comparison src/fftw-3.3.8/dft/scalar/codelets/t2_32.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:20 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 488 FP additions, 350 FP multiplications,
32 * (or, 236 additions, 98 multiplications, 252 fused multiply/add),
33 * 164 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT m;
48 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
49 E T2, T8, T3, T6, Te, Ti, T5, T7, TJ, Tb, TM, Tc, Ts, T23, T1w;
50 E T19, TA, TE, T1s, T1N, T1o, T1C, T1F, T1K, T15, T11, T2F, T31, T2J, T34;
51 E T3f, T3z, T3j, T3C, Tw, T3M, T3Q, T1z, T2s, T2w, T1d, T3n, T3r, T26, T2T;
52 E T2X, Th, TR, TP, Td, Tj, TW, Tn, TS, T1U, T2b, T29, T1R, T1V, T2g;
53 E T1Z, T2c;
54 {
55 E Tz, T1n, T10, TD, T1r, T14, T9, T1Q, Tv, T1c;
56 {
57 E T4, T18, Ta, Tr;
58 T2 = W[0];
59 T8 = W[4];
60 T3 = W[2];
61 T6 = W[3];
62 T4 = T2 * T3;
63 T18 = T3 * T8;
64 Ta = T2 * T6;
65 Tr = T2 * T8;
66 Te = W[6];
67 Tz = T3 * Te;
68 T1n = T8 * Te;
69 T10 = T2 * Te;
70 Ti = W[7];
71 TD = T3 * Ti;
72 T1r = T8 * Ti;
73 T14 = T2 * Ti;
74 T5 = W[1];
75 T7 = FMA(T5, T6, T4);
76 TJ = FNMS(T5, T6, T4);
77 T9 = T7 * T8;
78 T1Q = TJ * T8;
79 Tb = FNMS(T5, T3, Ta);
80 TM = FMA(T5, T3, Ta);
81 Tc = W[5];
82 Tv = T2 * Tc;
83 T1c = T3 * Tc;
84 Ts = FMA(T5, Tc, Tr);
85 T23 = FMA(T6, Tc, T18);
86 T1w = FNMS(T5, Tc, Tr);
87 T19 = FNMS(T6, Tc, T18);
88 }
89 TA = FMA(T6, Ti, Tz);
90 TE = FNMS(T6, Te, TD);
91 T1s = FNMS(Tc, Te, T1r);
92 T1N = FMA(T6, Te, TD);
93 T1o = FMA(Tc, Ti, T1n);
94 T1C = FMA(T5, Ti, T10);
95 T1F = FNMS(T5, Te, T14);
96 T1K = FNMS(T6, Ti, Tz);
97 T15 = FMA(T5, Te, T14);
98 T11 = FNMS(T5, Ti, T10);
99 {
100 E T2E, T2I, T2S, T2W;
101 T2E = T7 * Te;
102 T2F = FMA(Tb, Ti, T2E);
103 T31 = FNMS(Tb, Ti, T2E);
104 T2I = T7 * Ti;
105 T2J = FNMS(Tb, Te, T2I);
106 T34 = FMA(Tb, Te, T2I);
107 {
108 E T3e, T3i, T3L, T3P;
109 T3e = TJ * Te;
110 T3f = FNMS(TM, Ti, T3e);
111 T3z = FMA(TM, Ti, T3e);
112 T3i = TJ * Ti;
113 T3j = FMA(TM, Te, T3i);
114 T3C = FNMS(TM, Te, T3i);
115 T3L = Ts * Te;
116 T3P = Ts * Ti;
117 Tw = FNMS(T5, T8, Tv);
118 T3M = FMA(Tw, Ti, T3L);
119 T3Q = FNMS(Tw, Te, T3P);
120 }
121 {
122 E T2r, T2v, T3m, T3q;
123 T2r = T1w * Te;
124 T2v = T1w * Ti;
125 T1z = FMA(T5, T8, Tv);
126 T2s = FMA(T1z, Ti, T2r);
127 T2w = FNMS(T1z, Te, T2v);
128 T3m = T19 * Te;
129 T3q = T19 * Ti;
130 T1d = FMA(T6, T8, T1c);
131 T3n = FMA(T1d, Ti, T3m);
132 T3r = FNMS(T1d, Te, T3q);
133 }
134 T2S = T23 * Te;
135 T2W = T23 * Ti;
136 T26 = FNMS(T6, T8, T1c);
137 T2T = FMA(T26, Ti, T2S);
138 T2X = FNMS(T26, Te, T2W);
139 {
140 E TQ, TV, Tf, Tm, Tg;
141 Tg = T7 * Tc;
142 Th = FMA(Tb, T8, Tg);
143 TR = FNMS(Tb, T8, Tg);
144 TP = FMA(Tb, Tc, T9);
145 TQ = TP * Te;
146 TV = TP * Ti;
147 Td = FNMS(Tb, Tc, T9);
148 Tf = Td * Te;
149 Tm = Td * Ti;
150 Tj = FMA(Th, Ti, Tf);
151 TW = FNMS(TR, Te, TV);
152 Tn = FNMS(Th, Te, Tm);
153 TS = FMA(TR, Ti, TQ);
154 }
155 {
156 E T2a, T2f, T1S, T1Y, T1T;
157 T1T = TJ * Tc;
158 T1U = FMA(TM, T8, T1T);
159 T2b = FNMS(TM, T8, T1T);
160 T29 = FMA(TM, Tc, T1Q);
161 T2a = T29 * Te;
162 T2f = T29 * Ti;
163 T1R = FNMS(TM, Tc, T1Q);
164 T1S = T1R * Te;
165 T1Y = T1R * Ti;
166 T1V = FMA(T1U, Ti, T1S);
167 T2g = FNMS(T2b, Te, T2f);
168 T1Z = FNMS(T1U, Te, T1Y);
169 T2c = FMA(T2b, Ti, T2a);
170 }
171 }
172 }
173 {
174 E Tq, T46, T8H, T97, TH, T98, T4b, T8D, TZ, T7f, T4j, T6t, T1g, T7g, T4q;
175 E T6u, T1v, T1I, T7m, T7j, T7k, T7l, T4z, T6x, T4G, T6y, T22, T2j, T7o, T7p;
176 E T7q, T7r, T4O, T6A, T4V, T6B, T3G, T7L, T7I, T8n, T5E, T6P, T61, T6M, T2N;
177 E T7A, T7x, T8i, T55, T6I, T5s, T6F, T43, T7J, T7O, T8o, T5L, T62, T5S, T63;
178 E T3c, T7y, T7D, T8j, T5c, T5t, T5j, T5u;
179 {
180 E T1, T8G, Tk, Tl, To, T8E, Tp, T8F;
181 T1 = ri[0];
182 T8G = ii[0];
183 Tk = ri[WS(rs, 16)];
184 Tl = Tj * Tk;
185 To = ii[WS(rs, 16)];
186 T8E = Tj * To;
187 Tp = FMA(Tn, To, Tl);
188 Tq = T1 + Tp;
189 T46 = T1 - Tp;
190 T8F = FNMS(Tn, Tk, T8E);
191 T8H = T8F + T8G;
192 T97 = T8G - T8F;
193 }
194 {
195 E Tt, Tu, Tx, T47, TB, TC, TF, T49;
196 Tt = ri[WS(rs, 8)];
197 Tu = Ts * Tt;
198 Tx = ii[WS(rs, 8)];
199 T47 = Ts * Tx;
200 TB = ri[WS(rs, 24)];
201 TC = TA * TB;
202 TF = ii[WS(rs, 24)];
203 T49 = TA * TF;
204 {
205 E Ty, TG, T48, T4a;
206 Ty = FMA(Tw, Tx, Tu);
207 TG = FMA(TE, TF, TC);
208 TH = Ty + TG;
209 T98 = Ty - TG;
210 T48 = FNMS(Tw, Tt, T47);
211 T4a = FNMS(TE, TB, T49);
212 T4b = T48 - T4a;
213 T8D = T48 + T4a;
214 }
215 }
216 {
217 E TO, T4f, TY, T4h, T4d, T4i;
218 {
219 E TK, TL, TN, T4e;
220 TK = ri[WS(rs, 4)];
221 TL = TJ * TK;
222 TN = ii[WS(rs, 4)];
223 T4e = TJ * TN;
224 TO = FMA(TM, TN, TL);
225 T4f = FNMS(TM, TK, T4e);
226 }
227 {
228 E TT, TU, TX, T4g;
229 TT = ri[WS(rs, 20)];
230 TU = TS * TT;
231 TX = ii[WS(rs, 20)];
232 T4g = TS * TX;
233 TY = FMA(TW, TX, TU);
234 T4h = FNMS(TW, TT, T4g);
235 }
236 TZ = TO + TY;
237 T7f = T4f + T4h;
238 T4d = TO - TY;
239 T4i = T4f - T4h;
240 T4j = T4d + T4i;
241 T6t = T4i - T4d;
242 }
243 {
244 E T17, T4m, T1f, T4o, T4k, T4p;
245 {
246 E T12, T13, T16, T4l;
247 T12 = ri[WS(rs, 28)];
248 T13 = T11 * T12;
249 T16 = ii[WS(rs, 28)];
250 T4l = T11 * T16;
251 T17 = FMA(T15, T16, T13);
252 T4m = FNMS(T15, T12, T4l);
253 }
254 {
255 E T1a, T1b, T1e, T4n;
256 T1a = ri[WS(rs, 12)];
257 T1b = T19 * T1a;
258 T1e = ii[WS(rs, 12)];
259 T4n = T19 * T1e;
260 T1f = FMA(T1d, T1e, T1b);
261 T4o = FNMS(T1d, T1a, T4n);
262 }
263 T1g = T17 + T1f;
264 T7g = T4m + T4o;
265 T4k = T17 - T1f;
266 T4p = T4m - T4o;
267 T4q = T4k - T4p;
268 T6u = T4k + T4p;
269 }
270 {
271 E T1m, T4u, T1H, T4E, T1u, T4w, T1B, T4C;
272 {
273 E T1j, T1k, T1l, T4t;
274 T1j = ri[WS(rs, 2)];
275 T1k = T7 * T1j;
276 T1l = ii[WS(rs, 2)];
277 T4t = T7 * T1l;
278 T1m = FMA(Tb, T1l, T1k);
279 T4u = FNMS(Tb, T1j, T4t);
280 }
281 {
282 E T1D, T1E, T1G, T4D;
283 T1D = ri[WS(rs, 26)];
284 T1E = T1C * T1D;
285 T1G = ii[WS(rs, 26)];
286 T4D = T1C * T1G;
287 T1H = FMA(T1F, T1G, T1E);
288 T4E = FNMS(T1F, T1D, T4D);
289 }
290 {
291 E T1p, T1q, T1t, T4v;
292 T1p = ri[WS(rs, 18)];
293 T1q = T1o * T1p;
294 T1t = ii[WS(rs, 18)];
295 T4v = T1o * T1t;
296 T1u = FMA(T1s, T1t, T1q);
297 T4w = FNMS(T1s, T1p, T4v);
298 }
299 {
300 E T1x, T1y, T1A, T4B;
301 T1x = ri[WS(rs, 10)];
302 T1y = T1w * T1x;
303 T1A = ii[WS(rs, 10)];
304 T4B = T1w * T1A;
305 T1B = FMA(T1z, T1A, T1y);
306 T4C = FNMS(T1z, T1x, T4B);
307 }
308 T1v = T1m + T1u;
309 T1I = T1B + T1H;
310 T7m = T1v - T1I;
311 T7j = T4u + T4w;
312 T7k = T4C + T4E;
313 T7l = T7j - T7k;
314 {
315 E T4x, T4y, T4A, T4F;
316 T4x = T4u - T4w;
317 T4y = T1B - T1H;
318 T4z = T4x - T4y;
319 T6x = T4x + T4y;
320 T4A = T1m - T1u;
321 T4F = T4C - T4E;
322 T4G = T4A + T4F;
323 T6y = T4A - T4F;
324 }
325 }
326 {
327 E T1P, T4J, T2i, T4T, T21, T4L, T28, T4R;
328 {
329 E T1L, T1M, T1O, T4I;
330 T1L = ri[WS(rs, 30)];
331 T1M = T1K * T1L;
332 T1O = ii[WS(rs, 30)];
333 T4I = T1K * T1O;
334 T1P = FMA(T1N, T1O, T1M);
335 T4J = FNMS(T1N, T1L, T4I);
336 }
337 {
338 E T2d, T2e, T2h, T4S;
339 T2d = ri[WS(rs, 22)];
340 T2e = T2c * T2d;
341 T2h = ii[WS(rs, 22)];
342 T4S = T2c * T2h;
343 T2i = FMA(T2g, T2h, T2e);
344 T4T = FNMS(T2g, T2d, T4S);
345 }
346 {
347 E T1W, T1X, T20, T4K;
348 T1W = ri[WS(rs, 14)];
349 T1X = T1V * T1W;
350 T20 = ii[WS(rs, 14)];
351 T4K = T1V * T20;
352 T21 = FMA(T1Z, T20, T1X);
353 T4L = FNMS(T1Z, T1W, T4K);
354 }
355 {
356 E T24, T25, T27, T4Q;
357 T24 = ri[WS(rs, 6)];
358 T25 = T23 * T24;
359 T27 = ii[WS(rs, 6)];
360 T4Q = T23 * T27;
361 T28 = FMA(T26, T27, T25);
362 T4R = FNMS(T26, T24, T4Q);
363 }
364 T22 = T1P + T21;
365 T2j = T28 + T2i;
366 T7o = T22 - T2j;
367 T7p = T4J + T4L;
368 T7q = T4R + T4T;
369 T7r = T7p - T7q;
370 {
371 E T4M, T4N, T4P, T4U;
372 T4M = T4J - T4L;
373 T4N = T28 - T2i;
374 T4O = T4M - T4N;
375 T6A = T4M + T4N;
376 T4P = T1P - T21;
377 T4U = T4R - T4T;
378 T4V = T4P + T4U;
379 T6B = T4P - T4U;
380 }
381 }
382 {
383 E T3l, T5z, T3E, T5Z, T3t, T5B, T3y, T5X;
384 {
385 E T3g, T3h, T3k, T5y;
386 T3g = ri[WS(rs, 31)];
387 T3h = T3f * T3g;
388 T3k = ii[WS(rs, 31)];
389 T5y = T3f * T3k;
390 T3l = FMA(T3j, T3k, T3h);
391 T5z = FNMS(T3j, T3g, T5y);
392 }
393 {
394 E T3A, T3B, T3D, T5Y;
395 T3A = ri[WS(rs, 23)];
396 T3B = T3z * T3A;
397 T3D = ii[WS(rs, 23)];
398 T5Y = T3z * T3D;
399 T3E = FMA(T3C, T3D, T3B);
400 T5Z = FNMS(T3C, T3A, T5Y);
401 }
402 {
403 E T3o, T3p, T3s, T5A;
404 T3o = ri[WS(rs, 15)];
405 T3p = T3n * T3o;
406 T3s = ii[WS(rs, 15)];
407 T5A = T3n * T3s;
408 T3t = FMA(T3r, T3s, T3p);
409 T5B = FNMS(T3r, T3o, T5A);
410 }
411 {
412 E T3v, T3w, T3x, T5W;
413 T3v = ri[WS(rs, 7)];
414 T3w = TP * T3v;
415 T3x = ii[WS(rs, 7)];
416 T5W = TP * T3x;
417 T3y = FMA(TR, T3x, T3w);
418 T5X = FNMS(TR, T3v, T5W);
419 }
420 {
421 E T3u, T3F, T7G, T7H;
422 T3u = T3l + T3t;
423 T3F = T3y + T3E;
424 T3G = T3u + T3F;
425 T7L = T3u - T3F;
426 T7G = T5z + T5B;
427 T7H = T5X + T5Z;
428 T7I = T7G - T7H;
429 T8n = T7G + T7H;
430 }
431 {
432 E T5C, T5D, T5V, T60;
433 T5C = T5z - T5B;
434 T5D = T3y - T3E;
435 T5E = T5C - T5D;
436 T6P = T5C + T5D;
437 T5V = T3l - T3t;
438 T60 = T5X - T5Z;
439 T61 = T5V + T60;
440 T6M = T5V - T60;
441 }
442 }
443 {
444 E T2q, T50, T2L, T5q, T2y, T52, T2D, T5o;
445 {
446 E T2n, T2o, T2p, T4Z;
447 T2n = ri[WS(rs, 1)];
448 T2o = T2 * T2n;
449 T2p = ii[WS(rs, 1)];
450 T4Z = T2 * T2p;
451 T2q = FMA(T5, T2p, T2o);
452 T50 = FNMS(T5, T2n, T4Z);
453 }
454 {
455 E T2G, T2H, T2K, T5p;
456 T2G = ri[WS(rs, 25)];
457 T2H = T2F * T2G;
458 T2K = ii[WS(rs, 25)];
459 T5p = T2F * T2K;
460 T2L = FMA(T2J, T2K, T2H);
461 T5q = FNMS(T2J, T2G, T5p);
462 }
463 {
464 E T2t, T2u, T2x, T51;
465 T2t = ri[WS(rs, 17)];
466 T2u = T2s * T2t;
467 T2x = ii[WS(rs, 17)];
468 T51 = T2s * T2x;
469 T2y = FMA(T2w, T2x, T2u);
470 T52 = FNMS(T2w, T2t, T51);
471 }
472 {
473 E T2A, T2B, T2C, T5n;
474 T2A = ri[WS(rs, 9)];
475 T2B = T8 * T2A;
476 T2C = ii[WS(rs, 9)];
477 T5n = T8 * T2C;
478 T2D = FMA(Tc, T2C, T2B);
479 T5o = FNMS(Tc, T2A, T5n);
480 }
481 {
482 E T2z, T2M, T7v, T7w;
483 T2z = T2q + T2y;
484 T2M = T2D + T2L;
485 T2N = T2z + T2M;
486 T7A = T2z - T2M;
487 T7v = T50 + T52;
488 T7w = T5o + T5q;
489 T7x = T7v - T7w;
490 T8i = T7v + T7w;
491 }
492 {
493 E T53, T54, T5m, T5r;
494 T53 = T50 - T52;
495 T54 = T2D - T2L;
496 T55 = T53 - T54;
497 T6I = T53 + T54;
498 T5m = T2q - T2y;
499 T5r = T5o - T5q;
500 T5s = T5m + T5r;
501 T6F = T5m - T5r;
502 }
503 }
504 {
505 E T3K, T5G, T41, T5Q, T3S, T5I, T3X, T5O;
506 {
507 E T3H, T3I, T3J, T5F;
508 T3H = ri[WS(rs, 3)];
509 T3I = T3 * T3H;
510 T3J = ii[WS(rs, 3)];
511 T5F = T3 * T3J;
512 T3K = FMA(T6, T3J, T3I);
513 T5G = FNMS(T6, T3H, T5F);
514 }
515 {
516 E T3Y, T3Z, T40, T5P;
517 T3Y = ri[WS(rs, 11)];
518 T3Z = Td * T3Y;
519 T40 = ii[WS(rs, 11)];
520 T5P = Td * T40;
521 T41 = FMA(Th, T40, T3Z);
522 T5Q = FNMS(Th, T3Y, T5P);
523 }
524 {
525 E T3N, T3O, T3R, T5H;
526 T3N = ri[WS(rs, 19)];
527 T3O = T3M * T3N;
528 T3R = ii[WS(rs, 19)];
529 T5H = T3M * T3R;
530 T3S = FMA(T3Q, T3R, T3O);
531 T5I = FNMS(T3Q, T3N, T5H);
532 }
533 {
534 E T3U, T3V, T3W, T5N;
535 T3U = ri[WS(rs, 27)];
536 T3V = Te * T3U;
537 T3W = ii[WS(rs, 27)];
538 T5N = Te * T3W;
539 T3X = FMA(Ti, T3W, T3V);
540 T5O = FNMS(Ti, T3U, T5N);
541 }
542 {
543 E T3T, T42, T7M, T7N;
544 T3T = T3K + T3S;
545 T42 = T3X + T41;
546 T43 = T3T + T42;
547 T7J = T42 - T3T;
548 T7M = T5G + T5I;
549 T7N = T5O + T5Q;
550 T7O = T7M - T7N;
551 T8o = T7M + T7N;
552 }
553 {
554 E T5J, T5K, T5M, T5R;
555 T5J = T5G - T5I;
556 T5K = T3K - T3S;
557 T5L = T5J - T5K;
558 T62 = T5K + T5J;
559 T5M = T3X - T41;
560 T5R = T5O - T5Q;
561 T5S = T5M + T5R;
562 T63 = T5M - T5R;
563 }
564 }
565 {
566 E T2R, T57, T3a, T5h, T2Z, T59, T36, T5f;
567 {
568 E T2O, T2P, T2Q, T56;
569 T2O = ri[WS(rs, 5)];
570 T2P = T29 * T2O;
571 T2Q = ii[WS(rs, 5)];
572 T56 = T29 * T2Q;
573 T2R = FMA(T2b, T2Q, T2P);
574 T57 = FNMS(T2b, T2O, T56);
575 }
576 {
577 E T37, T38, T39, T5g;
578 T37 = ri[WS(rs, 13)];
579 T38 = T1R * T37;
580 T39 = ii[WS(rs, 13)];
581 T5g = T1R * T39;
582 T3a = FMA(T1U, T39, T38);
583 T5h = FNMS(T1U, T37, T5g);
584 }
585 {
586 E T2U, T2V, T2Y, T58;
587 T2U = ri[WS(rs, 21)];
588 T2V = T2T * T2U;
589 T2Y = ii[WS(rs, 21)];
590 T58 = T2T * T2Y;
591 T2Z = FMA(T2X, T2Y, T2V);
592 T59 = FNMS(T2X, T2U, T58);
593 }
594 {
595 E T32, T33, T35, T5e;
596 T32 = ri[WS(rs, 29)];
597 T33 = T31 * T32;
598 T35 = ii[WS(rs, 29)];
599 T5e = T31 * T35;
600 T36 = FMA(T34, T35, T33);
601 T5f = FNMS(T34, T32, T5e);
602 }
603 {
604 E T30, T3b, T7B, T7C;
605 T30 = T2R + T2Z;
606 T3b = T36 + T3a;
607 T3c = T30 + T3b;
608 T7y = T3b - T30;
609 T7B = T57 + T59;
610 T7C = T5f + T5h;
611 T7D = T7B - T7C;
612 T8j = T7B + T7C;
613 }
614 {
615 E T5a, T5b, T5d, T5i;
616 T5a = T57 - T59;
617 T5b = T2R - T2Z;
618 T5c = T5a - T5b;
619 T5t = T5b + T5a;
620 T5d = T36 - T3a;
621 T5i = T5f - T5h;
622 T5j = T5d + T5i;
623 T5u = T5d - T5i;
624 }
625 }
626 {
627 E T1i, T8c, T8z, T8A, T8J, T8O, T2l, T8N, T45, T8L, T8l, T8t, T8q, T8u, T8f;
628 E T8B;
629 {
630 E TI, T1h, T8x, T8y;
631 TI = Tq + TH;
632 T1h = TZ + T1g;
633 T1i = TI + T1h;
634 T8c = TI - T1h;
635 T8x = T8i + T8j;
636 T8y = T8n + T8o;
637 T8z = T8x - T8y;
638 T8A = T8x + T8y;
639 }
640 {
641 E T8C, T8I, T1J, T2k;
642 T8C = T7f + T7g;
643 T8I = T8D + T8H;
644 T8J = T8C + T8I;
645 T8O = T8I - T8C;
646 T1J = T1v + T1I;
647 T2k = T22 + T2j;
648 T2l = T1J + T2k;
649 T8N = T2k - T1J;
650 }
651 {
652 E T3d, T44, T8h, T8k;
653 T3d = T2N + T3c;
654 T44 = T3G + T43;
655 T45 = T3d + T44;
656 T8L = T44 - T3d;
657 T8h = T2N - T3c;
658 T8k = T8i - T8j;
659 T8l = T8h + T8k;
660 T8t = T8k - T8h;
661 }
662 {
663 E T8m, T8p, T8d, T8e;
664 T8m = T3G - T43;
665 T8p = T8n - T8o;
666 T8q = T8m - T8p;
667 T8u = T8m + T8p;
668 T8d = T7j + T7k;
669 T8e = T7p + T7q;
670 T8f = T8d - T8e;
671 T8B = T8d + T8e;
672 }
673 {
674 E T2m, T8K, T8w, T8M;
675 T2m = T1i + T2l;
676 ri[WS(rs, 16)] = T2m - T45;
677 ri[0] = T2m + T45;
678 T8K = T8B + T8J;
679 ii[0] = T8A + T8K;
680 ii[WS(rs, 16)] = T8K - T8A;
681 T8w = T1i - T2l;
682 ri[WS(rs, 24)] = T8w - T8z;
683 ri[WS(rs, 8)] = T8w + T8z;
684 T8M = T8J - T8B;
685 ii[WS(rs, 8)] = T8L + T8M;
686 ii[WS(rs, 24)] = T8M - T8L;
687 }
688 {
689 E T8g, T8r, T8P, T8Q;
690 T8g = T8c + T8f;
691 T8r = T8l + T8q;
692 ri[WS(rs, 20)] = FNMS(KP707106781, T8r, T8g);
693 ri[WS(rs, 4)] = FMA(KP707106781, T8r, T8g);
694 T8P = T8N + T8O;
695 T8Q = T8t + T8u;
696 ii[WS(rs, 4)] = FMA(KP707106781, T8Q, T8P);
697 ii[WS(rs, 20)] = FNMS(KP707106781, T8Q, T8P);
698 }
699 {
700 E T8s, T8v, T8R, T8S;
701 T8s = T8c - T8f;
702 T8v = T8t - T8u;
703 ri[WS(rs, 28)] = FNMS(KP707106781, T8v, T8s);
704 ri[WS(rs, 12)] = FMA(KP707106781, T8v, T8s);
705 T8R = T8O - T8N;
706 T8S = T8q - T8l;
707 ii[WS(rs, 12)] = FMA(KP707106781, T8S, T8R);
708 ii[WS(rs, 28)] = FNMS(KP707106781, T8S, T8R);
709 }
710 }
711 {
712 E T7i, T7W, T86, T8a, T8V, T91, T7t, T8W, T7F, T7T, T7Z, T92, T83, T89, T7Q;
713 E T7U;
714 {
715 E T7e, T7h, T84, T85;
716 T7e = Tq - TH;
717 T7h = T7f - T7g;
718 T7i = T7e - T7h;
719 T7W = T7e + T7h;
720 T84 = T7L + T7O;
721 T85 = T7I + T7J;
722 T86 = FNMS(KP414213562, T85, T84);
723 T8a = FMA(KP414213562, T84, T85);
724 }
725 {
726 E T8T, T8U, T7n, T7s;
727 T8T = T1g - TZ;
728 T8U = T8H - T8D;
729 T8V = T8T + T8U;
730 T91 = T8U - T8T;
731 T7n = T7l - T7m;
732 T7s = T7o + T7r;
733 T7t = T7n - T7s;
734 T8W = T7n + T7s;
735 }
736 {
737 E T7z, T7E, T7X, T7Y;
738 T7z = T7x - T7y;
739 T7E = T7A - T7D;
740 T7F = FMA(KP414213562, T7E, T7z);
741 T7T = FNMS(KP414213562, T7z, T7E);
742 T7X = T7m + T7l;
743 T7Y = T7o - T7r;
744 T7Z = T7X + T7Y;
745 T92 = T7Y - T7X;
746 }
747 {
748 E T81, T82, T7K, T7P;
749 T81 = T7A + T7D;
750 T82 = T7x + T7y;
751 T83 = FMA(KP414213562, T82, T81);
752 T89 = FNMS(KP414213562, T81, T82);
753 T7K = T7I - T7J;
754 T7P = T7L - T7O;
755 T7Q = FNMS(KP414213562, T7P, T7K);
756 T7U = FMA(KP414213562, T7K, T7P);
757 }
758 {
759 E T7u, T7R, T93, T94;
760 T7u = FMA(KP707106781, T7t, T7i);
761 T7R = T7F - T7Q;
762 ri[WS(rs, 22)] = FNMS(KP923879532, T7R, T7u);
763 ri[WS(rs, 6)] = FMA(KP923879532, T7R, T7u);
764 T93 = FMA(KP707106781, T92, T91);
765 T94 = T7U - T7T;
766 ii[WS(rs, 6)] = FMA(KP923879532, T94, T93);
767 ii[WS(rs, 22)] = FNMS(KP923879532, T94, T93);
768 }
769 {
770 E T7S, T7V, T95, T96;
771 T7S = FNMS(KP707106781, T7t, T7i);
772 T7V = T7T + T7U;
773 ri[WS(rs, 14)] = FNMS(KP923879532, T7V, T7S);
774 ri[WS(rs, 30)] = FMA(KP923879532, T7V, T7S);
775 T95 = FNMS(KP707106781, T92, T91);
776 T96 = T7F + T7Q;
777 ii[WS(rs, 14)] = FNMS(KP923879532, T96, T95);
778 ii[WS(rs, 30)] = FMA(KP923879532, T96, T95);
779 }
780 {
781 E T80, T87, T8X, T8Y;
782 T80 = FMA(KP707106781, T7Z, T7W);
783 T87 = T83 + T86;
784 ri[WS(rs, 18)] = FNMS(KP923879532, T87, T80);
785 ri[WS(rs, 2)] = FMA(KP923879532, T87, T80);
786 T8X = FMA(KP707106781, T8W, T8V);
787 T8Y = T89 + T8a;
788 ii[WS(rs, 2)] = FMA(KP923879532, T8Y, T8X);
789 ii[WS(rs, 18)] = FNMS(KP923879532, T8Y, T8X);
790 }
791 {
792 E T88, T8b, T8Z, T90;
793 T88 = FNMS(KP707106781, T7Z, T7W);
794 T8b = T89 - T8a;
795 ri[WS(rs, 26)] = FNMS(KP923879532, T8b, T88);
796 ri[WS(rs, 10)] = FMA(KP923879532, T8b, T88);
797 T8Z = FNMS(KP707106781, T8W, T8V);
798 T90 = T86 - T83;
799 ii[WS(rs, 10)] = FMA(KP923879532, T90, T8Z);
800 ii[WS(rs, 26)] = FNMS(KP923879532, T90, T8Z);
801 }
802 }
803 {
804 E T4s, T6c, T4X, T9c, T9b, T9h, T6f, T9i, T66, T6q, T6a, T6m, T5x, T6p, T69;
805 E T6j;
806 {
807 E T4c, T4r, T6d, T6e;
808 T4c = T46 + T4b;
809 T4r = T4j + T4q;
810 T4s = FNMS(KP707106781, T4r, T4c);
811 T6c = FMA(KP707106781, T4r, T4c);
812 {
813 E T4H, T4W, T99, T9a;
814 T4H = FNMS(KP414213562, T4G, T4z);
815 T4W = FMA(KP414213562, T4V, T4O);
816 T4X = T4H - T4W;
817 T9c = T4H + T4W;
818 T99 = T97 - T98;
819 T9a = T6t + T6u;
820 T9b = FMA(KP707106781, T9a, T99);
821 T9h = FNMS(KP707106781, T9a, T99);
822 }
823 T6d = FMA(KP414213562, T4z, T4G);
824 T6e = FNMS(KP414213562, T4O, T4V);
825 T6f = T6d + T6e;
826 T9i = T6e - T6d;
827 {
828 E T5U, T6l, T65, T6k, T5T, T64;
829 T5T = T5L + T5S;
830 T5U = FNMS(KP707106781, T5T, T5E);
831 T6l = FMA(KP707106781, T5T, T5E);
832 T64 = T62 + T63;
833 T65 = FNMS(KP707106781, T64, T61);
834 T6k = FMA(KP707106781, T64, T61);
835 T66 = FNMS(KP668178637, T65, T5U);
836 T6q = FMA(KP198912367, T6k, T6l);
837 T6a = FMA(KP668178637, T5U, T65);
838 T6m = FNMS(KP198912367, T6l, T6k);
839 }
840 {
841 E T5l, T6i, T5w, T6h, T5k, T5v;
842 T5k = T5c + T5j;
843 T5l = FNMS(KP707106781, T5k, T55);
844 T6i = FMA(KP707106781, T5k, T55);
845 T5v = T5t + T5u;
846 T5w = FNMS(KP707106781, T5v, T5s);
847 T6h = FMA(KP707106781, T5v, T5s);
848 T5x = FMA(KP668178637, T5w, T5l);
849 T6p = FNMS(KP198912367, T6h, T6i);
850 T69 = FNMS(KP668178637, T5l, T5w);
851 T6j = FMA(KP198912367, T6i, T6h);
852 }
853 }
854 {
855 E T4Y, T67, T9j, T9k;
856 T4Y = FMA(KP923879532, T4X, T4s);
857 T67 = T5x - T66;
858 ri[WS(rs, 21)] = FNMS(KP831469612, T67, T4Y);
859 ri[WS(rs, 5)] = FMA(KP831469612, T67, T4Y);
860 T9j = FMA(KP923879532, T9i, T9h);
861 T9k = T6a - T69;
862 ii[WS(rs, 5)] = FMA(KP831469612, T9k, T9j);
863 ii[WS(rs, 21)] = FNMS(KP831469612, T9k, T9j);
864 }
865 {
866 E T68, T6b, T9l, T9m;
867 T68 = FNMS(KP923879532, T4X, T4s);
868 T6b = T69 + T6a;
869 ri[WS(rs, 13)] = FNMS(KP831469612, T6b, T68);
870 ri[WS(rs, 29)] = FMA(KP831469612, T6b, T68);
871 T9l = FNMS(KP923879532, T9i, T9h);
872 T9m = T5x + T66;
873 ii[WS(rs, 13)] = FNMS(KP831469612, T9m, T9l);
874 ii[WS(rs, 29)] = FMA(KP831469612, T9m, T9l);
875 }
876 {
877 E T6g, T6n, T9d, T9e;
878 T6g = FMA(KP923879532, T6f, T6c);
879 T6n = T6j + T6m;
880 ri[WS(rs, 17)] = FNMS(KP980785280, T6n, T6g);
881 ri[WS(rs, 1)] = FMA(KP980785280, T6n, T6g);
882 T9d = FMA(KP923879532, T9c, T9b);
883 T9e = T6p + T6q;
884 ii[WS(rs, 1)] = FMA(KP980785280, T9e, T9d);
885 ii[WS(rs, 17)] = FNMS(KP980785280, T9e, T9d);
886 }
887 {
888 E T6o, T6r, T9f, T9g;
889 T6o = FNMS(KP923879532, T6f, T6c);
890 T6r = T6p - T6q;
891 ri[WS(rs, 25)] = FNMS(KP980785280, T6r, T6o);
892 ri[WS(rs, 9)] = FMA(KP980785280, T6r, T6o);
893 T9f = FNMS(KP923879532, T9c, T9b);
894 T9g = T6m - T6j;
895 ii[WS(rs, 9)] = FMA(KP980785280, T9g, T9f);
896 ii[WS(rs, 25)] = FNMS(KP980785280, T9g, T9f);
897 }
898 }
899 {
900 E T6w, T6Y, T6D, T9w, T9p, T9v, T71, T9q, T6S, T7c, T6W, T78, T6L, T7b, T6V;
901 E T75;
902 {
903 E T6s, T6v, T6Z, T70;
904 T6s = T46 - T4b;
905 T6v = T6t - T6u;
906 T6w = FMA(KP707106781, T6v, T6s);
907 T6Y = FNMS(KP707106781, T6v, T6s);
908 {
909 E T6z, T6C, T9n, T9o;
910 T6z = FMA(KP414213562, T6y, T6x);
911 T6C = FNMS(KP414213562, T6B, T6A);
912 T6D = T6z - T6C;
913 T9w = T6z + T6C;
914 T9n = T98 + T97;
915 T9o = T4q - T4j;
916 T9p = FMA(KP707106781, T9o, T9n);
917 T9v = FNMS(KP707106781, T9o, T9n);
918 }
919 T6Z = FNMS(KP414213562, T6x, T6y);
920 T70 = FMA(KP414213562, T6A, T6B);
921 T71 = T6Z + T70;
922 T9q = T70 - T6Z;
923 {
924 E T6O, T77, T6R, T76, T6N, T6Q;
925 T6N = T5S - T5L;
926 T6O = FNMS(KP707106781, T6N, T6M);
927 T77 = FMA(KP707106781, T6N, T6M);
928 T6Q = T62 - T63;
929 T6R = FNMS(KP707106781, T6Q, T6P);
930 T76 = FMA(KP707106781, T6Q, T6P);
931 T6S = FNMS(KP668178637, T6R, T6O);
932 T7c = FMA(KP198912367, T76, T77);
933 T6W = FMA(KP668178637, T6O, T6R);
934 T78 = FNMS(KP198912367, T77, T76);
935 }
936 {
937 E T6H, T74, T6K, T73, T6G, T6J;
938 T6G = T5j - T5c;
939 T6H = FNMS(KP707106781, T6G, T6F);
940 T74 = FMA(KP707106781, T6G, T6F);
941 T6J = T5t - T5u;
942 T6K = FNMS(KP707106781, T6J, T6I);
943 T73 = FMA(KP707106781, T6J, T6I);
944 T6L = FMA(KP668178637, T6K, T6H);
945 T7b = FNMS(KP198912367, T73, T74);
946 T6V = FNMS(KP668178637, T6H, T6K);
947 T75 = FMA(KP198912367, T74, T73);
948 }
949 }
950 {
951 E T6E, T6T, T9r, T9s;
952 T6E = FMA(KP923879532, T6D, T6w);
953 T6T = T6L + T6S;
954 ri[WS(rs, 19)] = FNMS(KP831469612, T6T, T6E);
955 ri[WS(rs, 3)] = FMA(KP831469612, T6T, T6E);
956 T9r = FMA(KP923879532, T9q, T9p);
957 T9s = T6V + T6W;
958 ii[WS(rs, 3)] = FMA(KP831469612, T9s, T9r);
959 ii[WS(rs, 19)] = FNMS(KP831469612, T9s, T9r);
960 }
961 {
962 E T6U, T6X, T9t, T9u;
963 T6U = FNMS(KP923879532, T6D, T6w);
964 T6X = T6V - T6W;
965 ri[WS(rs, 27)] = FNMS(KP831469612, T6X, T6U);
966 ri[WS(rs, 11)] = FMA(KP831469612, T6X, T6U);
967 T9t = FNMS(KP923879532, T9q, T9p);
968 T9u = T6S - T6L;
969 ii[WS(rs, 11)] = FMA(KP831469612, T9u, T9t);
970 ii[WS(rs, 27)] = FNMS(KP831469612, T9u, T9t);
971 }
972 {
973 E T72, T79, T9x, T9y;
974 T72 = FNMS(KP923879532, T71, T6Y);
975 T79 = T75 - T78;
976 ri[WS(rs, 23)] = FNMS(KP980785280, T79, T72);
977 ri[WS(rs, 7)] = FMA(KP980785280, T79, T72);
978 T9x = FNMS(KP923879532, T9w, T9v);
979 T9y = T7c - T7b;
980 ii[WS(rs, 7)] = FMA(KP980785280, T9y, T9x);
981 ii[WS(rs, 23)] = FNMS(KP980785280, T9y, T9x);
982 }
983 {
984 E T7a, T7d, T9z, T9A;
985 T7a = FMA(KP923879532, T71, T6Y);
986 T7d = T7b + T7c;
987 ri[WS(rs, 15)] = FNMS(KP980785280, T7d, T7a);
988 ri[WS(rs, 31)] = FMA(KP980785280, T7d, T7a);
989 T9z = FMA(KP923879532, T9w, T9v);
990 T9A = T75 + T78;
991 ii[WS(rs, 15)] = FNMS(KP980785280, T9A, T9z);
992 ii[WS(rs, 31)] = FMA(KP980785280, T9A, T9z);
993 }
994 }
995 }
996 }
997 }
998 }
999
1000 static const tw_instr twinstr[] = {
1001 {TW_CEXP, 0, 1},
1002 {TW_CEXP, 0, 3},
1003 {TW_CEXP, 0, 9},
1004 {TW_CEXP, 0, 27},
1005 {TW_NEXT, 1, 0}
1006 };
1007
1008 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 };
1009
1010 void X(codelet_t2_32) (planner *p) {
1011 X(kdft_dit_register) (p, t2_32, &desc);
1012 }
1013 #else
1014
1015 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */
1016
1017 /*
1018 * This function contains 488 FP additions, 280 FP multiplications,
1019 * (or, 376 additions, 168 multiplications, 112 fused multiply/add),
1020 * 158 stack variables, 7 constants, and 128 memory accesses
1021 */
1022 #include "dft/scalar/t.h"
1023
1024 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
1025 {
1026 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1027 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1028 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1029 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1030 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1031 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1032 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1033 {
1034 INT m;
1035 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
1036 E T2, T5, T3, T6, T8, TM, TO, Td, T9, Te, Th, Tl, TD, TH, T1y;
1037 E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d;
1038 E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C;
1039 E T2E, Tg, TR, Tk, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25;
1040 E T1S, T23;
1041 {
1042 E Ts, T1d, Tx, T18, Tt, T1c, Tw, T19, TB, T14, TG, TZ, TC, T13, TF;
1043 E T10;
1044 {
1045 E T4, Tc, T7, Tb;
1046 T2 = W[0];
1047 T5 = W[1];
1048 T3 = W[2];
1049 T6 = W[3];
1050 T4 = T2 * T3;
1051 Tc = T5 * T3;
1052 T7 = T5 * T6;
1053 Tb = T2 * T6;
1054 T8 = T4 + T7;
1055 TM = T4 - T7;
1056 TO = Tb + Tc;
1057 Td = Tb - Tc;
1058 T9 = W[4];
1059 Ts = T2 * T9;
1060 T1d = T6 * T9;
1061 Tx = T5 * T9;
1062 T18 = T3 * T9;
1063 Te = W[5];
1064 Tt = T5 * Te;
1065 T1c = T3 * Te;
1066 Tw = T2 * Te;
1067 T19 = T6 * Te;
1068 Th = W[6];
1069 TB = T3 * Th;
1070 T14 = T5 * Th;
1071 TG = T6 * Th;
1072 TZ = T2 * Th;
1073 Tl = W[7];
1074 TC = T6 * Tl;
1075 T13 = T2 * Tl;
1076 TF = T3 * Tl;
1077 T10 = T5 * Tl;
1078 }
1079 TD = TB + TC;
1080 TH = TF - TG;
1081 T1y = TZ + T10;
1082 T1H = TF + TG;
1083 T15 = T13 + T14;
1084 T1A = T13 - T14;
1085 T11 = TZ - T10;
1086 T1F = TB - TC;
1087 T1n = FMA(T9, Th, Te * Tl);
1088 T1p = FNMS(Te, Th, T9 * Tl);
1089 {
1090 E T2o, T2p, T2s, T2t;
1091 T2o = T8 * Th;
1092 T2p = Td * Tl;
1093 T2q = T2o + T2p;
1094 T2I = T2o - T2p;
1095 T2s = T8 * Tl;
1096 T2t = Td * Th;
1097 T2u = T2s - T2t;
1098 T2K = T2s + T2t;
1099 }
1100 {
1101 E T2T, T2U, T2X, T2Y;
1102 T2T = TM * Th;
1103 T2U = TO * Tl;
1104 T2V = T2T - T2U;
1105 T3b = T2T + T2U;
1106 T2X = TM * Tl;
1107 T2Y = TO * Th;
1108 T2Z = T2X + T2Y;
1109 T3d = T2X - T2Y;
1110 Tu = Ts + Tt;
1111 Ty = Tw - Tx;
1112 T3l = FMA(Tu, Th, Ty * Tl);
1113 T3n = FNMS(Ty, Th, Tu * Tl);
1114 }
1115 T1t = Ts - Tt;
1116 T1v = Tw + Tx;
1117 T2f = FMA(T1t, Th, T1v * Tl);
1118 T2h = FNMS(T1v, Th, T1t * Tl);
1119 T1a = T18 - T19;
1120 T1e = T1c + T1d;
1121 T32 = FMA(T1a, Th, T1e * Tl);
1122 T34 = FNMS(T1e, Th, T1a * Tl);
1123 T1W = T18 + T19;
1124 T1Y = T1c - T1d;
1125 T2C = FMA(T1W, Th, T1Y * Tl);
1126 T2E = FNMS(T1Y, Th, T1W * Tl);
1127 {
1128 E Ta, Tf, Ti, Tj;
1129 Ta = T8 * T9;
1130 Tf = Td * Te;
1131 Tg = Ta - Tf;
1132 TR = Ta + Tf;
1133 Ti = T8 * Te;
1134 Tj = Td * T9;
1135 Tk = Ti + Tj;
1136 TS = Ti - Tj;
1137 }
1138 Tm = FMA(Tg, Th, Tk * Tl);
1139 TV = FNMS(TS, Th, TR * Tl);
1140 To = FNMS(Tk, Th, Tg * Tl);
1141 TT = FMA(TR, Th, TS * Tl);
1142 {
1143 E T1K, T1L, T1N, T1O;
1144 T1K = TM * T9;
1145 T1L = TO * Te;
1146 T1M = T1K - T1L;
1147 T21 = T1K + T1L;
1148 T1N = TM * Te;
1149 T1O = TO * T9;
1150 T1P = T1N + T1O;
1151 T22 = T1N - T1O;
1152 }
1153 T1Q = FMA(T1M, Th, T1P * Tl);
1154 T25 = FNMS(T22, Th, T21 * Tl);
1155 T1S = FNMS(T1P, Th, T1M * Tl);
1156 T23 = FMA(T21, Th, T22 * Tl);
1157 }
1158 {
1159 E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T2y, T6B, T6y, T7j, T4k, T5J, T4B;
1160 E T5G, T3h, T6H, T6O, T7o, T4L, T5N, T52, T5Q, T1i, T7V, T6i, T7D, T3K, T5u;
1161 E T3P, T5v, T1E, T6n, T6m, T7e, T3W, T5y, T41, T5z, T29, T6p, T6s, T7f, T47;
1162 E T5B, T4c, T5C, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p;
1163 E T4W, T5R, T55, T5O;
1164 {
1165 E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp;
1166 T1 = ri[0];
1167 T7G = ii[0];
1168 Tn = ri[WS(rs, 16)];
1169 Tp = ii[WS(rs, 16)];
1170 Tq = FMA(Tm, Tn, To * Tp);
1171 T7F = FNMS(To, Tn, Tm * Tp);
1172 {
1173 E Tv, Tz, TE, TI;
1174 Tv = ri[WS(rs, 8)];
1175 Tz = ii[WS(rs, 8)];
1176 TA = FMA(Tu, Tv, Ty * Tz);
1177 T3C = FNMS(Ty, Tv, Tu * Tz);
1178 TE = ri[WS(rs, 24)];
1179 TI = ii[WS(rs, 24)];
1180 TJ = FMA(TD, TE, TH * TI);
1181 T3D = FNMS(TH, TE, TD * TI);
1182 }
1183 {
1184 E Tr, TK, T8a, T8b;
1185 Tr = T1 + Tq;
1186 TK = TA + TJ;
1187 TL = Tr + TK;
1188 T6f = Tr - TK;
1189 T8a = T7G - T7F;
1190 T8b = TA - TJ;
1191 T8c = T8a - T8b;
1192 T8q = T8b + T8a;
1193 }
1194 {
1195 E T3B, T3E, T7E, T7H;
1196 T3B = T1 - Tq;
1197 T3E = T3C - T3D;
1198 T3F = T3B - T3E;
1199 T5t = T3B + T3E;
1200 T7E = T3C + T3D;
1201 T7H = T7F + T7G;
1202 T7I = T7E + T7H;
1203 T7W = T7H - T7E;
1204 }
1205 }
1206 {
1207 E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y;
1208 {
1209 E T2c, T2d, T2r, T2v;
1210 T2c = ri[WS(rs, 1)];
1211 T2d = ii[WS(rs, 1)];
1212 T2e = FMA(T2, T2c, T5 * T2d);
1213 T4g = FNMS(T5, T2c, T2 * T2d);
1214 T2r = ri[WS(rs, 25)];
1215 T2v = ii[WS(rs, 25)];
1216 T2w = FMA(T2q, T2r, T2u * T2v);
1217 T4z = FNMS(T2u, T2r, T2q * T2v);
1218 }
1219 {
1220 E T2g, T2i, T2l, T2m;
1221 T2g = ri[WS(rs, 17)];
1222 T2i = ii[WS(rs, 17)];
1223 T2j = FMA(T2f, T2g, T2h * T2i);
1224 T4h = FNMS(T2h, T2g, T2f * T2i);
1225 T2l = ri[WS(rs, 9)];
1226 T2m = ii[WS(rs, 9)];
1227 T2n = FMA(T9, T2l, Te * T2m);
1228 T4y = FNMS(Te, T2l, T9 * T2m);
1229 }
1230 {
1231 E T2k, T2x, T6w, T6x;
1232 T2k = T2e + T2j;
1233 T2x = T2n + T2w;
1234 T2y = T2k + T2x;
1235 T6B = T2k - T2x;
1236 T6w = T4g + T4h;
1237 T6x = T4y + T4z;
1238 T6y = T6w - T6x;
1239 T7j = T6w + T6x;
1240 }
1241 {
1242 E T4i, T4j, T4x, T4A;
1243 T4i = T4g - T4h;
1244 T4j = T2n - T2w;
1245 T4k = T4i + T4j;
1246 T5J = T4i - T4j;
1247 T4x = T2e - T2j;
1248 T4A = T4y - T4z;
1249 T4B = T4x - T4A;
1250 T5G = T4x + T4A;
1251 }
1252 }
1253 {
1254 E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I;
1255 {
1256 E T2W, T30, T3c, T3e;
1257 T2W = ri[WS(rs, 31)];
1258 T30 = ii[WS(rs, 31)];
1259 T31 = FMA(T2V, T2W, T2Z * T30);
1260 T4Y = FNMS(T2Z, T2W, T2V * T30);
1261 T3c = ri[WS(rs, 23)];
1262 T3e = ii[WS(rs, 23)];
1263 T3f = FMA(T3b, T3c, T3d * T3e);
1264 T4J = FNMS(T3d, T3c, T3b * T3e);
1265 }
1266 {
1267 E T33, T35, T38, T39;
1268 T33 = ri[WS(rs, 15)];
1269 T35 = ii[WS(rs, 15)];
1270 T36 = FMA(T32, T33, T34 * T35);
1271 T4Z = FNMS(T34, T33, T32 * T35);
1272 T38 = ri[WS(rs, 7)];
1273 T39 = ii[WS(rs, 7)];
1274 T3a = FMA(TR, T38, TS * T39);
1275 T4I = FNMS(TS, T38, TR * T39);
1276 }
1277 {
1278 E T37, T3g, T6M, T6N;
1279 T37 = T31 + T36;
1280 T3g = T3a + T3f;
1281 T3h = T37 + T3g;
1282 T6H = T37 - T3g;
1283 T6M = T4Y + T4Z;
1284 T6N = T4I + T4J;
1285 T6O = T6M - T6N;
1286 T7o = T6M + T6N;
1287 }
1288 {
1289 E T4H, T4K, T50, T51;
1290 T4H = T31 - T36;
1291 T4K = T4I - T4J;
1292 T4L = T4H - T4K;
1293 T5N = T4H + T4K;
1294 T50 = T4Y - T4Z;
1295 T51 = T3a - T3f;
1296 T52 = T50 + T51;
1297 T5Q = T50 - T51;
1298 }
1299 }
1300 {
1301 E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M;
1302 {
1303 E TN, TP, T1b, T1f;
1304 TN = ri[WS(rs, 4)];
1305 TP = ii[WS(rs, 4)];
1306 TQ = FMA(TM, TN, TO * TP);
1307 T3G = FNMS(TO, TN, TM * TP);
1308 T1b = ri[WS(rs, 12)];
1309 T1f = ii[WS(rs, 12)];
1310 T1g = FMA(T1a, T1b, T1e * T1f);
1311 T3N = FNMS(T1e, T1b, T1a * T1f);
1312 }
1313 {
1314 E TU, TW, T12, T16;
1315 TU = ri[WS(rs, 20)];
1316 TW = ii[WS(rs, 20)];
1317 TX = FMA(TT, TU, TV * TW);
1318 T3H = FNMS(TV, TU, TT * TW);
1319 T12 = ri[WS(rs, 28)];
1320 T16 = ii[WS(rs, 28)];
1321 T17 = FMA(T11, T12, T15 * T16);
1322 T3M = FNMS(T15, T12, T11 * T16);
1323 }
1324 {
1325 E TY, T1h, T6g, T6h;
1326 TY = TQ + TX;
1327 T1h = T17 + T1g;
1328 T1i = TY + T1h;
1329 T7V = T1h - TY;
1330 T6g = T3G + T3H;
1331 T6h = T3M + T3N;
1332 T6i = T6g - T6h;
1333 T7D = T6g + T6h;
1334 }
1335 {
1336 E T3I, T3J, T3L, T3O;
1337 T3I = T3G - T3H;
1338 T3J = TQ - TX;
1339 T3K = T3I - T3J;
1340 T5u = T3J + T3I;
1341 T3L = T17 - T1g;
1342 T3O = T3M - T3N;
1343 T3P = T3L + T3O;
1344 T5v = T3L - T3O;
1345 }
1346 }
1347 {
1348 E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y;
1349 {
1350 E T1k, T1l, T1z, T1B;
1351 T1k = ri[WS(rs, 2)];
1352 T1l = ii[WS(rs, 2)];
1353 T1m = FMA(T8, T1k, Td * T1l);
1354 T3S = FNMS(Td, T1k, T8 * T1l);
1355 T1z = ri[WS(rs, 26)];
1356 T1B = ii[WS(rs, 26)];
1357 T1C = FMA(T1y, T1z, T1A * T1B);
1358 T3Z = FNMS(T1A, T1z, T1y * T1B);
1359 }
1360 {
1361 E T1o, T1q, T1u, T1w;
1362 T1o = ri[WS(rs, 18)];
1363 T1q = ii[WS(rs, 18)];
1364 T1r = FMA(T1n, T1o, T1p * T1q);
1365 T3T = FNMS(T1p, T1o, T1n * T1q);
1366 T1u = ri[WS(rs, 10)];
1367 T1w = ii[WS(rs, 10)];
1368 T1x = FMA(T1t, T1u, T1v * T1w);
1369 T3Y = FNMS(T1v, T1u, T1t * T1w);
1370 }
1371 {
1372 E T1s, T1D, T6k, T6l;
1373 T1s = T1m + T1r;
1374 T1D = T1x + T1C;
1375 T1E = T1s + T1D;
1376 T6n = T1s - T1D;
1377 T6k = T3S + T3T;
1378 T6l = T3Y + T3Z;
1379 T6m = T6k - T6l;
1380 T7e = T6k + T6l;
1381 }
1382 {
1383 E T3U, T3V, T3X, T40;
1384 T3U = T3S - T3T;
1385 T3V = T1x - T1C;
1386 T3W = T3U + T3V;
1387 T5y = T3U - T3V;
1388 T3X = T1m - T1r;
1389 T40 = T3Y - T3Z;
1390 T41 = T3X - T40;
1391 T5z = T3X + T40;
1392 }
1393 }
1394 {
1395 E T1J, T43, T27, T4a, T1U, T44, T20, T49;
1396 {
1397 E T1G, T1I, T24, T26;
1398 T1G = ri[WS(rs, 30)];
1399 T1I = ii[WS(rs, 30)];
1400 T1J = FMA(T1F, T1G, T1H * T1I);
1401 T43 = FNMS(T1H, T1G, T1F * T1I);
1402 T24 = ri[WS(rs, 22)];
1403 T26 = ii[WS(rs, 22)];
1404 T27 = FMA(T23, T24, T25 * T26);
1405 T4a = FNMS(T25, T24, T23 * T26);
1406 }
1407 {
1408 E T1R, T1T, T1X, T1Z;
1409 T1R = ri[WS(rs, 14)];
1410 T1T = ii[WS(rs, 14)];
1411 T1U = FMA(T1Q, T1R, T1S * T1T);
1412 T44 = FNMS(T1S, T1R, T1Q * T1T);
1413 T1X = ri[WS(rs, 6)];
1414 T1Z = ii[WS(rs, 6)];
1415 T20 = FMA(T1W, T1X, T1Y * T1Z);
1416 T49 = FNMS(T1Y, T1X, T1W * T1Z);
1417 }
1418 {
1419 E T1V, T28, T6q, T6r;
1420 T1V = T1J + T1U;
1421 T28 = T20 + T27;
1422 T29 = T1V + T28;
1423 T6p = T1V - T28;
1424 T6q = T43 + T44;
1425 T6r = T49 + T4a;
1426 T6s = T6q - T6r;
1427 T7f = T6q + T6r;
1428 }
1429 {
1430 E T45, T46, T48, T4b;
1431 T45 = T43 - T44;
1432 T46 = T20 - T27;
1433 T47 = T45 + T46;
1434 T5B = T45 - T46;
1435 T48 = T1J - T1U;
1436 T4b = T49 - T4a;
1437 T4c = T48 - T4b;
1438 T5C = T48 + T4b;
1439 }
1440 }
1441 {
1442 E T2B, T4r, T2G, T4s, T4q, T4t, T2M, T4m, T2P, T4n, T4l, T4o;
1443 {
1444 E T2z, T2A, T2D, T2F;
1445 T2z = ri[WS(rs, 5)];
1446 T2A = ii[WS(rs, 5)];
1447 T2B = FMA(T21, T2z, T22 * T2A);
1448 T4r = FNMS(T22, T2z, T21 * T2A);
1449 T2D = ri[WS(rs, 21)];
1450 T2F = ii[WS(rs, 21)];
1451 T2G = FMA(T2C, T2D, T2E * T2F);
1452 T4s = FNMS(T2E, T2D, T2C * T2F);
1453 }
1454 T4q = T2B - T2G;
1455 T4t = T4r - T4s;
1456 {
1457 E T2J, T2L, T2N, T2O;
1458 T2J = ri[WS(rs, 29)];
1459 T2L = ii[WS(rs, 29)];
1460 T2M = FMA(T2I, T2J, T2K * T2L);
1461 T4m = FNMS(T2K, T2J, T2I * T2L);
1462 T2N = ri[WS(rs, 13)];
1463 T2O = ii[WS(rs, 13)];
1464 T2P = FMA(T1M, T2N, T1P * T2O);
1465 T4n = FNMS(T1P, T2N, T1M * T2O);
1466 }
1467 T4l = T2M - T2P;
1468 T4o = T4m - T4n;
1469 {
1470 E T2H, T2Q, T6C, T6D;
1471 T2H = T2B + T2G;
1472 T2Q = T2M + T2P;
1473 T2R = T2H + T2Q;
1474 T6z = T2Q - T2H;
1475 T6C = T4r + T4s;
1476 T6D = T4m + T4n;
1477 T6E = T6C - T6D;
1478 T7k = T6C + T6D;
1479 }
1480 {
1481 E T4p, T4u, T4C, T4D;
1482 T4p = T4l - T4o;
1483 T4u = T4q + T4t;
1484 T4v = KP707106781 * (T4p - T4u);
1485 T5H = KP707106781 * (T4u + T4p);
1486 T4C = T4t - T4q;
1487 T4D = T4l + T4o;
1488 T4E = KP707106781 * (T4C - T4D);
1489 T5K = KP707106781 * (T4C + T4D);
1490 }
1491 }
1492 {
1493 E T3k, T4M, T3p, T4N, T4O, T4P, T3t, T4S, T3w, T4T, T4R, T4U;
1494 {
1495 E T3i, T3j, T3m, T3o;
1496 T3i = ri[WS(rs, 3)];
1497 T3j = ii[WS(rs, 3)];
1498 T3k = FMA(T3, T3i, T6 * T3j);
1499 T4M = FNMS(T6, T3i, T3 * T3j);
1500 T3m = ri[WS(rs, 19)];
1501 T3o = ii[WS(rs, 19)];
1502 T3p = FMA(T3l, T3m, T3n * T3o);
1503 T4N = FNMS(T3n, T3m, T3l * T3o);
1504 }
1505 T4O = T4M - T4N;
1506 T4P = T3k - T3p;
1507 {
1508 E T3r, T3s, T3u, T3v;
1509 T3r = ri[WS(rs, 27)];
1510 T3s = ii[WS(rs, 27)];
1511 T3t = FMA(Th, T3r, Tl * T3s);
1512 T4S = FNMS(Tl, T3r, Th * T3s);
1513 T3u = ri[WS(rs, 11)];
1514 T3v = ii[WS(rs, 11)];
1515 T3w = FMA(Tg, T3u, Tk * T3v);
1516 T4T = FNMS(Tk, T3u, Tg * T3v);
1517 }
1518 T4R = T3t - T3w;
1519 T4U = T4S - T4T;
1520 {
1521 E T3q, T3x, T6I, T6J;
1522 T3q = T3k + T3p;
1523 T3x = T3t + T3w;
1524 T3y = T3q + T3x;
1525 T6P = T3x - T3q;
1526 T6I = T4M + T4N;
1527 T6J = T4S + T4T;
1528 T6K = T6I - T6J;
1529 T7p = T6I + T6J;
1530 }
1531 {
1532 E T4Q, T4V, T53, T54;
1533 T4Q = T4O - T4P;
1534 T4V = T4R + T4U;
1535 T4W = KP707106781 * (T4Q - T4V);
1536 T5R = KP707106781 * (T4Q + T4V);
1537 T53 = T4R - T4U;
1538 T54 = T4P + T4O;
1539 T55 = KP707106781 * (T53 - T54);
1540 T5O = KP707106781 * (T54 + T53);
1541 }
1542 }
1543 {
1544 E T2b, T7x, T7K, T7M, T3A, T7L, T7A, T7B;
1545 {
1546 E T1j, T2a, T7C, T7J;
1547 T1j = TL + T1i;
1548 T2a = T1E + T29;
1549 T2b = T1j + T2a;
1550 T7x = T1j - T2a;
1551 T7C = T7e + T7f;
1552 T7J = T7D + T7I;
1553 T7K = T7C + T7J;
1554 T7M = T7J - T7C;
1555 }
1556 {
1557 E T2S, T3z, T7y, T7z;
1558 T2S = T2y + T2R;
1559 T3z = T3h + T3y;
1560 T3A = T2S + T3z;
1561 T7L = T3z - T2S;
1562 T7y = T7j + T7k;
1563 T7z = T7o + T7p;
1564 T7A = T7y - T7z;
1565 T7B = T7y + T7z;
1566 }
1567 ri[WS(rs, 16)] = T2b - T3A;
1568 ii[WS(rs, 16)] = T7K - T7B;
1569 ri[0] = T2b + T3A;
1570 ii[0] = T7B + T7K;
1571 ri[WS(rs, 24)] = T7x - T7A;
1572 ii[WS(rs, 24)] = T7M - T7L;
1573 ri[WS(rs, 8)] = T7x + T7A;
1574 ii[WS(rs, 8)] = T7L + T7M;
1575 }
1576 {
1577 E T7h, T7t, T7Q, T7S, T7m, T7u, T7r, T7v;
1578 {
1579 E T7d, T7g, T7O, T7P;
1580 T7d = TL - T1i;
1581 T7g = T7e - T7f;
1582 T7h = T7d + T7g;
1583 T7t = T7d - T7g;
1584 T7O = T29 - T1E;
1585 T7P = T7I - T7D;
1586 T7Q = T7O + T7P;
1587 T7S = T7P - T7O;
1588 }
1589 {
1590 E T7i, T7l, T7n, T7q;
1591 T7i = T2y - T2R;
1592 T7l = T7j - T7k;
1593 T7m = T7i + T7l;
1594 T7u = T7l - T7i;
1595 T7n = T3h - T3y;
1596 T7q = T7o - T7p;
1597 T7r = T7n - T7q;
1598 T7v = T7n + T7q;
1599 }
1600 {
1601 E T7s, T7N, T7w, T7R;
1602 T7s = KP707106781 * (T7m + T7r);
1603 ri[WS(rs, 20)] = T7h - T7s;
1604 ri[WS(rs, 4)] = T7h + T7s;
1605 T7N = KP707106781 * (T7u + T7v);
1606 ii[WS(rs, 4)] = T7N + T7Q;
1607 ii[WS(rs, 20)] = T7Q - T7N;
1608 T7w = KP707106781 * (T7u - T7v);
1609 ri[WS(rs, 28)] = T7t - T7w;
1610 ri[WS(rs, 12)] = T7t + T7w;
1611 T7R = KP707106781 * (T7r - T7m);
1612 ii[WS(rs, 12)] = T7R + T7S;
1613 ii[WS(rs, 28)] = T7S - T7R;
1614 }
1615 }
1616 {
1617 E T6j, T7X, T83, T6X, T6u, T7U, T77, T7b, T70, T82, T6G, T6U, T74, T7a, T6R;
1618 E T6V;
1619 {
1620 E T6o, T6t, T6A, T6F;
1621 T6j = T6f - T6i;
1622 T7X = T7V + T7W;
1623 T83 = T7W - T7V;
1624 T6X = T6f + T6i;
1625 T6o = T6m - T6n;
1626 T6t = T6p + T6s;
1627 T6u = KP707106781 * (T6o - T6t);
1628 T7U = KP707106781 * (T6o + T6t);
1629 {
1630 E T75, T76, T6Y, T6Z;
1631 T75 = T6H + T6K;
1632 T76 = T6O + T6P;
1633 T77 = FNMS(KP382683432, T76, KP923879532 * T75);
1634 T7b = FMA(KP923879532, T76, KP382683432 * T75);
1635 T6Y = T6n + T6m;
1636 T6Z = T6p - T6s;
1637 T70 = KP707106781 * (T6Y + T6Z);
1638 T82 = KP707106781 * (T6Z - T6Y);
1639 }
1640 T6A = T6y - T6z;
1641 T6F = T6B - T6E;
1642 T6G = FMA(KP923879532, T6A, KP382683432 * T6F);
1643 T6U = FNMS(KP923879532, T6F, KP382683432 * T6A);
1644 {
1645 E T72, T73, T6L, T6Q;
1646 T72 = T6y + T6z;
1647 T73 = T6B + T6E;
1648 T74 = FMA(KP382683432, T72, KP923879532 * T73);
1649 T7a = FNMS(KP382683432, T73, KP923879532 * T72);
1650 T6L = T6H - T6K;
1651 T6Q = T6O - T6P;
1652 T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L);
1653 T6V = FMA(KP382683432, T6Q, KP923879532 * T6L);
1654 }
1655 }
1656 {
1657 E T6v, T6S, T81, T84;
1658 T6v = T6j + T6u;
1659 T6S = T6G + T6R;
1660 ri[WS(rs, 22)] = T6v - T6S;
1661 ri[WS(rs, 6)] = T6v + T6S;
1662 T81 = T6U + T6V;
1663 T84 = T82 + T83;
1664 ii[WS(rs, 6)] = T81 + T84;
1665 ii[WS(rs, 22)] = T84 - T81;
1666 }
1667 {
1668 E T6T, T6W, T85, T86;
1669 T6T = T6j - T6u;
1670 T6W = T6U - T6V;
1671 ri[WS(rs, 30)] = T6T - T6W;
1672 ri[WS(rs, 14)] = T6T + T6W;
1673 T85 = T6R - T6G;
1674 T86 = T83 - T82;
1675 ii[WS(rs, 14)] = T85 + T86;
1676 ii[WS(rs, 30)] = T86 - T85;
1677 }
1678 {
1679 E T71, T78, T7T, T7Y;
1680 T71 = T6X + T70;
1681 T78 = T74 + T77;
1682 ri[WS(rs, 18)] = T71 - T78;
1683 ri[WS(rs, 2)] = T71 + T78;
1684 T7T = T7a + T7b;
1685 T7Y = T7U + T7X;
1686 ii[WS(rs, 2)] = T7T + T7Y;
1687 ii[WS(rs, 18)] = T7Y - T7T;
1688 }
1689 {
1690 E T79, T7c, T7Z, T80;
1691 T79 = T6X - T70;
1692 T7c = T7a - T7b;
1693 ri[WS(rs, 26)] = T79 - T7c;
1694 ri[WS(rs, 10)] = T79 + T7c;
1695 T7Z = T77 - T74;
1696 T80 = T7X - T7U;
1697 ii[WS(rs, 10)] = T7Z + T80;
1698 ii[WS(rs, 26)] = T80 - T7Z;
1699 }
1700 }
1701 {
1702 E T3R, T5d, T8r, T8x, T4e, T8o, T5n, T5r, T4G, T5a, T5g, T8w, T5k, T5q, T57;
1703 E T5b, T3Q, T8p;
1704 T3Q = KP707106781 * (T3K - T3P);
1705 T3R = T3F - T3Q;
1706 T5d = T3F + T3Q;
1707 T8p = KP707106781 * (T5v - T5u);
1708 T8r = T8p + T8q;
1709 T8x = T8q - T8p;
1710 {
1711 E T42, T4d, T5l, T5m;
1712 T42 = FNMS(KP923879532, T41, KP382683432 * T3W);
1713 T4d = FMA(KP382683432, T47, KP923879532 * T4c);
1714 T4e = T42 - T4d;
1715 T8o = T42 + T4d;
1716 T5l = T4L + T4W;
1717 T5m = T52 + T55;
1718 T5n = FNMS(KP555570233, T5m, KP831469612 * T5l);
1719 T5r = FMA(KP831469612, T5m, KP555570233 * T5l);
1720 }
1721 {
1722 E T4w, T4F, T5e, T5f;
1723 T4w = T4k - T4v;
1724 T4F = T4B - T4E;
1725 T4G = FMA(KP980785280, T4w, KP195090322 * T4F);
1726 T5a = FNMS(KP980785280, T4F, KP195090322 * T4w);
1727 T5e = FMA(KP923879532, T3W, KP382683432 * T41);
1728 T5f = FNMS(KP923879532, T47, KP382683432 * T4c);
1729 T5g = T5e + T5f;
1730 T8w = T5f - T5e;
1731 }
1732 {
1733 E T5i, T5j, T4X, T56;
1734 T5i = T4k + T4v;
1735 T5j = T4B + T4E;
1736 T5k = FMA(KP555570233, T5i, KP831469612 * T5j);
1737 T5q = FNMS(KP555570233, T5j, KP831469612 * T5i);
1738 T4X = T4L - T4W;
1739 T56 = T52 - T55;
1740 T57 = FNMS(KP980785280, T56, KP195090322 * T4X);
1741 T5b = FMA(KP195090322, T56, KP980785280 * T4X);
1742 }
1743 {
1744 E T4f, T58, T8v, T8y;
1745 T4f = T3R + T4e;
1746 T58 = T4G + T57;
1747 ri[WS(rs, 23)] = T4f - T58;
1748 ri[WS(rs, 7)] = T4f + T58;
1749 T8v = T5a + T5b;
1750 T8y = T8w + T8x;
1751 ii[WS(rs, 7)] = T8v + T8y;
1752 ii[WS(rs, 23)] = T8y - T8v;
1753 }
1754 {
1755 E T59, T5c, T8z, T8A;
1756 T59 = T3R - T4e;
1757 T5c = T5a - T5b;
1758 ri[WS(rs, 31)] = T59 - T5c;
1759 ri[WS(rs, 15)] = T59 + T5c;
1760 T8z = T57 - T4G;
1761 T8A = T8x - T8w;
1762 ii[WS(rs, 15)] = T8z + T8A;
1763 ii[WS(rs, 31)] = T8A - T8z;
1764 }
1765 {
1766 E T5h, T5o, T8n, T8s;
1767 T5h = T5d + T5g;
1768 T5o = T5k + T5n;
1769 ri[WS(rs, 19)] = T5h - T5o;
1770 ri[WS(rs, 3)] = T5h + T5o;
1771 T8n = T5q + T5r;
1772 T8s = T8o + T8r;
1773 ii[WS(rs, 3)] = T8n + T8s;
1774 ii[WS(rs, 19)] = T8s - T8n;
1775 }
1776 {
1777 E T5p, T5s, T8t, T8u;
1778 T5p = T5d - T5g;
1779 T5s = T5q - T5r;
1780 ri[WS(rs, 27)] = T5p - T5s;
1781 ri[WS(rs, 11)] = T5p + T5s;
1782 T8t = T5n - T5k;
1783 T8u = T8r - T8o;
1784 ii[WS(rs, 11)] = T8t + T8u;
1785 ii[WS(rs, 27)] = T8u - T8t;
1786 }
1787 }
1788 {
1789 E T5x, T5Z, T8d, T8j, T5E, T88, T69, T6d, T5M, T5W, T62, T8i, T66, T6c, T5T;
1790 E T5X, T5w, T89;
1791 T5w = KP707106781 * (T5u + T5v);
1792 T5x = T5t - T5w;
1793 T5Z = T5t + T5w;
1794 T89 = KP707106781 * (T3K + T3P);
1795 T8d = T89 + T8c;
1796 T8j = T8c - T89;
1797 {
1798 E T5A, T5D, T67, T68;
1799 T5A = FNMS(KP382683432, T5z, KP923879532 * T5y);
1800 T5D = FMA(KP923879532, T5B, KP382683432 * T5C);
1801 T5E = T5A - T5D;
1802 T88 = T5A + T5D;
1803 T67 = T5N + T5O;
1804 T68 = T5Q + T5R;
1805 T69 = FNMS(KP195090322, T68, KP980785280 * T67);
1806 T6d = FMA(KP195090322, T67, KP980785280 * T68);
1807 }
1808 {
1809 E T5I, T5L, T60, T61;
1810 T5I = T5G - T5H;
1811 T5L = T5J - T5K;
1812 T5M = FMA(KP555570233, T5I, KP831469612 * T5L);
1813 T5W = FNMS(KP831469612, T5I, KP555570233 * T5L);
1814 T60 = FMA(KP382683432, T5y, KP923879532 * T5z);
1815 T61 = FNMS(KP382683432, T5B, KP923879532 * T5C);
1816 T62 = T60 + T61;
1817 T8i = T61 - T60;
1818 }
1819 {
1820 E T64, T65, T5P, T5S;
1821 T64 = T5G + T5H;
1822 T65 = T5J + T5K;
1823 T66 = FMA(KP980785280, T64, KP195090322 * T65);
1824 T6c = FNMS(KP195090322, T64, KP980785280 * T65);
1825 T5P = T5N - T5O;
1826 T5S = T5Q - T5R;
1827 T5T = FNMS(KP831469612, T5S, KP555570233 * T5P);
1828 T5X = FMA(KP831469612, T5P, KP555570233 * T5S);
1829 }
1830 {
1831 E T5F, T5U, T8h, T8k;
1832 T5F = T5x + T5E;
1833 T5U = T5M + T5T;
1834 ri[WS(rs, 21)] = T5F - T5U;
1835 ri[WS(rs, 5)] = T5F + T5U;
1836 T8h = T5W + T5X;
1837 T8k = T8i + T8j;
1838 ii[WS(rs, 5)] = T8h + T8k;
1839 ii[WS(rs, 21)] = T8k - T8h;
1840 }
1841 {
1842 E T5V, T5Y, T8l, T8m;
1843 T5V = T5x - T5E;
1844 T5Y = T5W - T5X;
1845 ri[WS(rs, 29)] = T5V - T5Y;
1846 ri[WS(rs, 13)] = T5V + T5Y;
1847 T8l = T5T - T5M;
1848 T8m = T8j - T8i;
1849 ii[WS(rs, 13)] = T8l + T8m;
1850 ii[WS(rs, 29)] = T8m - T8l;
1851 }
1852 {
1853 E T63, T6a, T87, T8e;
1854 T63 = T5Z + T62;
1855 T6a = T66 + T69;
1856 ri[WS(rs, 17)] = T63 - T6a;
1857 ri[WS(rs, 1)] = T63 + T6a;
1858 T87 = T6c + T6d;
1859 T8e = T88 + T8d;
1860 ii[WS(rs, 1)] = T87 + T8e;
1861 ii[WS(rs, 17)] = T8e - T87;
1862 }
1863 {
1864 E T6b, T6e, T8f, T8g;
1865 T6b = T5Z - T62;
1866 T6e = T6c - T6d;
1867 ri[WS(rs, 25)] = T6b - T6e;
1868 ri[WS(rs, 9)] = T6b + T6e;
1869 T8f = T69 - T66;
1870 T8g = T8d - T88;
1871 ii[WS(rs, 9)] = T8f + T8g;
1872 ii[WS(rs, 25)] = T8g - T8f;
1873 }
1874 }
1875 }
1876 }
1877 }
1878 }
1879
1880 static const tw_instr twinstr[] = {
1881 {TW_CEXP, 0, 1},
1882 {TW_CEXP, 0, 3},
1883 {TW_CEXP, 0, 9},
1884 {TW_CEXP, 0, 27},
1885 {TW_NEXT, 1, 0}
1886 };
1887
1888 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {376, 168, 112, 0}, 0, 0, 0 };
1889
1890 void X(codelet_t2_32) (planner *p) {
1891 X(kdft_dit_register) (p, t2_32, &desc);
1892 }
1893 #endif