
2552 TdV = Tv - T16; | |
2553 Tj1 = Ti1 - Ti0; | |
2554 Tj2 = TM - T15; | |
2555 Tj3 = Tj1 - Tj2; | |
2556 Tjx = Tj2 + Tj1; | |
2557 } | |
2558 { | |
2559 E T7h, T7k, ThZ, Ti2; | |
2560 T7h = T1 - Tu; | |
2561 T7k = T7i - T7j; | |
2562 T7l = T7h - T7k; | |
2563 TbJ = T7h + T7k; | |
2564 ThZ = T7i + T7j; | |
2565 Ti2 = Ti0 + Ti1; | |
2566 Ti3 = ThZ + Ti2; | |
2567 Tix = Ti2 - ThZ; | |
2568 } | |
2569 } | |
2570 { | |
2571 E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; | |
2572 { | |
2573 E T1b, T1f, T1m, T1q; | |
2574 T1b = ri[WS(rs, 8)]; | |
2575 T1f = ii[WS(rs, 8)]; | |
2576 T1g = FMA(T1a, T1b, T1e * T1f); | |
2577 T7m = FNMS(T1e, T1b, T1a * T1f); | |
2578 T1m = ri[WS(rs, 40)]; | |
2579 T1q = ii[WS(rs, 40)]; | |
2580 T1r = FMA(T1l, T1m, T1p * T1q); | |
2581 T7n = FNMS(T1p, T1m, T1l * T1q); | |
2582 } | |
2583 T7o = T7m - T7n; | |
2584 T7p = T1g - T1r; | |
2585 { | |
2586 E T1w, T1y, T1D, T1H; | |
2587 T1w = ri[WS(rs, 56)]; | |
2588 T1y = ii[WS(rs, 56)]; | |
2589 T1z = FMA(T1v, T1w, T1x * T1y); | |
2590 T7s = FNMS(T1x, T1w, T1v * T1y); | |
2591 T1D = ri[WS(rs, 24)]; | |
2592 T1H = ii[WS(rs, 24)]; | |
2593 T1I = FMA(T1C, T1D, T1G * T1H); | |
2594 T7t = FNMS(T1G, T1D, T1C * T1H); | |
2595 } | |
2596 T7r = T1z - T1I; | |
2597 T7u = T7s - T7t; | |
2598 { | |
2599 E T1s, T1J, TdW, TdX; | |
2600 T1s = T1g + T1r; | |
2601 T1J = T1z + T1I; | |
2602 T1K = T1s + T1J; | |
2603 Tiw = T1J - T1s; | |
2604 TdW = T7m + T7n; | |
2605 TdX = T7s + T7t; | |
2606 TdY = TdW - TdX; | |
2607 ThY = TdW + TdX; | |
2608 } | |
2609 { | |
2610 E T7q, T7v, TbK, TbL; | |
2611 T7q = T7o - T7p; | |
2612 T7v = T7r + T7u; | |
2613 T7w = KP707106781 * (T7q - T7v); | |
2614 Tj0 = KP707106781 * (T7q + T7v); | |
2615 TbK = T7p + T7o; | |
2616 TbL = T7r - T7u; | |
2617 TbM = KP707106781 * (TbK + TbL); | |
2618 Tjw = KP707106781 * (TbL - TbK); | |
2619 } | |
2620 } | |
2621 { | |
2622 E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; | |
2623 { | |
2624 E T1O, T7y, T1X, T7z; | |
2625 { | |
2626 E T1M, T1N, T1S, T1W; | |
2627 T1M = ri[WS(rs, 4)]; | |
2628 T1N = ii[WS(rs, 4)]; | |
2629 T1O = FMA(T8, T1M, Td * T1N); | |
2630 T7y = FNMS(Td, T1M, T8 * T1N); | |
2631 T1S = ri[WS(rs, 36)]; | |
2632 T1W = ii[WS(rs, 36)]; | |
2633 T1X = FMA(T1R, T1S, T1V * T1W); | |
2634 T7z = FNMS(T1V, T1S, T1R * T1W); | |
2635 } | |
2636 T1Y = T1O + T1X; | |
2637 Te0 = T7y + T7z; | |
2638 T7A = T7y - T7z; | |
2639 T7D = T1O - T1X; | |
2640 } | |
2641 { | |
2642 E T27, T7E, T2c, T7F; | |
2643 { | |
2644 E T22, T26, T29, T2b; | |
2645 T22 = ri[WS(rs, 20)]; | |
2646 T26 = ii[WS(rs, 20)]; | |
2647 T27 = FMA(T21, T22, T25 * T26); | |
2648 T7E = FNMS(T25, T22, T21 * T26); | |
2649 T29 = ri[WS(rs, 52)]; | |
2650 T2b = ii[WS(rs, 52)]; | |
2651 T2c = FMA(T28, T29, T2a * T2b); | |
2652 T7F = FNMS(T2a, T29, T28 * T2b); | |
2653 } | |
2654 T2d = T27 + T2c; | |
2655 Te1 = T7E + T7F; | |
2656 T7B = T27 - T2c; | |
2657 T7G = T7E - T7F; | |
2658 } | |
2659 T2e = T1Y + T2d; | |
2660 TgA = Te0 + Te1; | |
2661 T7C = T7A + T7B; | |
2662 T7H = T7D - T7G; | |
2663 T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); | |
2664 TaY = FMA(KP923879532, T7C, KP382683432 * T7H); | |
2665 { | |
2666 E TbO, TbP, Te2, Te3; | |
2667 TbO = T7A - T7B; | |
2668 TbP = T7D + T7G; | |
2669 TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); | |
2670 Tda = FMA(KP382683432, TbO, KP923879532 * TbP); | |
2671 Te2 = Te0 - Te1; | |
2672 Te3 = T1Y - T2d; | |
2673 Te4 = Te2 - Te3; | |
2674 TfO = Te3 + Te2; | |
2675 } | |
2676 } | |
2677 { | |
2678 E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; | |
2679 { | |
2680 E T2j, T7J, T2s, T7K; | |
2681 { | |
2682 E T2g, T2i, T2n, T2r; | |
2683 T2g = ri[WS(rs, 60)]; | |
2684 T2i = ii[WS(rs, 60)]; | |
2685 T2j = FMA(T2f, T2g, T2h * T2i); | |
2686 T7J = FNMS(T2h, T2g, T2f * T2i); | |
2687 T2n = ri[WS(rs, 28)]; | |
2688 T2r = ii[WS(rs, 28)]; | |
2689 T2s = FMA(T2m, T2n, T2q * T2r); | |
2690 T7K = FNMS(T2q, T2n, T2m * T2r); | |
2691 } | |
2692 T2t = T2j + T2s; | |
2693 Te6 = T7J + T7K; | |
2694 T7L = T7J - T7K; | |
2695 T7O = T2j - T2s; | |
2696 } | |
2697 { | |
2698 E T2w, T7P, T2H, T7Q; | |
2699 { | |
2700 E T2u, T2v, T2E, T2G; | |
2701 T2u = ri[WS(rs, 12)]; | |
2702 T2v = ii[WS(rs, 12)]; | |
2703 T2w = FMA(TP, T2u, TT * T2v); | |
2704 T7P = FNMS(TT, T2u, TP * T2v); | |
2705 T2E = ri[WS(rs, 44)]; | |
2706 T2G = ii[WS(rs, 44)]; | |
2707 T2H = FMA(T2D, T2E, T2F * T2G); | |
2708 T7Q = FNMS(T2F, T2E, T2D * T2G); | |
2709 } | |
2710 T2I = T2w + T2H; | |
2711 Te7 = T7P + T7Q; | |
2712 T7M = T2w - T2H; | |
2713 T7R = T7P - T7Q; | |
2714 } | |
2715 T2J = T2t + T2I; | |
2716 TgB = Te6 + Te7; | |
2717 T7N = T7L + T7M; | |
2718 T7S = T7O - T7R; | |
2719 T7T = FMA(KP382683432, T7N, KP923879532 * T7S); | |
2720 TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); | |
2721 { | |
2722 E TbR, TbS, Te5, Te8; | |
2723 TbR = T7L - T7M; | |
2724 TbS = T7O + T7R; | |
2725 TbT = FMA(KP923879532, TbR, KP382683432 * TbS); | |
2726 Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); | |
2727 Te5 = T2t - T2I; | |
2728 Te8 = Te6 - Te7; | |
2729 Te9 = Te5 + Te8; | |
2730 TfP = Te5 - Te8; | |
2731 } | |
2732 } | |
2733 { | |
2734 E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; | |
2735 E T89, T3A, Tej, T81, T84; | |
2736 { | |
2737 E T2M, T2N, T2Q, T2S; | |
2738 T2M = ri[WS(rs, 2)]; | |
2739 T2N = ii[WS(rs, 2)]; | |
2740 T2O = FMA(Tw, T2M, Ty * T2N); | |
2741 T7W = FNMS(Ty, T2M, Tw * T2N); | |
2742 T2Q = ri[WS(rs, 34)]; | |
2743 T2S = ii[WS(rs, 34)]; | |
2744 T2T = FMA(T2P, T2Q, T2R * T2S); | |
2745 T7X = FNMS(T2R, T2Q, T2P * T2S); | |
2746 } | |
2747 T2U = T2O + T2T; | |
2748 Tec = T7W + T7X; | |
2749 { | |
2750 E T2W, T2Y, T31, T33; | |
2751 T2W = ri[WS(rs, 18)]; | |
2752 T2Y = ii[WS(rs, 18)]; | |
2753 T2Z = FMA(T2V, T2W, T2X * T2Y); | |
2754 T8e = FNMS(T2X, T2W, T2V * T2Y); | |
2755 T31 = ri[WS(rs, 50)]; | |
2756 T33 = ii[WS(rs, 50)]; | |
2757 T34 = FMA(T30, T31, T32 * T33); | |
2758 T8f = FNMS(T32, T31, T30 * T33); | |
2759 } | |
2760 T35 = T2Z + T34; | |
2761 Ted = T8e + T8f; | |
2762 { | |
2763 E T3b, T87, T3o, T88; | |
2764 { | |
2765 E T38, T3a, T3l, T3n; | |
2766 T38 = ri[WS(rs, 10)]; | |
2767 T3a = ii[WS(rs, 10)]; | |
2768 T3b = FMA(T37, T38, T39 * T3a); | |
2769 T87 = FNMS(T39, T38, T37 * T3a); | |
2770 T3l = ri[WS(rs, 42)]; | |
2771 T3n = ii[WS(rs, 42)]; | |
2772 T3o = FMA(T3k, T3l, T3m * T3n); | |
2773 T88 = FNMS(T3m, T3l, T3k * T3n); | |
2774 } | |
2775 T3p = T3b + T3o; | |
2776 Tei = T87 + T88; | |
2777 T86 = T3b - T3o; | |
2778 T89 = T87 - T88; | |
2779 } | |
2780 { | |
2781 E T3u, T82, T3z, T83; | |
2782 { | |
2783 E T3r, T3t, T3w, T3y; | |
2784 T3r = ri[WS(rs, 58)]; | |
2785 T3t = ii[WS(rs, 58)]; | |
2786 T3u = FMA(T3q, T3r, T3s * T3t); | |
2787 T82 = FNMS(T3s, T3r, T3q * T3t); | |
2788 T3w = ri[WS(rs, 26)]; | |
2789 T3y = ii[WS(rs, 26)]; | |
2790 T3z = FMA(T3v, T3w, T3x * T3y); | |
2791 T83 = FNMS(T3x, T3w, T3v * T3y); | |
2792 } | |
2793 T3A = T3u + T3z; | |
2794 Tej = T82 + T83; | |
2795 T81 = T3u - T3z; | |
2796 T84 = T82 - T83; | |
2797 } | |
2798 T36 = T2U + T35; | |
2799 T3B = T3p + T3A; | |
2800 TgH = T36 - T3B; | |
2801 TgE = Tec + Ted; | |
2802 TgF = Tei + Tej; | |
2803 TgG = TgE - TgF; | |
2804 { | |
2805 E T7Y, T7Z, Teh, Tek; | |
2806 T7Y = T7W - T7X; | |
2807 T7Z = T2Z - T34; | |
2808 T80 = T7Y + T7Z; | |
2809 TbW = T7Y - T7Z; | |
2810 Teh = T2U - T35; | |
2811 Tek = Tei - Tej; | |
2812 Tel = Teh - Tek; | |
2813 TfT = Teh + Tek; | |
2814 } | |
2815 { | |
2816 E T85, T8a, T8i, T8j; | |
2817 T85 = T81 - T84; | |
2818 T8a = T86 + T89; | |
2819 T8b = KP707106781 * (T85 - T8a); | |
2820 Tc0 = KP707106781 * (T8a + T85); | |
2821 T8i = T89 - T86; | |
2822 T8j = T81 + T84; | |
2823 T8k = KP707106781 * (T8i - T8j); | |
2824 TbX = KP707106781 * (T8i + T8j); | |
2825 } | |
2826 { | |
2827 E Tee, Tef, T8d, T8g; | |
2828 Tee = Tec - Ted; | |
2829 Tef = T3A - T3p; | |
2830 Teg = Tee - Tef; | |
2831 TfS = Tee + Tef; | |
2832 T8d = T2O - T2T; | |
2833 T8g = T8e - T8f; | |
2834 T8h = T8d - T8g; | |
2835 TbZ = T8d + T8g; | |
2836 } | |
2837 } | |
2838 { | |
2839 E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; | |
2840 E T8A, T4p, Teu, T8s, T8v; | |
2841 { | |
2842 E T3E, T3G, T3J, T3L; | |
2843 T3E = ri[WS(rs, 62)]; | |
2844 T3G = ii[WS(rs, 62)]; | |
2845 T3H = FMA(T3D, T3E, T3F * T3G); | |
2846 T8n = FNMS(T3F, T3E, T3D * T3G); | |
2847 T3J = ri[WS(rs, 30)]; | |
2848 T3L = ii[WS(rs, 30)]; | |
2849 T3M = FMA(T3I, T3J, T3K * T3L); | |
2850 T8o = FNMS(T3K, T3J, T3I * T3L); | |
2851 } | |
2852 T3N = T3H + T3M; | |
2853 Ten = T8n + T8o; | |
2854 { | |
2855 E T3P, T3R, T40, T42; | |
2856 T3P = ri[WS(rs, 14)]; | |
2857 T3R = ii[WS(rs, 14)]; | |
2858 T3S = FMA(T3O, T3P, T3Q * T3R); | |
2859 T8F = FNMS(T3Q, T3P, T3O * T3R); | |
2860 T40 = ri[WS(rs, 46)]; | |
2861 T42 = ii[WS(rs, 46)]; | |
2862 T43 = FMA(T3Z, T40, T41 * T42); | |
2863 T8G = FNMS(T41, T40, T3Z * T42); | |
2864 } | |
2865 T44 = T3S + T43; | |
2866 Teo = T8F + T8G; | |
2867 { | |
2868 E T48, T8y, T4d, T8z; | |
2869 { | |
2870 E T46, T47, T4a, T4c; | |
2871 T46 = ri[WS(rs, 6)]; | |
2872 T47 = ii[WS(rs, 6)]; | |
2873 T48 = FMA(T3c, T46, T3e * T47); | |
2874 T8y = FNMS(T3e, T46, T3c * T47); | |
2875 T4a = ri[WS(rs, 38)]; | |
2876 T4c = ii[WS(rs, 38)]; | |
2877 T4d = FMA(T49, T4a, T4b * T4c); | |
2878 T8z = FNMS(T4b, T4a, T49 * T4c); | |
2879 } | |
2880 T4e = T48 + T4d; | |
2881 Tet = T8y + T8z; | |
2882 T8x = T48 - T4d; | |
2883 T8A = T8y - T8z; | |
2884 } | |
2885 { | |
2886 E T4j, T8t, T4o, T8u; | |
2887 { | |
2888 E T4g, T4i, T4l, T4n; | |
2889 T4g = ri[WS(rs, 54)]; | |
2890 T4i = ii[WS(rs, 54)]; | |
2891 T4j = FMA(T4f, T4g, T4h * T4i); | |
2892 T8t = FNMS(T4h, T4g, T4f * T4i); | |
2893 T4l = ri[WS(rs, 22)]; | |
2894 T4n = ii[WS(rs, 22)]; | |
2895 T4o = FMA(T4k, T4l, T4m * T4n); | |
2896 T8u = FNMS(T4m, T4l, T4k * T4n); | |
2897 } | |
2898 T4p = T4j + T4o; | |
2899 Teu = T8t + T8u; | |
2900 T8s = T4j - T4o; | |
2901 T8v = T8t - T8u; | |
2902 } | |
2903 T45 = T3N + T44; | |
2904 T4q = T4e + T4p; | |
2905 TgJ = T45 - T4q; | |
2906 TgK = Ten + Teo; | |
2907 TgL = Tet + Teu; | |
2908 TgM = TgK - TgL; | |
2909 { | |
2910 E T8p, T8q, Tes, Tev; | |
2911 T8p = T8n - T8o; | |
2912 T8q = T3S - T43; | |
2913 T8r = T8p + T8q; | |
2914 Tc6 = T8p - T8q; | |
2915 Tes = T3N - T44; | |
2916 Tev = Tet - Teu; | |
2917 Tew = Tes - Tev; | |
2918 TfW = Tes + Tev; | |
2919 } | |
2920 { | |
2921 E T8w, T8B, T8J, T8K; | |
2922 T8w = T8s - T8v; | |
2923 T8B = T8x + T8A; | |
2924 T8C = KP707106781 * (T8w - T8B); | |
2925 Tc4 = KP707106781 * (T8B + T8w); | |
2926 T8J = T8A - T8x; | |
2927 T8K = T8s + T8v; | |
2928 T8L = KP707106781 * (T8J - T8K); | |
2929 Tc7 = KP707106781 * (T8J + T8K); | |
2930 } | |
2931 { | |
2932 E Tep, Teq, T8E, T8H; | |
2933 Tep = Ten - Teo; | |
2934 Teq = T4p - T4e; | |
2935 Ter = Tep - Teq; | |
2936 TfV = Tep + Teq; | |
2937 T8E = T3H - T3M; | |
2938 T8H = T8F - T8G; | |
2939 T8I = T8E - T8H; | |
2940 Tc3 = T8E + T8H; | |
2941 } | |
2942 } | |
2943 { | |
2944 E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; | |
2945 E T9R, T6z, Tf3, T9T, T9W; | |
2946 { | |
2947 E T5T, T5U, T5Z, T63; | |
2948 T5T = ri[WS(rs, 63)]; | |
2949 T5U = ii[WS(rs, 63)]; | |
2950 T5V = FMA(TW, T5T, T10 * T5U); | |
2951 Tao = FNMS(T10, T5T, TW * T5U); | |
2952 T5Z = ri[WS(rs, 31)]; | |
2953 T63 = ii[WS(rs, 31)]; | |
2954 T64 = FMA(T5Y, T5Z, T62 * T63); | |
2955 Tap = FNMS(T62, T5Z, T5Y * T63); | |
2956 } | |
2957 T65 = T5V + T64; | |
2958 Tfi = Tao + Tap; | |
2959 { | |
2960 E T66, T67, T6a, T6c; | |
2961 T66 = ri[WS(rs, 15)]; | |
2962 T67 = ii[WS(rs, 15)]; | |
2963 T68 = FMA(TV, T66, TZ * T67); | |
2964 T9K = FNMS(TZ, T66, TV * T67); | |
2965 T6a = ri[WS(rs, 47)]; | |
2966 T6c = ii[WS(rs, 47)]; | |
2967 T6d = FMA(T69, T6a, T6b * T6c); | |
2968 T9L = FNMS(T6b, T6a, T69 * T6c); | |
2969 } | |
2970 T6e = T68 + T6d; | |
2971 Tfj = T9K + T9L; | |
2972 { | |
2973 E T6i, T9O, T6n, T9P; | |
2974 { | |
2975 E T6g, T6h, T6k, T6m; | |
2976 T6g = ri[WS(rs, 7)]; | |
2977 T6h = ii[WS(rs, 7)]; | |
2978 T6i = FMA(T1t, T6g, T1u * T6h); | |
2979 T9O = FNMS(T1u, T6g, T1t * T6h); | |
2980 T6k = ri[WS(rs, 39)]; | |
2981 T6m = ii[WS(rs, 39)]; | |
2982 T6n = FMA(T6j, T6k, T6l * T6m); | |
2983 T9P = FNMS(T6l, T6k, T6j * T6m); | |
2984 } | |
2985 T6o = T6i + T6n; | |
2986 Tf2 = T9O + T9P; | |
2987 T9Q = T9O - T9P; | |
2988 T9R = T6i - T6n; | |
2989 } | |
2990 { | |
2991 E T6t, T9U, T6y, T9V; | |
2992 { | |
2993 E T6q, T6s, T6v, T6x; | |
2994 T6q = ri[WS(rs, 55)]; | |
2995 T6s = ii[WS(rs, 55)]; | |
2996 T6t = FMA(T6p, T6q, T6r * T6s); | |
2997 T9U = FNMS(T6r, T6q, T6p * T6s); | |
2998 T6v = ri[WS(rs, 23)]; | |
2999 T6x = ii[WS(rs, 23)]; | |
3000 T6y = FMA(T6u, T6v, T6w * T6x); | |
3001 T9V = FNMS(T6w, T6v, T6u * T6x); | |
3002 } | |
3003 T6z = T6t + T6y; | |
3004 Tf3 = T9U + T9V; | |
3005 T9T = T6t - T6y; | |
3006 T9W = T9U - T9V; | |
3007 } | |
3008 { | |
3009 E T6f, T6A, Tfk, Tfl; | |
3010 T6f = T65 + T6e; | |
3011 T6A = T6o + T6z; | |
3012 T6B = T6f + T6A; | |
3013 Th1 = T6f - T6A; | |
3014 Tfk = Tfi - Tfj; | |
3015 Tfl = T6z - T6o; | |
3016 Tfm = Tfk - Tfl; | |
3017 Tga = Tfk + Tfl; | |
3018 } | |
3019 { | |
3020 E Th6, Th7, T9J, T9M; | |
3021 Th6 = Tfi + Tfj; | |
3022 Th7 = Tf2 + Tf3; | |
3023 Th8 = Th6 - Th7; | |
3024 ThI = Th6 + Th7; | |
3025 T9J = T5V - T64; | |
3026 T9M = T9K - T9L; | |
3027 T9N = T9J - T9M; | |
3028 Tcv = T9J + T9M; | |
3029 } | |
3030 { | |
3031 E T9S, T9X, Tat, Tau; | |
3032 T9S = T9Q - T9R; | |
3033 T9X = T9T + T9W; | |
3034 T9Y = KP707106781 * (T9S - T9X); | |
3035 TcH = KP707106781 * (T9S + T9X); | |
3036 Tat = T9T - T9W; | |
3037 Tau = T9R + T9Q; | |
3038 Tav = KP707106781 * (Tat - Tau); | |
3039 Tcw = KP707106781 * (Tau + Tat); | |
3040 } | |
3041 { | |
3042 E Tf1, Tf4, Taq, Tar; | |
3043 Tf1 = T65 - T6e; | |
3044 Tf4 = Tf2 - Tf3; | |
3045 Tf5 = Tf1 - Tf4; | |
3046 Tg7 = Tf1 + Tf4; | |
3047 Taq = Tao - Tap; | |
3048 Tar = T68 - T6d; | |
3049 Tas = Taq + Tar; | |
3050 TcG = Taq - Tar; | |
3051 } | |
3052 } | |
3053 { | |
3054 E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; | |
3055 E T93, T5a, TeT, T8V, T8Y; | |
3056 { | |
3057 E T4u, T4v, T4y, T4A; | |
3058 T4u = ri[WS(rs, 1)]; | |
3059 T4v = ii[WS(rs, 1)]; | |
3060 T4w = FMA(T2, T4u, T5 * T4v); | |
3061 T8Q = FNMS(T5, T4u, T2 * T4v); | |
3062 T4y = ri[WS(rs, 33)]; | |
3063 T4A = ii[WS(rs, 33)]; | |
3064 T4B = FMA(T4x, T4y, T4z * T4A); | |
3065 T8R = FNMS(T4z, T4y, T4x * T4A); | |
3066 } | |
3067 T4C = T4w + T4B; | |
3068 TeA = T8Q + T8R; | |
3069 { | |
3070 E T4D, T4E, T4H, T4J; | |
3071 T4D = ri[WS(rs, 17)]; | |
3072 T4E = ii[WS(rs, 17)]; | |
3073 T4F = FMA(T3V, T4D, T3Y * T4E); | |
3074 T9w = FNMS(T3Y, T4D, T3V * T4E); | |
3075 T4H = ri[WS(rs, 49)]; | |
3076 T4J = ii[WS(rs, 49)]; | |
3077 T4K = FMA(T4G, T4H, T4I * T4J); | |
3078 T9x = FNMS(T4I, T4H, T4G * T4J); | |
3079 } | |
3080 T4L = T4F + T4K; | |
3081 TeB = T9w + T9x; | |
3082 { | |
3083 E T4P, T91, T4U, T92; | |
3084 { | |
3085 E T4N, T4O, T4R, T4T; | |
3086 T4N = ri[WS(rs, 9)]; | |
3087 T4O = ii[WS(rs, 9)]; | |
3088 T4P = FMA(T9, T4N, Te * T4O); | |
3089 T91 = FNMS(Te, T4N, T9 * T4O); | |
3090 T4R = ri[WS(rs, 41)]; | |
3091 T4T = ii[WS(rs, 41)]; | |
3092 T4U = FMA(T4Q, T4R, T4S * T4T); | |
3093 T92 = FNMS(T4S, T4R, T4Q * T4T); | |
3094 } | |
3095 T4V = T4P + T4U; | |
3096 TeS = T91 + T92; | |
3097 T90 = T4P - T4U; | |
3098 T93 = T91 - T92; | |
3099 } | |
3100 { | |
3101 E T50, T8W, T59, T8X; | |
3102 { | |
3103 E T4X, T4Z, T54, T58; | |
3104 T4X = ri[WS(rs, 57)]; | |
3105 T4Z = ii[WS(rs, 57)]; | |
3106 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
3107 T8W = FNMS(T4Y, T4X, T4W * T4Z); | |
3108 T54 = ri[WS(rs, 25)]; | |
3109 T58 = ii[WS(rs, 25)]; | |
3110 T59 = FMA(T53, T54, T57 * T58); | |
3111 T8X = FNMS(T57, T54, T53 * T58); | |
3112 } | |
3113 T5a = T50 + T59; | |
3114 TeT = T8W + T8X; | |
3115 T8V = T50 - T59; | |
3116 T8Y = T8W - T8X; | |
3117 } | |
3118 { | |
3119 E T4M, T5b, TeR, TeU; | |
3120 T4M = T4C + T4L; | |
3121 T5b = T4V + T5a; | |
3122 T5c = T4M + T5b; | |
3123 TgV = T4M - T5b; | |
3124 TeR = T4C - T4L; | |
3125 TeU = TeS - TeT; | |
3126 TeV = TeR - TeU; | |
3127 Tg0 = TeR + TeU; | |
3128 } | |
3129 { | |
3130 E TgQ, TgR, T8S, T8T; | |
3131 TgQ = TeA + TeB; | |
3132 TgR = TeS + TeT; | |
3133 TgS = TgQ - TgR; | |
3134 ThD = TgQ + TgR; | |
3135 T8S = T8Q - T8R; | |
3136 T8T = T4F - T4K; | |
3137 T8U = T8S + T8T; | |
3138 Tcc = T8S - T8T; | |
3139 } | |
3140 { | |
3141 E T8Z, T94, T9A, T9B; | |
3142 T8Z = T8V - T8Y; | |
3143 T94 = T90 + T93; | |
3144 T95 = KP707106781 * (T8Z - T94); | |
3145 Tco = KP707106781 * (T94 + T8Z); | |
3146 T9A = T93 - T90; | |
3147 T9B = T8V + T8Y; | |
3148 T9C = KP707106781 * (T9A - T9B); | |
3149 Tcd = KP707106781 * (T9A + T9B); | |
3150 } | |
3151 { | |
3152 E TeC, TeD, T9v, T9y; | |
3153 TeC = TeA - TeB; | |
3154 TeD = T5a - T4V; | |
3155 TeE = TeC - TeD; | |
3156 Tg3 = TeC + TeD; | |
3157 T9v = T4w - T4B; | |
3158 T9y = T9w - T9x; | |
3159 T9z = T9v - T9y; | |
3160 Tcn = T9v + T9y; | |
3161 } | |
3162 } | |
3163 { | |
3164 E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; | |
3165 E T9e; | |
3166 { | |
3167 E T5f, T9i, T5k, T9j; | |
3168 { | |
3169 E T5d, T5e, T5h, T5j; | |
3170 T5d = ri[WS(rs, 5)]; | |
3171 T5e = ii[WS(rs, 5)]; | |
3172 T5f = FMA(Tg, T5d, Tl * T5e); | |
3173 T9i = FNMS(Tl, T5d, Tg * T5e); | |
3174 T5h = ri[WS(rs, 37)]; | |
3175 T5j = ii[WS(rs, 37)]; | |
3176 T5k = FMA(T5g, T5h, T5i * T5j); | |
3177 T9j = FNMS(T5i, T5h, T5g * T5j); | |
3178 } | |
3179 T5l = T5f + T5k; | |
3180 TeL = T9i + T9j; | |
3181 T9k = T9i - T9j; | |
3182 T9n = T5f - T5k; | |
3183 } | |
3184 { | |
3185 E T5J, T98, T5O, T99; | |
3186 { | |
3187 E T5H, T5I, T5L, T5N; | |
3188 T5H = ri[WS(rs, 13)]; | |
3189 T5I = ii[WS(rs, 13)]; | |
3190 T5J = FMA(T1h, T5H, T1j * T5I); | |
3191 T98 = FNMS(T1j, T5H, T1h * T5I); | |
3192 T5L = ri[WS(rs, 45)]; | |
3193 T5N = ii[WS(rs, 45)]; | |
3194 T5O = FMA(T5K, T5L, T5M * T5N); | |
3195 T99 = FNMS(T5M, T5L, T5K * T5N); | |
3196 } | |
3197 T5P = T5J + T5O; | |
3198 TeH = T98 + T99; | |
3199 T9a = T98 - T99; | |
3200 T9f = T5J - T5O; | |
3201 } | |
3202 { | |
3203 E T5o, T9o, T5t, T9p; | |
3204 { | |
3205 E T5m, T5n, T5q, T5s; | |
3206 T5m = ri[WS(rs, 21)]; | |
3207 T5n = ii[WS(rs, 21)]; | |
3208 T5o = FMA(T3g, T5m, T3j * T5n); | |
3209 T9o = FNMS(T3j, T5m, T3g * T5n); | |
3210 T5q = ri[WS(rs, 53)]; | |
3211 T5s = ii[WS(rs, 53)]; | |
3212 T5t = FMA(T5p, T5q, T5r * T5s); | |
3213 T9p = FNMS(T5r, T5q, T5p * T5s); | |
3214 } | |
3215 T5u = T5o + T5t; | |
3216 TeM = T9o + T9p; | |
3217 T9l = T5o - T5t; | |
3218 T9q = T9o - T9p; | |
3219 } | |
3220 { | |
3221 E T5A, T9c, T5F, T9d; | |
3222 { | |
3223 E T5x, T5z, T5C, T5E; | |
3224 T5x = ri[WS(rs, 61)]; | |
3225 T5z = ii[WS(rs, 61)]; | |
3226 T5A = FMA(T5w, T5x, T5y * T5z); | |
3227 T9c = FNMS(T5y, T5x, T5w * T5z); | |
3228 T5C = ri[WS(rs, 29)]; | |
3229 T5E = ii[WS(rs, 29)]; | |
3230 T5F = FMA(T5B, T5C, T5D * T5E); | |
3231 T9d = FNMS(T5D, T5C, T5B * T5E); | |
3232 } | |
3233 T5G = T5A + T5F; | |
3234 TeG = T9c + T9d; | |
3235 T97 = T5A - T5F; | |
3236 T9e = T9c - T9d; | |
3237 } | |
3238 { | |
3239 E T5v, T5Q, TeK, TeN; | |
3240 T5v = T5l + T5u; | |
3241 T5Q = T5G + T5P; | |
3242 T5R = T5v + T5Q; | |
3243 TgT = T5Q - T5v; | |
3244 TeK = T5l - T5u; | |
3245 TeN = TeL - TeM; | |
3246 TeO = TeK + TeN; | |
3247 TeW = TeN - TeK; | |
3248 } | |
3249 { | |
3250 E TgW, TgX, T9b, T9g; | |
3251 TgW = TeL + TeM; | |
3252 TgX = TeG + TeH; | |
3253 TgY = TgW - TgX; | |
3254 ThE = TgW + TgX; | |
3255 T9b = T97 - T9a; | |
3256 T9g = T9e + T9f; | |
3257 T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); | |
3258 T9F = FMA(KP382683432, T9g, KP923879532 * T9b); | |
3259 } | |
3260 { | |
3261 E T9m, T9r, Tci, Tcj; | |
3262 T9m = T9k + T9l; | |
3263 T9r = T9n - T9q; | |
3264 T9s = FMA(KP923879532, T9m, KP382683432 * T9r); | |
3265 T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); | |
3266 Tci = T9k - T9l; | |
3267 Tcj = T9n + T9q; | |
3268 Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); | |
3269 Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); | |
3270 } | |
3271 { | |
3272 E TeF, TeI, Tcf, Tcg; | |
3273 TeF = T5G - T5P; | |
3274 TeI = TeG - TeH; | |
3275 TeJ = TeF - TeI; | |
3276 TeX = TeF + TeI; | |
3277 Tcf = T97 + T9a; | |
3278 Tcg = T9e - T9f; | |
3279 Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); | |
3280 Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); | |
3281 } | |
3282 } | |
3283 { | |
3284 E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; | |
3285 E Tag; | |
3286 { | |
3287 E T6E, Ta0, T6J, Ta1; | |
3288 { | |
3289 E T6C, T6D, T6G, T6I; | |
3290 T6C = ri[WS(rs, 3)]; | |
3291 T6D = ii[WS(rs, 3)]; | |
3292 T6E = FMA(T3, T6C, T6 * T6D); | |
3293 Ta0 = FNMS(T6, T6C, T3 * T6D); | |
3294 T6G = ri[WS(rs, 35)]; | |
3295 T6I = ii[WS(rs, 35)]; | |
3296 T6J = FMA(T6F, T6G, T6H * T6I); | |
3297 Ta1 = FNMS(T6H, T6G, T6F * T6I); | |
3298 } | |
3299 T6K = T6E + T6J; | |
3300 Tf6 = Ta0 + Ta1; | |
3301 Ta2 = Ta0 - Ta1; | |
3302 Ta5 = T6E - T6J; | |
3303 } | |
3304 { | |
3305 E T76, Tah, T7b, Tai; | |
3306 { | |
3307 E T74, T75, T78, T7a; | |
3308 T74 = ri[WS(rs, 11)]; | |
3309 T75 = ii[WS(rs, 11)]; | |
3310 T76 = FMA(TA, T74, TE * T75); | |
3311 Tah = FNMS(TE, T74, TA * T75); | |
3312 T78 = ri[WS(rs, 43)]; | |
3313 T7a = ii[WS(rs, 43)]; | |
3314 T7b = FMA(T77, T78, T79 * T7a); | |
3315 Tai = FNMS(T79, T78, T77 * T7a); | |
3316 } | |
3317 T7c = T76 + T7b; | |
3318 Tfd = Tah + Tai; | |
3319 Tae = T76 - T7b; | |
3320 Taj = Tah - Tai; | |
3321 } | |
3322 { | |
3323 E T6N, Ta6, T6S, Ta7; | |
3324 { | |
3325 E T6L, T6M, T6P, T6R; | |
3326 T6L = ri[WS(rs, 19)]; | |
3327 T6M = ii[WS(rs, 19)]; | |
3328 T6N = FMA(T2z, T6L, T2C * T6M); | |
3329 Ta6 = FNMS(T2C, T6L, T2z * T6M); | |
3330 T6P = ri[WS(rs, 51)]; | |
3331 T6R = ii[WS(rs, 51)]; | |
3332 T6S = FMA(T6O, T6P, T6Q * T6R); | |
3333 Ta7 = FNMS(T6Q, T6P, T6O * T6R); | |
3334 } | |
3335 T6T = T6N + T6S; | |
3336 Tf7 = Ta6 + Ta7; | |
3337 Ta3 = T6N - T6S; | |
3338 Ta8 = Ta6 - Ta7; | |
3339 } | |
3340 { | |
3341 E T6Z, Tab, T72, Tac; | |
3342 { | |
3343 E T6W, T6Y, T70, T71; | |
3344 T6W = ri[WS(rs, 59)]; | |
3345 T6Y = ii[WS(rs, 59)]; | |
3346 T6Z = FMA(T6V, T6W, T6X * T6Y); | |
3347 Tab = FNMS(T6X, T6W, T6V * T6Y); | |
3348 T70 = ri[WS(rs, 27)]; | |
3349 T71 = ii[WS(rs, 27)]; | |
3350 T72 = FMA(Th, T70, Tm * T71); | |
3351 Tac = FNMS(Tm, T70, Th * T71); | |
3352 } | |
3353 T73 = T6Z + T72; | |
3354 Tfc = Tab + Tac; | |
3355 Tad = Tab - Tac; | |
3356 Tag = T6Z - T72; | |
3357 } | |
3358 { | |
3359 E T6U, T7d, Tfb, Tfe; | |
3360 T6U = T6K + T6T; | |
3361 T7d = T73 + T7c; | |
3362 T7e = T6U + T7d; | |
3363 Th9 = T7d - T6U; | |
3364 Tfb = T73 - T7c; | |
3365 Tfe = Tfc - Tfd; | |
3366 Tff = Tfb + Tfe; | |
3367 Tfn = Tfb - Tfe; | |
3368 } | |
3369 { | |
3370 E Th2, Th3, Ta4, Ta9; | |
3371 Th2 = Tf6 + Tf7; | |
3372 Th3 = Tfc + Tfd; | |
3373 Th4 = Th2 - Th3; | |
3374 ThJ = Th2 + Th3; | |
3375 Ta4 = Ta2 + Ta3; | |
3376 Ta9 = Ta5 - Ta8; | |
3377 Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); | |
3378 Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); | |
3379 } | |
3380 { | |
3381 E Taf, Tak, TcB, TcC; | |
3382 Taf = Tad + Tae; | |
3383 Tak = Tag - Taj; | |
3384 Tal = FMA(KP382683432, Taf, KP923879532 * Tak); | |
3385 Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); | |
3386 TcB = Tad - Tae; | |
3387 TcC = Tag + Taj; | |
3388 TcD = FMA(KP923879532, TcB, KP382683432 * TcC); | |
3389 TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); | |
3390 } | |
3391 { | |
3392 E Tf8, Tf9, Tcy, Tcz; | |
3393 Tf8 = Tf6 - Tf7; | |
3394 Tf9 = T6K - T6T; | |
3395 Tfa = Tf8 - Tf9; | |
3396 Tfo = Tf9 + Tf8; | |
3397 Tcy = Ta2 - Ta3; | |
3398 Tcz = Ta5 + Ta8; | |
3399 TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); | |
3400 TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); | |
3401 } | |
3402 } | |
3403 { | |
3404 E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; | |
3405 E ThW; | |
3406 { | |
3407 E T1L, T2K, ThS, ThT; | |
3408 T1L = T17 + T1K; | |
3409 T2K = T2e + T2J; | |
3410 T2L = T1L + T2K; | |
3411 Thx = T1L - T2K; | |
3412 ThS = ThD + ThE; | |
3413 ThT = ThI + ThJ; | |
3414 ThU = ThS - ThT; | |
3415 ThV = ThS + ThT; | |
3416 } | |
3417 { | |
3418 E ThX, Ti4, T3C, T4r; | |
3419 ThX = TgA + TgB; | |
3420 Ti4 = ThY + Ti3; | |
3421 Ti5 = ThX + Ti4; | |
3422 Tib = Ti4 - ThX; | |
3423 T3C = T36 + T3B; | |
3424 T4r = T45 + T4q; | |
3425 T4s = T3C + T4r; | |
3426 Tia = T4r - T3C; | |
3427 } | |
3428 { | |
3429 E T5S, T7f, ThC, ThF; | |
3430 T5S = T5c + T5R; | |
3431 T7f = T6B + T7e; | |
3432 T7g = T5S + T7f; | |
3433 Ti7 = T7f - T5S; | |
3434 ThC = T5c - T5R; | |
3435 ThF = ThD - ThE; | |
3436 ThG = ThC + ThF; | |
3437 ThO = ThF - ThC; | |
3438 } | |
3439 { | |
3440 E ThH, ThK, Thy, Thz; | |
3441 ThH = T6B - T7e; | |
3442 ThK = ThI - ThJ; | |
3443 ThL = ThH - ThK; | |
3444 ThP = ThH + ThK; | |
3445 Thy = TgE + TgF; | |
3446 Thz = TgK + TgL; | |
3447 ThA = Thy - Thz; | |
3448 ThW = Thy + Thz; | |
3449 } | |
3450 { | |
3451 E T4t, Ti6, ThR, Ti8; | |
3452 T4t = T2L + T4s; | |
3453 ri[WS(rs, 32)] = T4t - T7g; | |
3454 ri[0] = T4t + T7g; | |
3455 Ti6 = ThW + Ti5; | |
3456 ii[0] = ThV + Ti6; | |
3457 ii[WS(rs, 32)] = Ti6 - ThV; | |
3458 ThR = T2L - T4s; | |
3459 ri[WS(rs, 48)] = ThR - ThU; | |
3460 ri[WS(rs, 16)] = ThR + ThU; | |
3461 Ti8 = Ti5 - ThW; | |
3462 ii[WS(rs, 16)] = Ti7 + Ti8; | |
3463 ii[WS(rs, 48)] = Ti8 - Ti7; | |
3464 } | |
3465 { | |
3466 E ThB, ThM, Ti9, Tic; | |
3467 ThB = Thx + ThA; | |
3468 ThM = KP707106781 * (ThG + ThL); | |
3469 ri[WS(rs, 40)] = ThB - ThM; | |
3470 ri[WS(rs, 8)] = ThB + ThM; | |
3471 Ti9 = KP707106781 * (ThO + ThP); | |
3472 Tic = Tia + Tib; | |
3473 ii[WS(rs, 8)] = Ti9 + Tic; | |
3474 ii[WS(rs, 40)] = Tic - Ti9; | |
3475 } | |
3476 { | |
3477 E ThN, ThQ, Tid, Tie; | |
3478 ThN = Thx - ThA; | |
3479 ThQ = KP707106781 * (ThO - ThP); | |
3480 ri[WS(rs, 56)] = ThN - ThQ; | |
3481 ri[WS(rs, 24)] = ThN + ThQ; | |
3482 Tid = KP707106781 * (ThL - ThG); | |
3483 Tie = Tib - Tia; | |
3484 ii[WS(rs, 24)] = Tid + Tie; | |
3485 ii[WS(rs, 56)] = Tie - Tid; | |
3486 } | |
3487 } | |
3488 { | |
3489 E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; | |
3490 E Thf; | |
3491 { | |
3492 E Tgz, TgC, Thp, Thq; | |
3493 Tgz = T17 - T1K; | |
3494 TgC = TgA - TgB; | |
3495 TgD = Tgz - TgC; | |
3496 Thh = Tgz + TgC; | |
3497 Thp = Th1 + Th4; | |
3498 Thq = Th8 + Th9; | |
3499 Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); | |
3500 Thv = FMA(KP923879532, Thq, KP382683432 * Thp); | |
3501 } | |
3502 { | |
3503 E Tih, Tii, TgI, TgN; | |
3504 Tih = T2J - T2e; | |
3505 Tii = Ti3 - ThY; | |
3506 Tij = Tih + Tii; | |
3507 Tip = Tii - Tih; | |
3508 TgI = TgG - TgH; | |
3509 TgN = TgJ + TgM; | |
3510 TgO = KP707106781 * (TgI - TgN); | |
3511 Tig = KP707106781 * (TgI + TgN); | |
3512 } | |
3513 { | |
3514 E TgU, TgZ, Thi, Thj; | |
3515 TgU = TgS - TgT; | |
3516 TgZ = TgV - TgY; | |
3517 Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); | |
3518 The = FNMS(KP923879532, TgZ, KP382683432 * TgU); | |
3519 Thi = TgH + TgG; | |
3520 Thj = TgJ - TgM; | |
3521 Thk = KP707106781 * (Thi + Thj); | |
3522 Tio = KP707106781 * (Thj - Thi); | |
3523 } | |
3524 { | |
3525 E Thm, Thn, Th5, Tha; | |
3526 Thm = TgS + TgT; | |
3527 Thn = TgV + TgY; | |
3528 Tho = FMA(KP382683432, Thm, KP923879532 * Thn); | |
3529 Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); | |
3530 Th5 = Th1 - Th4; | |
3531 Tha = Th8 - Th9; | |
3532 Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); | |
3533 Thf = FMA(KP382683432, Tha, KP923879532 * Th5); | |
3534 } | |
3535 { | |
3536 E TgP, Thc, Tin, Tiq; | |
3537 TgP = TgD + TgO; | |
3538 Thc = Th0 + Thb; | |
3539 ri[WS(rs, 44)] = TgP - Thc; | |
3540 ri[WS(rs, 12)] = TgP + Thc; | |
3541 Tin = The + Thf; | |
3542 Tiq = Tio + Tip; | |
3543 ii[WS(rs, 12)] = Tin + Tiq; | |
3544 ii[WS(rs, 44)] = Tiq - Tin; | |
3545 } | |
3546 { | |
3547 E Thd, Thg, Tir, Tis; | |
3548 Thd = TgD - TgO; | |
3549 Thg = The - Thf; | |
3550 ri[WS(rs, 60)] = Thd - Thg; | |
3551 ri[WS(rs, 28)] = Thd + Thg; | |
3552 Tir = Thb - Th0; | |
3553 Tis = Tip - Tio; | |
3554 ii[WS(rs, 28)] = Tir + Tis; | |
3555 ii[WS(rs, 60)] = Tis - Tir; | |
3556 } | |
3557 { | |
3558 E Thl, Ths, Tif, Tik; | |
3559 Thl = Thh + Thk; | |
3560 Ths = Tho + Thr; | |
3561 ri[WS(rs, 36)] = Thl - Ths; | |
3562 ri[WS(rs, 4)] = Thl + Ths; | |
3563 Tif = Thu + Thv; | |
3564 Tik = Tig + Tij; | |
3565 ii[WS(rs, 4)] = Tif + Tik; | |
3566 ii[WS(rs, 36)] = Tik - Tif; | |
3567 } | |
3568 { | |
3569 E Tht, Thw, Til, Tim; | |
3570 Tht = Thh - Thk; | |
3571 Thw = Thu - Thv; | |
3572 ri[WS(rs, 52)] = Tht - Thw; | |
3573 ri[WS(rs, 20)] = Tht + Thw; | |
3574 Til = Thr - Tho; | |
3575 Tim = Tij - Tig; | |
3576 ii[WS(rs, 20)] = Til + Tim; | |
3577 ii[WS(rs, 52)] = Tim - Til; | |
3578 } | |
3579 } | |
3580 { | |
3581 E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; | |
3582 E TfE; | |
3583 { | |
3584 E TdZ, Tea, Tfy, Tfz; | |
3585 TdZ = TdV - TdY; | |
3586 Tea = KP707106781 * (Te4 - Te9); | |
3587 Teb = TdZ - Tea; | |
3588 Tfx = TdZ + Tea; | |
3589 { | |
3590 E Tem, Tex, TiL, TiM; | |
3591 Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); | |
3592 Tex = FMA(KP382683432, Ter, KP923879532 * Tew); | |
3593 Tey = Tem - Tex; | |
3594 TiK = Tem + Tex; | |
3595 TiL = KP707106781 * (TfP - TfO); | |
3596 TiM = Tix - Tiw; | |
3597 TiN = TiL + TiM; | |
3598 TiT = TiM - TiL; | |
3599 } | |
3600 Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); | |
3601 Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); | |
3602 TfA = Tfy + Tfz; | |
3603 TiS = Tfz - Tfy; | |
3604 { | |
3605 E Tfh, TfF, Tfq, TfG, Tfg, Tfp; | |
3606 Tfg = KP707106781 * (Tfa - Tff); | |
3607 Tfh = Tf5 - Tfg; | |
3608 TfF = Tf5 + Tfg; | |
3609 Tfp = KP707106781 * (Tfn - Tfo); | |
3610 Tfq = Tfm - Tfp; | |
3611 TfG = Tfm + Tfp; | |
3612 Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); | |
3613 TfL = FMA(KP831469612, TfG, KP555570233 * TfF); | |
3614 Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); | |
3615 TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); | |
3616 } | |
3617 { | |
3618 E TeQ, TfC, TeZ, TfD, TeP, TeY; | |
3619 TeP = KP707106781 * (TeJ - TeO); | |
3620 TeQ = TeE - TeP; | |
3621 TfC = TeE + TeP; | |
3622 TeY = KP707106781 * (TeW - TeX); | |
3623 TeZ = TeV - TeY; | |
3624 TfD = TeV + TeY; | |
3625 Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); | |
3626 TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); | |
3627 Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); | |
3628 TfE = FMA(KP555570233, TfC, KP831469612 * TfD); | |
3629 } | |
3630 } | |
3631 { | |
3632 E Tez, Tfs, TiR, TiU; | |
3633 Tez = Teb + Tey; | |
3634 Tfs = Tf0 + Tfr; | |
3635 ri[WS(rs, 46)] = Tez - Tfs; | |
3636 ri[WS(rs, 14)] = Tez + Tfs; | |
3637 TiR = Tfu + Tfv; | |
3638 TiU = TiS + TiT; | |
3639 ii[WS(rs, 14)] = TiR + TiU; | |
3640 ii[WS(rs, 46)] = TiU - TiR; | |
3641 } | |
3642 { | |
3643 E Tft, Tfw, TiV, TiW; | |
3644 Tft = Teb - Tey; | |
3645 Tfw = Tfu - Tfv; | |
3646 ri[WS(rs, 62)] = Tft - Tfw; | |
3647 ri[WS(rs, 30)] = Tft + Tfw; | |
3648 TiV = Tfr - Tf0; | |
3649 TiW = TiT - TiS; | |
3650 ii[WS(rs, 30)] = TiV + TiW; | |
3651 ii[WS(rs, 62)] = TiW - TiV; | |
3652 } | |
3653 { | |
3654 E TfB, TfI, TiJ, TiO; | |
3655 TfB = Tfx + TfA; | |
3656 TfI = TfE + TfH; | |
3657 ri[WS(rs, 38)] = TfB - TfI; | |
3658 ri[WS(rs, 6)] = TfB + TfI; | |
3659 TiJ = TfK + TfL; | |
3660 TiO = TiK + TiN; | |
3661 ii[WS(rs, 6)] = TiJ + TiO; | |
3662 ii[WS(rs, 38)] = TiO - TiJ; | |
3663 } | |
3664 { | |
3665 E TfJ, TfM, TiP, TiQ; | |
3666 TfJ = Tfx - TfA; | |
3667 TfM = TfK - TfL; | |
3668 ri[WS(rs, 54)] = TfJ - TfM; | |
3669 ri[WS(rs, 22)] = TfJ + TfM; | |
3670 TiP = TfH - TfE; | |
3671 TiQ = TiN - TiK; | |
3672 ii[WS(rs, 22)] = TiP + TiQ; | |
3673 ii[WS(rs, 54)] = TiQ - TiP; | |
3674 } | |
3675 } | |
3676 { | |
3677 E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; | |
3678 E Tgq; | |
3679 { | |
3680 E TfN, TfQ, Tgk, Tgl; | |
3681 TfN = TdV + TdY; | |
3682 TfQ = KP707106781 * (TfO + TfP); | |
3683 TfR = TfN - TfQ; | |
3684 Tgj = TfN + TfQ; | |
3685 { | |
3686 E TfU, TfX, Tiv, Tiy; | |
3687 TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); | |
3688 TfX = FMA(KP923879532, TfV, KP382683432 * TfW); | |
3689 TfY = TfU - TfX; | |
3690 Tiu = TfU + TfX; | |
3691 Tiv = KP707106781 * (Te4 + Te9); | |
3692 Tiy = Tiw + Tix; | |
3693 Tiz = Tiv + Tiy; | |
3694 TiF = Tiy - Tiv; | |
3695 } | |
3696 Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); | |
3697 Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); | |
3698 Tgm = Tgk + Tgl; | |
3699 TiE = Tgl - Tgk; | |
3700 { | |
3701 E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; | |
3702 Tg8 = KP707106781 * (Tfo + Tfn); | |
3703 Tg9 = Tg7 - Tg8; | |
3704 Tgr = Tg7 + Tg8; | |
3705 Tgb = KP707106781 * (Tfa + Tff); | |
3706 Tgc = Tga - Tgb; | |
3707 Tgs = Tga + Tgb; | |
3708 Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); | |
3709 Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); | |
3710 Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); | |
3711 Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); | |
3712 } | |
3713 { | |
3714 E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; | |
3715 Tg1 = KP707106781 * (TeO + TeJ); | |
3716 Tg2 = Tg0 - Tg1; | |
3717 Tgo = Tg0 + Tg1; | |
3718 Tg4 = KP707106781 * (TeW + TeX); | |
3719 Tg5 = Tg3 - Tg4; | |
3720 Tgp = Tg3 + Tg4; | |
3721 Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); | |
3722 Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); | |
3723 Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); | |
3724 Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); | |
3725 } | |
3726 } | |
3727 { | |
3728 E TfZ, Tge, TiD, TiG; | |
3729 TfZ = TfR + TfY; | |
3730 Tge = Tg6 + Tgd; | |
3731 ri[WS(rs, 42)] = TfZ - Tge; | |
3732 ri[WS(rs, 10)] = TfZ + Tge; | |
3733 TiD = Tgg + Tgh; | |
3734 TiG = TiE + TiF; | |
3735 ii[WS(rs, 10)] = TiD + TiG; | |
3736 ii[WS(rs, 42)] = TiG - TiD; | |
3737 } | |
3738 { | |
3739 E Tgf, Tgi, TiH, TiI; | |
3740 Tgf = TfR - TfY; | |
3741 Tgi = Tgg - Tgh; | |
3742 ri[WS(rs, 58)] = Tgf - Tgi; | |
3743 ri[WS(rs, 26)] = Tgf + Tgi; | |
3744 TiH = Tgd - Tg6; | |
3745 TiI = TiF - TiE; | |
3746 ii[WS(rs, 26)] = TiH + TiI; | |
3747 ii[WS(rs, 58)] = TiI - TiH; | |
3748 } | |
3749 { | |
3750 E Tgn, Tgu, Tit, TiA; | |
3751 Tgn = Tgj + Tgm; | |
3752 Tgu = Tgq + Tgt; | |
3753 ri[WS(rs, 34)] = Tgn - Tgu; | |
3754 ri[WS(rs, 2)] = Tgn + Tgu; | |
3755 Tit = Tgw + Tgx; | |
3756 TiA = Tiu + Tiz; | |
3757 ii[WS(rs, 2)] = Tit + TiA; | |
3758 ii[WS(rs, 34)] = TiA - Tit; | |
3759 } | |
3760 { | |
3761 E Tgv, Tgy, TiB, TiC; | |
3762 Tgv = Tgj - Tgm; | |
3763 Tgy = Tgw - Tgx; | |
3764 ri[WS(rs, 50)] = Tgv - Tgy; | |
3765 ri[WS(rs, 18)] = Tgv + Tgy; | |
3766 TiB = Tgt - Tgq; | |
3767 TiC = Tiz - Tiu; | |
3768 ii[WS(rs, 18)] = TiB + TiC; | |
3769 ii[WS(rs, 50)] = TiC - TiB; | |
3770 } | |
3771 } | |
3772 { | |
3773 E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; | |
3774 E TaR; | |
3775 { | |
3776 E T7x, T7U, TjL, TjM; | |
3777 T7x = T7l - T7w; | |
3778 T7U = T7I - T7T; | |
3779 T7V = T7x - T7U; | |
3780 TaH = T7x + T7U; | |
3781 TjL = TaZ - TaY; | |
3782 TjM = Tjx - Tjw; | |
3783 TjN = TjL + TjM; | |
3784 TjT = TjM - TjL; | |
3785 } | |
3786 { | |
3787 E T8m, TaI, T8N, TaJ; | |
3788 { | |
3789 E T8c, T8l, T8D, T8M; | |
3790 T8c = T80 - T8b; | |
3791 T8l = T8h - T8k; | |
3792 T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); | |
3793 TaI = FMA(KP980785280, T8c, KP195090322 * T8l); | |
3794 T8D = T8r - T8C; | |
3795 T8M = T8I - T8L; | |
3796 T8N = FMA(KP195090322, T8D, KP980785280 * T8M); | |
3797 TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); | |
3798 } | |
3799 T8O = T8m - T8N; | |
3800 TjS = TaJ - TaI; | |
3801 TaK = TaI + TaJ; | |
3802 TjK = T8m + T8N; | |
3803 } | |
3804 { | |
3805 E T9u, TaM, T9H, TaN; | |
3806 { | |
3807 E T96, T9t, T9D, T9G; | |
3808 T96 = T8U - T95; | |
3809 T9t = T9h - T9s; | |
3810 T9u = T96 - T9t; | |
3811 TaM = T96 + T9t; | |
3812 T9D = T9z - T9C; | |
3813 T9G = T9E - T9F; | |
3814 T9H = T9D - T9G; | |
3815 TaN = T9D + T9G; | |
3816 } | |
3817 T9I = FMA(KP995184726, T9u, KP098017140 * T9H); | |
3818 TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); | |
3819 TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); | |
3820 TaO = FMA(KP634393284, TaM, KP773010453 * TaN); | |
3821 } | |
3822 { | |
3823 E Tan, TaP, TaA, TaQ; | |
3824 { | |
3825 E T9Z, Tam, Taw, Taz; | |
3826 T9Z = T9N - T9Y; | |
3827 Tam = Taa - Tal; | |
3828 Tan = T9Z - Tam; | |
3829 TaP = T9Z + Tam; | |
3830 Taw = Tas - Tav; | |
3831 Taz = Tax - Tay; | |
3832 TaA = Taw - Taz; | |
3833 TaQ = Taw + Taz; | |
3834 } | |
3835 TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); | |
3836 TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); | |
3837 TaF = FMA(KP098017140, TaA, KP995184726 * Tan); | |
3838 TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); | |
3839 } | |
3840 { | |
3841 E T8P, TaC, TjR, TjU; | |
3842 T8P = T7V + T8O; | |
3843 TaC = T9I + TaB; | |
3844 ri[WS(rs, 47)] = T8P - TaC; | |
3845 ri[WS(rs, 15)] = T8P + TaC; | |
3846 TjR = TaE + TaF; | |
3847 TjU = TjS + TjT; | |
3848 ii[WS(rs, 15)] = TjR + TjU; | |
3849 ii[WS(rs, 47)] = TjU - TjR; | |
3850 } | |
3851 { | |
3852 E TaD, TaG, TjV, TjW; | |
3853 TaD = T7V - T8O; | |
3854 TaG = TaE - TaF; | |
3855 ri[WS(rs, 63)] = TaD - TaG; | |
3856 ri[WS(rs, 31)] = TaD + TaG; | |
3857 TjV = TaB - T9I; | |
3858 TjW = TjT - TjS; | |
3859 ii[WS(rs, 31)] = TjV + TjW; | |
3860 ii[WS(rs, 63)] = TjW - TjV; | |
3861 } | |
3862 { | |
3863 E TaL, TaS, TjJ, TjO; | |
3864 TaL = TaH + TaK; | |
3865 TaS = TaO + TaR; | |
3866 ri[WS(rs, 39)] = TaL - TaS; | |
3867 ri[WS(rs, 7)] = TaL + TaS; | |
3868 TjJ = TaU + TaV; | |
3869 TjO = TjK + TjN; | |
3870 ii[WS(rs, 7)] = TjJ + TjO; | |
3871 ii[WS(rs, 39)] = TjO - TjJ; | |
3872 } | |
3873 { | |
3874 E TaT, TaW, TjP, TjQ; | |
3875 TaT = TaH - TaK; | |
3876 TaW = TaU - TaV; | |
3877 ri[WS(rs, 55)] = TaT - TaW; | |
3878 ri[WS(rs, 23)] = TaT + TaW; | |
3879 TjP = TaR - TaO; | |
3880 TjQ = TjN - TjK; | |
3881 ii[WS(rs, 23)] = TjP + TjQ; | |
3882 ii[WS(rs, 55)] = TjQ - TjP; | |
3883 } | |
3884 } | |
3885 { | |
3886 E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; | |
3887 E Td3; | |
3888 { | |
3889 E TbN, TbU, Tjh, Tji; | |
3890 TbN = TbJ - TbM; | |
3891 TbU = TbQ - TbT; | |
3892 TbV = TbN - TbU; | |
3893 TcT = TbN + TbU; | |
3894 Tjh = Tdb - Tda; | |
3895 Tji = Tj3 - Tj0; | |
3896 Tjj = Tjh + Tji; | |
3897 Tjp = Tji - Tjh; | |
3898 } | |
3899 { | |
3900 E Tc2, TcU, Tc9, TcV; | |
3901 { | |
3902 E TbY, Tc1, Tc5, Tc8; | |
3903 TbY = TbW - TbX; | |
3904 Tc1 = TbZ - Tc0; | |
3905 Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); | |
3906 TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); | |
3907 Tc5 = Tc3 - Tc4; | |
3908 Tc8 = Tc6 - Tc7; | |
3909 Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); | |
3910 TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); | |
3911 } | |
3912 Tca = Tc2 - Tc9; | |
3913 Tjo = TcV - TcU; | |
3914 TcW = TcU + TcV; | |
3915 Tjg = Tc2 + Tc9; | |
3916 } | |
3917 { | |
3918 E Tcm, TcY, Tct, TcZ; | |
3919 { | |
3920 E Tce, Tcl, Tcp, Tcs; | |
3921 Tce = Tcc - Tcd; | |
3922 Tcl = Tch - Tck; | |
3923 Tcm = Tce - Tcl; | |
3924 TcY = Tce + Tcl; | |
3925 Tcp = Tcn - Tco; | |
3926 Tcs = Tcq - Tcr; | |
3927 Tct = Tcp - Tcs; | |
3928 TcZ = Tcp + Tcs; | |
3929 } | |
3930 Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); | |
3931 Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); | |
3932 TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); | |
3933 Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); | |
3934 } | |
3935 { | |
3936 E TcF, Td1, TcM, Td2; | |
3937 { | |
3938 E Tcx, TcE, TcI, TcL; | |
3939 Tcx = Tcv - Tcw; | |
3940 TcE = TcA - TcD; | |
3941 TcF = Tcx - TcE; | |
3942 Td1 = Tcx + TcE; | |
3943 TcI = TcG - TcH; | |
3944 TcL = TcJ - TcK; | |
3945 TcM = TcI - TcL; | |
3946 Td2 = TcI + TcL; | |
3947 } | |
3948 TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); | |
3949 Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); | |
3950 TcR = FMA(KP290284677, TcM, KP956940335 * TcF); | |
3951 Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); | |
3952 } | |
3953 { | |
3954 E Tcb, TcO, Tjn, Tjq; | |
3955 Tcb = TbV + Tca; | |
3956 TcO = Tcu + TcN; | |
3957 ri[WS(rs, 45)] = Tcb - TcO; | |
3958 ri[WS(rs, 13)] = Tcb + TcO; | |
3959 Tjn = TcQ + TcR; | |
3960 Tjq = Tjo + Tjp; | |
3961 ii[WS(rs, 13)] = Tjn + Tjq; | |
3962 ii[WS(rs, 45)] = Tjq - Tjn; | |
3963 } | |
3964 { | |
3965 E TcP, TcS, Tjr, Tjs; | |
3966 TcP = TbV - Tca; | |
3967 TcS = TcQ - TcR; | |
3968 ri[WS(rs, 61)] = TcP - TcS; | |
3969 ri[WS(rs, 29)] = TcP + TcS; | |
3970 Tjr = TcN - Tcu; | |
3971 Tjs = Tjp - Tjo; | |
3972 ii[WS(rs, 29)] = Tjr + Tjs; | |
3973 ii[WS(rs, 61)] = Tjs - Tjr; | |
3974 } | |
3975 { | |
3976 E TcX, Td4, Tjf, Tjk; | |
3977 TcX = TcT + TcW; | |
3978 Td4 = Td0 + Td3; | |
3979 ri[WS(rs, 37)] = TcX - Td4; | |
3980 ri[WS(rs, 5)] = TcX + Td4; | |
3981 Tjf = Td6 + Td7; | |
3982 Tjk = Tjg + Tjj; | |
3983 ii[WS(rs, 5)] = Tjf + Tjk; | |
3984 ii[WS(rs, 37)] = Tjk - Tjf; | |
3985 } | |
3986 { | |
3987 E Td5, Td8, Tjl, Tjm; | |
3988 Td5 = TcT - TcW; | |
3989 Td8 = Td6 - Td7; | |
3990 ri[WS(rs, 53)] = Td5 - Td8; | |
3991 ri[WS(rs, 21)] = Td5 + Td8; | |
3992 Tjl = Td3 - Td0; | |
3993 Tjm = Tjj - Tjg; | |
3994 ii[WS(rs, 21)] = Tjl + Tjm; | |
3995 ii[WS(rs, 53)] = Tjm - Tjl; | |
3996 } | |
3997 } | |
3998 { | |
3999 E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; | |
4000 E TdP; | |
4001 { | |
4002 E Td9, Tdc, TiZ, Tj4; | |
4003 Td9 = TbJ + TbM; | |
4004 Tdc = Tda + Tdb; | |
4005 Tdd = Td9 - Tdc; | |
4006 TdF = Td9 + Tdc; | |
4007 TiZ = TbQ + TbT; | |
4008 Tj4 = Tj0 + Tj3; | |
4009 Tj5 = TiZ + Tj4; | |
4010 Tjb = Tj4 - TiZ; | |
4011 } | |
4012 { | |
4013 E Tdg, TdG, Tdj, TdH; | |
4014 { | |
4015 E Tde, Tdf, Tdh, Tdi; | |
4016 Tde = TbW + TbX; | |
4017 Tdf = TbZ + Tc0; | |
4018 Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); | |
4019 TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); | |
4020 Tdh = Tc3 + Tc4; | |
4021 Tdi = Tc6 + Tc7; | |
4022 Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); | |
4023 TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); | |
4024 } | |
4025 Tdk = Tdg - Tdj; | |
4026 Tja = TdH - TdG; | |
4027 TdI = TdG + TdH; | |
4028 TiY = Tdg + Tdj; | |
4029 } | |
4030 { | |
4031 E Tdo, TdK, Tdr, TdL; | |
4032 { | |
4033 E Tdm, Tdn, Tdp, Tdq; | |
4034 Tdm = Tcn + Tco; | |
4035 Tdn = Tck + Tch; | |
4036 Tdo = Tdm - Tdn; | |
4037 TdK = Tdm + Tdn; | |
4038 Tdp = Tcc + Tcd; | |
4039 Tdq = Tcq + Tcr; | |
4040 Tdr = Tdp - Tdq; | |
4041 TdL = Tdp + Tdq; | |
4042 } | |
4043 Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); | |
4044 TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); | |
4045 TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); | |
4046 TdM = FMA(KP995184726, TdK, KP098017140 * TdL); | |
4047 } | |
4048 { | |
4049 E Tdv, TdN, Tdy, TdO; | |
4050 { | |
4051 E Tdt, Tdu, Tdw, Tdx; | |
4052 Tdt = Tcv + Tcw; | |
4053 Tdu = TcK + TcJ; | |
4054 Tdv = Tdt - Tdu; | |
4055 TdN = Tdt + Tdu; | |
4056 Tdw = TcG + TcH; | |
4057 Tdx = TcA + TcD; | |
4058 Tdy = Tdw - Tdx; | |
4059 TdO = Tdw + Tdx; | |
4060 } | |
4061 Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); | |
4062 TdT = FMA(KP098017140, TdN, KP995184726 * TdO); | |
4063 TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); | |
4064 TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); | |
4065 } | |
4066 { | |
4067 E Tdl, TdA, Tj9, Tjc; | |
4068 Tdl = Tdd + Tdk; | |
4069 TdA = Tds + Tdz; | |
4070 ri[WS(rs, 41)] = Tdl - TdA; | |
4071 ri[WS(rs, 9)] = Tdl + TdA; | |
4072 Tj9 = TdC + TdD; | |
4073 Tjc = Tja + Tjb; | |
4074 ii[WS(rs, 9)] = Tj9 + Tjc; | |
4075 ii[WS(rs, 41)] = Tjc - Tj9; | |
4076 } | |
4077 { | |
4078 E TdB, TdE, Tjd, Tje; | |
4079 TdB = Tdd - Tdk; | |
4080 TdE = TdC - TdD; | |
4081 ri[WS(rs, 57)] = TdB - TdE; | |
4082 ri[WS(rs, 25)] = TdB + TdE; | |
4083 Tjd = Tdz - Tds; | |
4084 Tje = Tjb - Tja; | |
4085 ii[WS(rs, 25)] = Tjd + Tje; | |
4086 ii[WS(rs, 57)] = Tje - Tjd; | |
4087 } | |
4088 { | |
4089 E TdJ, TdQ, TiX, Tj6; | |
4090 TdJ = TdF + TdI; | |
4091 TdQ = TdM + TdP; | |
4092 ri[WS(rs, 33)] = TdJ - TdQ; | |
4093 ri[WS(rs, 1)] = TdJ + TdQ; | |
4094 TiX = TdS + TdT; | |
4095 Tj6 = TiY + Tj5; | |
4096 ii[WS(rs, 1)] = TiX + Tj6; | |
4097 ii[WS(rs, 33)] = Tj6 - TiX; | |
4098 } | |
4099 { | |
4100 E TdR, TdU, Tj7, Tj8; | |
4101 TdR = TdF - TdI; | |
4102 TdU = TdS - TdT; | |
4103 ri[WS(rs, 49)] = TdR - TdU; | |
4104 ri[WS(rs, 17)] = TdR + TdU; | |
4105 Tj7 = TdP - TdM; | |
4106 Tj8 = Tj5 - TiY; | |
4107 ii[WS(rs, 17)] = Tj7 + Tj8; | |
4108 ii[WS(rs, 49)] = Tj8 - Tj7; | |
4109 } | |
4110 } | |
4111 { | |
4112 E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; | |
4113 E TbD; | |
4114 { | |
4115 E TaX, Tb0, Tjv, Tjy; | |
4116 TaX = T7l + T7w; | |
4117 Tb0 = TaY + TaZ; | |
4118 Tb1 = TaX - Tb0; | |
4119 Tbt = TaX + Tb0; | |
4120 Tjv = T7I + T7T; | |
4121 Tjy = Tjw + Tjx; | |
4122 Tjz = Tjv + Tjy; | |
4123 TjF = Tjy - Tjv; | |
4124 } | |
4125 { | |
4126 E Tb4, Tbu, Tb7, Tbv; | |
4127 { | |
4128 E Tb2, Tb3, Tb5, Tb6; | |
4129 Tb2 = T80 + T8b; | |
4130 Tb3 = T8h + T8k; | |
4131 Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); | |
4132 Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); | |
4133 Tb5 = T8r + T8C; | |
4134 Tb6 = T8I + T8L; | |
4135 Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); | |
4136 Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); | |
4137 } | |
4138 Tb8 = Tb4 - Tb7; | |
4139 TjE = Tbv - Tbu; | |
4140 Tbw = Tbu + Tbv; | |
4141 Tju = Tb4 + Tb7; | |
4142 } | |
4143 { | |
4144 E Tbc, Tby, Tbf, Tbz; | |
4145 { | |
4146 E Tba, Tbb, Tbd, Tbe; | |
4147 Tba = T9z + T9C; | |
4148 Tbb = T9s + T9h; | |
4149 Tbc = Tba - Tbb; | |
4150 Tby = Tba + Tbb; | |
4151 Tbd = T8U + T95; | |
4152 Tbe = T9E + T9F; | |
4153 Tbf = Tbd - Tbe; | |
4154 Tbz = Tbd + Tbe; | |
4155 } | |
4156 Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); | |
4157 TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); | |
4158 Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); | |
4159 TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); | |
4160 } | |
4161 { | |
4162 E Tbj, TbB, Tbm, TbC; | |
4163 { | |
4164 E Tbh, Tbi, Tbk, Tbl; | |
4165 Tbh = T9N + T9Y; | |
4166 Tbi = Tay + Tax; | |
4167 Tbj = Tbh - Tbi; | |
4168 TbB = Tbh + Tbi; | |
4169 Tbk = Tas + Tav; | |
4170 Tbl = Taa + Tal; | |
4171 Tbm = Tbk - Tbl; | |
4172 TbC = Tbk + Tbl; | |
4173 } | |
4174 Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); | |
4175 TbH = FMA(KP290284677, TbB, KP956940335 * TbC); | |
4176 Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); | |
4177 TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); | |
4178 } | |
4179 { | |
4180 E Tb9, Tbo, TjD, TjG; | |
4181 Tb9 = Tb1 + Tb8; | |
4182 Tbo = Tbg + Tbn; | |
4183 ri[WS(rs, 43)] = Tb9 - Tbo; | |
4184 ri[WS(rs, 11)] = Tb9 + Tbo; | |
4185 TjD = Tbq + Tbr; | |
4186 TjG = TjE + TjF; | |
4187 ii[WS(rs, 11)] = TjD + TjG; | |
4188 ii[WS(rs, 43)] = TjG - TjD; | |
4189 } | |
4190 { | |
4191 E Tbp, Tbs, TjH, TjI; | |
4192 Tbp = Tb1 - Tb8; | |
4193 Tbs = Tbq - Tbr; | |
4194 ri[WS(rs, 59)] = Tbp - Tbs; | |
4195 ri[WS(rs, 27)] = Tbp + Tbs; | |
4196 TjH = Tbn - Tbg; | |
4197 TjI = TjF - TjE; | |
4198 ii[WS(rs, 27)] = TjH + TjI; | |
4199 ii[WS(rs, 59)] = TjI - TjH; | |
4200 } | |
4201 { | |
4202 E Tbx, TbE, Tjt, TjA; | |
4203 Tbx = Tbt + Tbw; | |
4204 TbE = TbA + TbD; | |
4205 ri[WS(rs, 35)] = Tbx - TbE; | |
4206 ri[WS(rs, 3)] = Tbx + TbE; | |
4207 Tjt = TbG + TbH; | |
4208 TjA = Tju + Tjz; | |
4209 ii[WS(rs, 3)] = Tjt + TjA; | |
4210 ii[WS(rs, 35)] = TjA - Tjt; | |
4211 } | |
4212 { | |
4213 E TbF, TbI, TjB, TjC; | |
4214 TbF = Tbt - Tbw; | |
4215 TbI = TbG - TbH; | |
4216 ri[WS(rs, 51)] = TbF - TbI; | |
4217 ri[WS(rs, 19)] = TbF + TbI; | |
4218 TjB = TbD - TbA; | |
4219 TjC = Tjz - Tju; | |
4220 ii[WS(rs, 19)] = TjB + TjC; | |
4221 ii[WS(rs, 51)] = TjC - TjB; | |
4222 } | |
4223 } | |
4224 } | |
4225 } | |
4226 } | |
4227 } | |
4228 | |
4229 static const tw_instr twinstr[] = { | |
4230 {TW_CEXP, 0, 1}, | |
4231 {TW_CEXP, 0, 3}, | |
4232 {TW_CEXP, 0, 9}, | |
4233 {TW_CEXP, 0, 27}, | |
4234 {TW_CEXP, 0, 63}, | |
4235 {TW_NEXT, 1, 0} | |
4236 }; | |
4237 | |
4238 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 }; | |
4239 | |
4240 void X(codelet_t2_64) (planner *p) { | |
4241 X(kdft_dit_register) (p, t2_64, &desc); | |
4242 } | |
4243 #endif |