comparison src/fftw-3.3.8/dft/scalar/codelets/t2_20.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:26 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 276 FP additions, 198 FP multiplications,
32 * (or, 136 additions, 58 multiplications, 140 fused multiply/add),
33 * 95 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
46 E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24;
47 E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S;
48 E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d;
49 {
50 E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz;
51 T2 = W[0];
52 Th = W[3];
53 Tf = W[2];
54 Tg = T2 * Tf;
55 Tk = T2 * Th;
56 T6 = W[5];
57 Ta = T2 * T6;
58 T1e = Tf * T6;
59 T5 = W[1];
60 Ti = FNMS(T5, Th, Tg);
61 Tl = FMA(T5, Tf, Tk);
62 T1n = FMA(T5, Th, Tg);
63 T3 = W[4];
64 T4 = T2 * T3;
65 T1a = Tf * T3;
66 Tj = Ti * T3;
67 Tt = W[6];
68 T12 = Tf * Tt;
69 T1G = T2 * Tt;
70 Tv = W[7];
71 T16 = Tf * Tv;
72 T1K = T2 * Tv;
73 T7 = FNMS(T5, T6, T4);
74 T17 = FNMS(Th, Tt, T16);
75 T1L = FNMS(T5, Tt, T1K);
76 T24 = FMA(Th, T3, T1e);
77 Tb = FMA(T5, T3, Ta);
78 T13 = FMA(Th, Tv, T12);
79 T1P = FNMS(Tl, T6, Tj);
80 T21 = FNMS(Th, T6, T1a);
81 T1b = FMA(Th, T6, T1a);
82 T1D = FNMS(T5, T3, Ta);
83 T1A = FMA(T5, T6, T4);
84 T1H = FMA(T5, Tv, T1G);
85 T1f = FNMS(Th, T3, T1e);
86 Tz = Ti * Tv;
87 TA = FNMS(Tl, Tt, Tz);
88 {
89 E Tu, Tp, TJ, TN;
90 Tu = Ti * Tt;
91 Tw = FMA(Tl, Tv, Tu);
92 Tp = Ti * T6;
93 Tq = FNMS(Tl, T3, Tp);
94 Tm = FMA(Tl, T6, Tj);
95 TJ = Tm * Tt;
96 TN = Tm * Tv;
97 TK = FMA(Tq, Tv, TJ);
98 T1S = FMA(Tl, T3, Tp);
99 TO = FNMS(Tq, Tt, TN);
100 {
101 E T1o, T2g, T1t, T2c;
102 T1o = T1n * T3;
103 T2g = T1n * Tv;
104 T1t = T1n * T6;
105 T2c = T1n * Tt;
106 T1p = FNMS(T5, Tf, Tk);
107 T1q = FNMS(T1p, T6, T1o);
108 T1u = FMA(T1p, T3, T1t);
109 T2n = FNMS(T1p, T3, T1t);
110 T2k = FMA(T1p, T6, T1o);
111 T2h = FNMS(T1p, Tt, T2g);
112 T2d = FMA(T1p, Tv, T2c);
113 }
114 }
115 }
116 {
117 E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C;
118 E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S;
119 E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40;
120 {
121 E T1, T4K, T8, T9, Tc, T4I, Td, T4J;
122 T1 = ri[0];
123 T4K = ii[0];
124 T8 = ri[WS(rs, 10)];
125 T9 = T7 * T8;
126 Tc = ii[WS(rs, 10)];
127 T4I = T7 * Tc;
128 Td = FMA(Tb, Tc, T9);
129 Te = T1 + Td;
130 T2C = T1 - Td;
131 T4J = FNMS(Tb, T8, T4I);
132 T4L = T4J + T4K;
133 T57 = T4K - T4J;
134 }
135 {
136 E Tn, To, Tr, T2D, Tx, Ty, TB, T2F;
137 Tn = ri[WS(rs, 5)];
138 To = Tm * Tn;
139 Tr = ii[WS(rs, 5)];
140 T2D = Tm * Tr;
141 Tx = ri[WS(rs, 15)];
142 Ty = Tw * Tx;
143 TB = ii[WS(rs, 15)];
144 T2F = Tw * TB;
145 {
146 E Ts, TC, T2E, T2G;
147 Ts = FMA(Tq, Tr, To);
148 TC = FMA(TA, TB, Ty);
149 TD = Ts + TC;
150 T58 = Ts - TC;
151 T2E = FNMS(Tq, Tn, T2D);
152 T2G = FNMS(TA, Tx, T2F);
153 T2H = T2E - T2G;
154 T4H = T2E + T2G;
155 }
156 }
157 {
158 E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L;
159 {
160 E TF, TG, TH, T3w;
161 TF = ri[WS(rs, 4)];
162 TG = Ti * TF;
163 TH = ii[WS(rs, 4)];
164 T3w = Ti * TH;
165 TI = FMA(Tl, TH, TG);
166 T3x = FNMS(Tl, TF, T3w);
167 }
168 {
169 E TW, TX, TY, T2M;
170 TW = ri[WS(rs, 19)];
171 TX = Tt * TW;
172 TY = ii[WS(rs, 19)];
173 T2M = Tt * TY;
174 TZ = FMA(Tv, TY, TX);
175 T2N = FNMS(Tv, TW, T2M);
176 }
177 {
178 E TL, TM, TP, T3y;
179 TL = ri[WS(rs, 14)];
180 TM = TK * TL;
181 TP = ii[WS(rs, 14)];
182 T3y = TK * TP;
183 TQ = FMA(TO, TP, TM);
184 T3z = FNMS(TO, TL, T3y);
185 }
186 {
187 E TS, TT, TU, T2K;
188 TS = ri[WS(rs, 9)];
189 TT = T3 * TS;
190 TU = ii[WS(rs, 9)];
191 T2K = T3 * TU;
192 TV = FMA(T6, TU, TT);
193 T2L = FNMS(T6, TS, T2K);
194 }
195 {
196 E TR, T10, T4i, T4j;
197 TR = TI + TQ;
198 T10 = TV + TZ;
199 T11 = TR - T10;
200 T2v = TR + T10;
201 T4i = T3x + T3z;
202 T4j = T2L + T2N;
203 T4k = T4i - T4j;
204 T4v = T4i + T4j;
205 }
206 {
207 E T2J, T2O, T3A, T3B;
208 T2J = TI - TQ;
209 T2O = T2L - T2N;
210 T2P = T2J - T2O;
211 T3P = T2J + T2O;
212 T3A = T3x - T3z;
213 T3B = TV - TZ;
214 T3C = T3A + T3B;
215 T3Z = T3A - T3B;
216 }
217 }
218 {
219 E T26, T3p, T2p, T39, T2a, T3r, T2j, T37;
220 {
221 E T22, T23, T25, T3o;
222 T22 = ri[WS(rs, 12)];
223 T23 = T21 * T22;
224 T25 = ii[WS(rs, 12)];
225 T3o = T21 * T25;
226 T26 = FMA(T24, T25, T23);
227 T3p = FNMS(T24, T22, T3o);
228 }
229 {
230 E T2l, T2m, T2o, T38;
231 T2l = ri[WS(rs, 7)];
232 T2m = T2k * T2l;
233 T2o = ii[WS(rs, 7)];
234 T38 = T2k * T2o;
235 T2p = FMA(T2n, T2o, T2m);
236 T39 = FNMS(T2n, T2l, T38);
237 }
238 {
239 E T27, T28, T29, T3q;
240 T27 = ri[WS(rs, 2)];
241 T28 = T1n * T27;
242 T29 = ii[WS(rs, 2)];
243 T3q = T1n * T29;
244 T2a = FMA(T1p, T29, T28);
245 T3r = FNMS(T1p, T27, T3q);
246 }
247 {
248 E T2e, T2f, T2i, T36;
249 T2e = ri[WS(rs, 17)];
250 T2f = T2d * T2e;
251 T2i = ii[WS(rs, 17)];
252 T36 = T2d * T2i;
253 T2j = FMA(T2h, T2i, T2f);
254 T37 = FNMS(T2h, T2e, T36);
255 }
256 {
257 E T2b, T2q, T4e, T4f;
258 T2b = T26 + T2a;
259 T2q = T2j + T2p;
260 T2r = T2b - T2q;
261 T2z = T2b + T2q;
262 T4e = T3p + T3r;
263 T4f = T37 + T39;
264 T4g = T4e - T4f;
265 T4z = T4e + T4f;
266 }
267 {
268 E T35, T3a, T3s, T3t;
269 T35 = T26 - T2a;
270 T3a = T37 - T39;
271 T3b = T35 - T3a;
272 T3T = T35 + T3a;
273 T3s = T3p - T3r;
274 T3t = T2j - T2p;
275 T3u = T3s + T3t;
276 T43 = T3s - T3t;
277 }
278 }
279 {
280 E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30;
281 {
282 E T1B, T1C, T1E, T3h;
283 T1B = ri[WS(rs, 8)];
284 T1C = T1A * T1B;
285 T1E = ii[WS(rs, 8)];
286 T3h = T1A * T1E;
287 T1F = FMA(T1D, T1E, T1C);
288 T3i = FNMS(T1D, T1B, T3h);
289 }
290 {
291 E T1V, T1W, T1X, T31;
292 T1V = ri[WS(rs, 3)];
293 T1W = Tf * T1V;
294 T1X = ii[WS(rs, 3)];
295 T31 = Tf * T1X;
296 T1Y = FMA(Th, T1X, T1W);
297 T32 = FNMS(Th, T1V, T31);
298 }
299 {
300 E T1I, T1J, T1M, T3j;
301 T1I = ri[WS(rs, 18)];
302 T1J = T1H * T1I;
303 T1M = ii[WS(rs, 18)];
304 T3j = T1H * T1M;
305 T1N = FMA(T1L, T1M, T1J);
306 T3k = FNMS(T1L, T1I, T3j);
307 }
308 {
309 E T1Q, T1R, T1T, T2Z;
310 T1Q = ri[WS(rs, 13)];
311 T1R = T1P * T1Q;
312 T1T = ii[WS(rs, 13)];
313 T2Z = T1P * T1T;
314 T1U = FMA(T1S, T1T, T1R);
315 T30 = FNMS(T1S, T1Q, T2Z);
316 }
317 {
318 E T1O, T1Z, T4b, T4c;
319 T1O = T1F + T1N;
320 T1Z = T1U + T1Y;
321 T20 = T1O - T1Z;
322 T2y = T1O + T1Z;
323 T4b = T3i + T3k;
324 T4c = T30 + T32;
325 T4d = T4b - T4c;
326 T4y = T4b + T4c;
327 }
328 {
329 E T2Y, T33, T3l, T3m;
330 T2Y = T1F - T1N;
331 T33 = T30 - T32;
332 T34 = T2Y - T33;
333 T3S = T2Y + T33;
334 T3l = T3i - T3k;
335 T3m = T1U - T1Y;
336 T3n = T3l + T3m;
337 T42 = T3l - T3m;
338 }
339 }
340 {
341 E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S;
342 {
343 E T14, T15, T18, T3D;
344 T14 = ri[WS(rs, 16)];
345 T15 = T13 * T14;
346 T18 = ii[WS(rs, 16)];
347 T3D = T13 * T18;
348 T19 = FMA(T17, T18, T15);
349 T3E = FNMS(T17, T14, T3D);
350 }
351 {
352 E T1r, T1s, T1v, T2T;
353 T1r = ri[WS(rs, 11)];
354 T1s = T1q * T1r;
355 T1v = ii[WS(rs, 11)];
356 T2T = T1q * T1v;
357 T1w = FMA(T1u, T1v, T1s);
358 T2U = FNMS(T1u, T1r, T2T);
359 }
360 {
361 E T1c, T1d, T1g, T3F;
362 T1c = ri[WS(rs, 6)];
363 T1d = T1b * T1c;
364 T1g = ii[WS(rs, 6)];
365 T3F = T1b * T1g;
366 T1h = FMA(T1f, T1g, T1d);
367 T3G = FNMS(T1f, T1c, T3F);
368 }
369 {
370 E T1j, T1k, T1l, T2R;
371 T1j = ri[WS(rs, 1)];
372 T1k = T2 * T1j;
373 T1l = ii[WS(rs, 1)];
374 T2R = T2 * T1l;
375 T1m = FMA(T5, T1l, T1k);
376 T2S = FNMS(T5, T1j, T2R);
377 }
378 {
379 E T1i, T1x, T4l, T4m;
380 T1i = T19 + T1h;
381 T1x = T1m + T1w;
382 T1y = T1i - T1x;
383 T2w = T1i + T1x;
384 T4l = T3E + T3G;
385 T4m = T2S + T2U;
386 T4n = T4l - T4m;
387 T4w = T4l + T4m;
388 }
389 {
390 E T2Q, T2V, T3H, T3I;
391 T2Q = T19 - T1h;
392 T2V = T2S - T2U;
393 T2W = T2Q - T2V;
394 T3Q = T2Q + T2V;
395 T3H = T3E - T3G;
396 T3I = T1m - T1w;
397 T3J = T3H + T3I;
398 T40 = T3H - T3I;
399 }
400 }
401 {
402 E T4p, T4r, TE, T2t, T48, T49, T4q, T4a;
403 {
404 E T4h, T4o, T1z, T2s;
405 T4h = T4d - T4g;
406 T4o = T4k - T4n;
407 T4p = FNMS(KP618033988, T4o, T4h);
408 T4r = FMA(KP618033988, T4h, T4o);
409 TE = Te - TD;
410 T1z = T11 + T1y;
411 T2s = T20 + T2r;
412 T2t = T1z + T2s;
413 T48 = FNMS(KP250000000, T2t, TE);
414 T49 = T1z - T2s;
415 }
416 ri[WS(rs, 10)] = TE + T2t;
417 T4q = FMA(KP559016994, T49, T48);
418 ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q);
419 ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q);
420 T4a = FNMS(KP559016994, T49, T48);
421 ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a);
422 ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a);
423 }
424 {
425 E T54, T56, T4V, T4Y, T4Z, T50, T55, T51;
426 {
427 E T52, T53, T4W, T4X;
428 T52 = T20 - T2r;
429 T53 = T11 - T1y;
430 T54 = FNMS(KP618033988, T53, T52);
431 T56 = FMA(KP618033988, T52, T53);
432 T4V = T4L - T4H;
433 T4W = T4k + T4n;
434 T4X = T4d + T4g;
435 T4Y = T4W + T4X;
436 T4Z = FNMS(KP250000000, T4Y, T4V);
437 T50 = T4W - T4X;
438 }
439 ii[WS(rs, 10)] = T4Y + T4V;
440 T55 = FMA(KP559016994, T50, T4Z);
441 ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55);
442 ii[WS(rs, 14)] = FMA(KP951056516, T56, T55);
443 T51 = FNMS(KP559016994, T50, T4Z);
444 ii[WS(rs, 2)] = FMA(KP951056516, T54, T51);
445 ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51);
446 }
447 {
448 E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u;
449 {
450 E T4x, T4A, T2x, T2A;
451 T4x = T4v - T4w;
452 T4A = T4y - T4z;
453 T4B = FMA(KP618033988, T4A, T4x);
454 T4D = FNMS(KP618033988, T4x, T4A);
455 T2u = Te + TD;
456 T2x = T2v + T2w;
457 T2A = T2y + T2z;
458 T2B = T2x + T2A;
459 T4s = FNMS(KP250000000, T2B, T2u);
460 T4t = T2x - T2A;
461 }
462 ri[0] = T2u + T2B;
463 T4C = FNMS(KP559016994, T4t, T4s);
464 ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C);
465 ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C);
466 T4u = FMA(KP559016994, T4t, T4s);
467 ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u);
468 ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u);
469 }
470 {
471 E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P;
472 {
473 E T4Q, T4R, T4E, T4F;
474 T4Q = T2v - T2w;
475 T4R = T2y - T2z;
476 T4S = FMA(KP618033988, T4R, T4Q);
477 T4U = FNMS(KP618033988, T4Q, T4R);
478 T4M = T4H + T4L;
479 T4E = T4v + T4w;
480 T4F = T4y + T4z;
481 T4G = T4E + T4F;
482 T4N = FNMS(KP250000000, T4G, T4M);
483 T4O = T4E - T4F;
484 }
485 ii[0] = T4G + T4M;
486 T4T = FNMS(KP559016994, T4O, T4N);
487 ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T);
488 ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T);
489 T4P = FMA(KP559016994, T4O, T4N);
490 ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P);
491 ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P);
492 }
493 {
494 E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g;
495 {
496 E T3v, T3K, T2X, T3c;
497 T3v = T3n - T3u;
498 T3K = T3C - T3J;
499 T3L = FNMS(KP618033988, T3K, T3v);
500 T3N = FMA(KP618033988, T3v, T3K);
501 T2I = T2C - T2H;
502 T2X = T2P + T2W;
503 T3c = T34 + T3b;
504 T3d = T2X + T3c;
505 T3e = FNMS(KP250000000, T3d, T2I);
506 T3f = T2X - T3c;
507 }
508 ri[WS(rs, 15)] = T2I + T3d;
509 T3M = FMA(KP559016994, T3f, T3e);
510 ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M);
511 ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M);
512 T3g = FNMS(KP559016994, T3f, T3e);
513 ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g);
514 ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g);
515 }
516 {
517 E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r;
518 {
519 E T5s, T5t, T5m, T5n;
520 T5s = T34 - T3b;
521 T5t = T2P - T2W;
522 T5u = FNMS(KP618033988, T5t, T5s);
523 T5w = FMA(KP618033988, T5s, T5t);
524 T5l = T58 + T57;
525 T5m = T3C + T3J;
526 T5n = T3n + T3u;
527 T5o = T5m + T5n;
528 T5p = FNMS(KP250000000, T5o, T5l);
529 T5q = T5m - T5n;
530 }
531 ii[WS(rs, 15)] = T5o + T5l;
532 T5v = FMA(KP559016994, T5q, T5p);
533 ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v);
534 ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v);
535 T5r = FNMS(KP559016994, T5q, T5p);
536 ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r);
537 ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r);
538 }
539 {
540 E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y;
541 {
542 E T41, T44, T3R, T3U;
543 T41 = T3Z - T40;
544 T44 = T42 - T43;
545 T45 = FMA(KP618033988, T44, T41);
546 T47 = FNMS(KP618033988, T41, T44);
547 T3O = T2C + T2H;
548 T3R = T3P + T3Q;
549 T3U = T3S + T3T;
550 T3V = T3R + T3U;
551 T3W = FNMS(KP250000000, T3V, T3O);
552 T3X = T3R - T3U;
553 }
554 ri[WS(rs, 5)] = T3O + T3V;
555 T46 = FNMS(KP559016994, T3X, T3W);
556 ri[WS(rs, 13)] = FMA(KP951056516, T47, T46);
557 ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46);
558 T3Y = FMA(KP559016994, T3X, T3W);
559 ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y);
560 ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y);
561 }
562 {
563 E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f;
564 {
565 E T5g, T5h, T5a, T5b;
566 T5g = T3P - T3Q;
567 T5h = T3S - T3T;
568 T5i = FMA(KP618033988, T5h, T5g);
569 T5k = FNMS(KP618033988, T5g, T5h);
570 T59 = T57 - T58;
571 T5a = T3Z + T40;
572 T5b = T42 + T43;
573 T5c = T5a + T5b;
574 T5d = FNMS(KP250000000, T5c, T59);
575 T5e = T5a - T5b;
576 }
577 ii[WS(rs, 5)] = T5c + T59;
578 T5j = FNMS(KP559016994, T5e, T5d);
579 ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j);
580 ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j);
581 T5f = FMA(KP559016994, T5e, T5d);
582 ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f);
583 ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f);
584 }
585 }
586 }
587 }
588 }
589
590 static const tw_instr twinstr[] = {
591 {TW_CEXP, 0, 1},
592 {TW_CEXP, 0, 3},
593 {TW_CEXP, 0, 9},
594 {TW_CEXP, 0, 19},
595 {TW_NEXT, 1, 0}
596 };
597
598 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {136, 58, 140, 0}, 0, 0, 0 };
599
600 void X(codelet_t2_20) (planner *p) {
601 X(kdft_dit_register) (p, t2_20, &desc);
602 }
603 #else
604
605 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
606
607 /*
608 * This function contains 276 FP additions, 164 FP multiplications,
609 * (or, 204 additions, 92 multiplications, 72 fused multiply/add),
610 * 123 stack variables, 4 constants, and 80 memory accesses
611 */
612 #include "dft/scalar/t.h"
613
614 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
615 {
616 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
617 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
618 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
619 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
620 {
621 INT m;
622 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
623 E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O;
624 E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ;
625 E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX;
626 {
627 E T7, T16, Ta, T13, T4, T17, Tb, T12;
628 {
629 E Th, Tn, Tj, Tm;
630 T2 = W[0];
631 T5 = W[1];
632 Tg = W[2];
633 Ti = W[3];
634 Th = T2 * Tg;
635 Tn = T5 * Tg;
636 Tj = T5 * Ti;
637 Tm = T2 * Ti;
638 Tk = Th - Tj;
639 To = Tm + Tn;
640 T1h = Tm - Tn;
641 T1f = Th + Tj;
642 T6 = W[5];
643 T7 = T5 * T6;
644 T16 = Tg * T6;
645 Ta = T2 * T6;
646 T13 = Ti * T6;
647 T3 = W[4];
648 T4 = T2 * T3;
649 T17 = Ti * T3;
650 Tb = T5 * T3;
651 T12 = Tg * T3;
652 }
653 T8 = T4 - T7;
654 T14 = T12 + T13;
655 T1Q = T16 + T17;
656 Tc = Ta + Tb;
657 T1O = T12 - T13;
658 T1v = Ta - Tb;
659 T18 = T16 - T17;
660 T1t = T4 + T7;
661 {
662 E T1l, T1m, T1g, T1i;
663 T1l = T1f * T6;
664 T1m = T1h * T3;
665 T1n = T1l + T1m;
666 T24 = T1l - T1m;
667 T1g = T1f * T3;
668 T1i = T1h * T6;
669 T1j = T1g - T1i;
670 T22 = T1g + T1i;
671 {
672 E Tl, Tp, Ts, Tt;
673 Tl = Tk * T3;
674 Tp = To * T6;
675 Tq = Tl + Tp;
676 Ts = Tk * T6;
677 Tt = To * T3;
678 Tu = Ts - Tt;
679 T1E = Tl - Tp;
680 T1G = Ts + Tt;
681 Tx = W[6];
682 Ty = W[7];
683 Tz = FMA(Tk, Tx, To * Ty);
684 TJ = FMA(Tq, Tx, Tu * Ty);
685 T1Z = FNMS(T1h, Tx, T1f * Ty);
686 TB = FNMS(To, Tx, Tk * Ty);
687 T1X = FMA(T1f, Tx, T1h * Ty);
688 T1A = FNMS(T5, Tx, T2 * Ty);
689 TZ = FNMS(Ti, Tx, Tg * Ty);
690 TL = FNMS(Tu, Tx, Tq * Ty);
691 T1y = FMA(T2, Tx, T5 * Ty);
692 TX = FMA(Tg, Tx, Ti * Ty);
693 }
694 }
695 }
696 {
697 E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X;
698 E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30;
699 E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y;
700 E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V;
701 {
702 E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td;
703 T1 = ri[0];
704 T48 = ii[0];
705 T9 = ri[WS(rs, 10)];
706 Td = ii[WS(rs, 10)];
707 Te = FMA(T8, T9, Tc * Td);
708 T47 = FNMS(Tc, T9, T8 * Td);
709 {
710 E Tr, Tv, TA, TC;
711 Tr = ri[WS(rs, 5)];
712 Tv = ii[WS(rs, 5)];
713 Tw = FMA(Tq, Tr, Tu * Tv);
714 T2H = FNMS(Tu, Tr, Tq * Tv);
715 TA = ri[WS(rs, 15)];
716 TC = ii[WS(rs, 15)];
717 TD = FMA(Tz, TA, TB * TC);
718 T2I = FNMS(TB, TA, Tz * TC);
719 }
720 {
721 E Tf, TE, T4y, T4z;
722 Tf = T1 + Te;
723 TE = Tw + TD;
724 TF = Tf - TE;
725 T2b = Tf + TE;
726 T4y = T48 - T47;
727 T4z = Tw - TD;
728 T4A = T4y - T4z;
729 T4J = T4z + T4y;
730 }
731 {
732 E T2G, T2J, T46, T49;
733 T2G = T1 - Te;
734 T2J = T2H - T2I;
735 T2K = T2G - T2J;
736 T3r = T2G + T2J;
737 T46 = T2H + T2I;
738 T49 = T47 + T48;
739 T4a = T46 + T49;
740 T4m = T49 - T46;
741 }
742 }
743 {
744 E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q;
745 E T31;
746 {
747 E T1x, T2j, T1C, T2k;
748 {
749 E T1u, T1w, T1z, T1B;
750 T1u = ri[WS(rs, 8)];
751 T1w = ii[WS(rs, 8)];
752 T1x = FMA(T1t, T1u, T1v * T1w);
753 T2j = FNMS(T1v, T1u, T1t * T1w);
754 T1z = ri[WS(rs, 18)];
755 T1B = ii[WS(rs, 18)];
756 T1C = FMA(T1y, T1z, T1A * T1B);
757 T2k = FNMS(T1A, T1z, T1y * T1B);
758 }
759 T1D = T1x + T1C;
760 T3A = T2j + T2k;
761 T2l = T2j - T2k;
762 T2W = T1x - T1C;
763 }
764 {
765 E T21, T32, T26, T33;
766 {
767 E T1Y, T20, T23, T25;
768 T1Y = ri[WS(rs, 17)];
769 T20 = ii[WS(rs, 17)];
770 T21 = FMA(T1X, T1Y, T1Z * T20);
771 T32 = FNMS(T1Z, T1Y, T1X * T20);
772 T23 = ri[WS(rs, 7)];
773 T25 = ii[WS(rs, 7)];
774 T26 = FMA(T22, T23, T24 * T25);
775 T33 = FNMS(T24, T23, T22 * T25);
776 }
777 T27 = T21 + T26;
778 T3E = T32 + T33;
779 T2r = T21 - T26;
780 T34 = T32 - T33;
781 }
782 {
783 E T1I, T2X, T1L, T2Y;
784 {
785 E T1F, T1H, T1J, T1K;
786 T1F = ri[WS(rs, 13)];
787 T1H = ii[WS(rs, 13)];
788 T1I = FMA(T1E, T1F, T1G * T1H);
789 T2X = FNMS(T1G, T1F, T1E * T1H);
790 T1J = ri[WS(rs, 3)];
791 T1K = ii[WS(rs, 3)];
792 T1L = FMA(Tg, T1J, Ti * T1K);
793 T2Y = FNMS(Ti, T1J, Tg * T1K);
794 }
795 T1M = T1I + T1L;
796 T3B = T2X + T2Y;
797 T2m = T1I - T1L;
798 T2Z = T2X - T2Y;
799 }
800 {
801 E T1S, T2o, T1V, T2p;
802 {
803 E T1P, T1R, T1T, T1U;
804 T1P = ri[WS(rs, 12)];
805 T1R = ii[WS(rs, 12)];
806 T1S = FMA(T1O, T1P, T1Q * T1R);
807 T2o = FNMS(T1Q, T1P, T1O * T1R);
808 T1T = ri[WS(rs, 2)];
809 T1U = ii[WS(rs, 2)];
810 T1V = FMA(T1f, T1T, T1h * T1U);
811 T2p = FNMS(T1h, T1T, T1f * T1U);
812 }
813 T1W = T1S + T1V;
814 T3D = T2o + T2p;
815 T2q = T2o - T2p;
816 T31 = T1S - T1V;
817 }
818 T1N = T1D - T1M;
819 T28 = T1W - T27;
820 T29 = T1N + T28;
821 T3C = T3A - T3B;
822 T3F = T3D - T3E;
823 T4o = T3C + T3F;
824 T3X = T3A + T3B;
825 T3Y = T3D + T3E;
826 T44 = T3X + T3Y;
827 T2f = T1D + T1M;
828 T2g = T1W + T27;
829 T2h = T2f + T2g;
830 T2n = T2l + T2m;
831 T2s = T2q + T2r;
832 T4L = T2n + T2s;
833 T3g = T2l - T2m;
834 T3h = T2q - T2r;
835 T4w = T3g + T3h;
836 T3n = T2W + T2Z;
837 T3o = T31 + T34;
838 T3p = T3n + T3o;
839 T30 = T2W - T2Z;
840 T35 = T31 - T34;
841 T36 = T30 + T35;
842 }
843 {
844 E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B;
845 E T2Q;
846 {
847 E TI, T2u, TN, T2v;
848 {
849 E TG, TH, TK, TM;
850 TG = ri[WS(rs, 4)];
851 TH = ii[WS(rs, 4)];
852 TI = FMA(Tk, TG, To * TH);
853 T2u = FNMS(To, TG, Tk * TH);
854 TK = ri[WS(rs, 14)];
855 TM = ii[WS(rs, 14)];
856 TN = FMA(TJ, TK, TL * TM);
857 T2v = FNMS(TL, TK, TJ * TM);
858 }
859 TO = TI + TN;
860 T3H = T2u + T2v;
861 T2w = T2u - T2v;
862 T2L = TI - TN;
863 }
864 {
865 E T1e, T2R, T1p, T2S;
866 {
867 E T1c, T1d, T1k, T1o;
868 T1c = ri[WS(rs, 1)];
869 T1d = ii[WS(rs, 1)];
870 T1e = FMA(T2, T1c, T5 * T1d);
871 T2R = FNMS(T5, T1c, T2 * T1d);
872 T1k = ri[WS(rs, 11)];
873 T1o = ii[WS(rs, 11)];
874 T1p = FMA(T1j, T1k, T1n * T1o);
875 T2S = FNMS(T1n, T1k, T1j * T1o);
876 }
877 T1q = T1e + T1p;
878 T3L = T2R + T2S;
879 T2C = T1e - T1p;
880 T2T = T2R - T2S;
881 }
882 {
883 E TR, T2M, TU, T2N;
884 {
885 E TP, TQ, TS, TT;
886 TP = ri[WS(rs, 9)];
887 TQ = ii[WS(rs, 9)];
888 TR = FMA(T3, TP, T6 * TQ);
889 T2M = FNMS(T6, TP, T3 * TQ);
890 TS = ri[WS(rs, 19)];
891 TT = ii[WS(rs, 19)];
892 TU = FMA(Tx, TS, Ty * TT);
893 T2N = FNMS(Ty, TS, Tx * TT);
894 }
895 TV = TR + TU;
896 T3I = T2M + T2N;
897 T2x = TR - TU;
898 T2O = T2M - T2N;
899 }
900 {
901 E T11, T2z, T1a, T2A;
902 {
903 E TY, T10, T15, T19;
904 TY = ri[WS(rs, 16)];
905 T10 = ii[WS(rs, 16)];
906 T11 = FMA(TX, TY, TZ * T10);
907 T2z = FNMS(TZ, TY, TX * T10);
908 T15 = ri[WS(rs, 6)];
909 T19 = ii[WS(rs, 6)];
910 T1a = FMA(T14, T15, T18 * T19);
911 T2A = FNMS(T18, T15, T14 * T19);
912 }
913 T1b = T11 + T1a;
914 T3K = T2z + T2A;
915 T2B = T2z - T2A;
916 T2Q = T11 - T1a;
917 }
918 TW = TO - TV;
919 T1r = T1b - T1q;
920 T1s = TW + T1r;
921 T3J = T3H - T3I;
922 T3M = T3K - T3L;
923 T4n = T3J + T3M;
924 T3U = T3H + T3I;
925 T3V = T3K + T3L;
926 T43 = T3U + T3V;
927 T2c = TO + TV;
928 T2d = T1b + T1q;
929 T2e = T2c + T2d;
930 T2y = T2w + T2x;
931 T2D = T2B + T2C;
932 T4K = T2y + T2D;
933 T3d = T2w - T2x;
934 T3e = T2B - T2C;
935 T4v = T3d + T3e;
936 T3k = T2L + T2O;
937 T3l = T2Q + T2T;
938 T3m = T3k + T3l;
939 T2P = T2L - T2O;
940 T2U = T2Q - T2T;
941 T2V = T2P + T2U;
942 }
943 {
944 E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z;
945 T3y = KP559016994 * (T1s - T29);
946 T2a = T1s + T29;
947 T3x = FNMS(KP250000000, T2a, TF);
948 T3G = T3C - T3F;
949 T3N = T3J - T3M;
950 T3O = FNMS(KP587785252, T3N, KP951056516 * T3G);
951 T3Q = FMA(KP951056516, T3N, KP587785252 * T3G);
952 ri[WS(rs, 10)] = TF + T2a;
953 T3P = T3y + T3x;
954 ri[WS(rs, 14)] = T3P - T3Q;
955 ri[WS(rs, 6)] = T3P + T3Q;
956 T3z = T3x - T3y;
957 ri[WS(rs, 2)] = T3z - T3O;
958 ri[WS(rs, 18)] = T3z + T3O;
959 }
960 {
961 E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s;
962 T4r = KP559016994 * (T4n - T4o);
963 T4p = T4n + T4o;
964 T4q = FNMS(KP250000000, T4p, T4m);
965 T4j = T1N - T28;
966 T4k = TW - T1r;
967 T4l = FNMS(KP587785252, T4k, KP951056516 * T4j);
968 T4u = FMA(KP951056516, T4k, KP587785252 * T4j);
969 ii[WS(rs, 10)] = T4p + T4m;
970 T4t = T4r + T4q;
971 ii[WS(rs, 6)] = T4t - T4u;
972 ii[WS(rs, 14)] = T4u + T4t;
973 T4s = T4q - T4r;
974 ii[WS(rs, 2)] = T4l + T4s;
975 ii[WS(rs, 18)] = T4s - T4l;
976 }
977 {
978 E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T;
979 T3R = KP559016994 * (T2e - T2h);
980 T2i = T2e + T2h;
981 T3S = FNMS(KP250000000, T2i, T2b);
982 T3W = T3U - T3V;
983 T3Z = T3X - T3Y;
984 T40 = FMA(KP951056516, T3W, KP587785252 * T3Z);
985 T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z);
986 ri[0] = T2b + T2i;
987 T41 = T3S - T3R;
988 ri[WS(rs, 12)] = T41 - T42;
989 ri[WS(rs, 8)] = T41 + T42;
990 T3T = T3R + T3S;
991 ri[WS(rs, 4)] = T3T - T40;
992 ri[WS(rs, 16)] = T3T + T40;
993 }
994 {
995 E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g;
996 T4e = KP559016994 * (T43 - T44);
997 T45 = T43 + T44;
998 T4f = FNMS(KP250000000, T45, T4a);
999 T4b = T2c - T2d;
1000 T4c = T2f - T2g;
1001 T4d = FMA(KP951056516, T4b, KP587785252 * T4c);
1002 T4i = FNMS(KP587785252, T4b, KP951056516 * T4c);
1003 ii[0] = T45 + T4a;
1004 T4h = T4f - T4e;
1005 ii[WS(rs, 8)] = T4h - T4i;
1006 ii[WS(rs, 12)] = T4i + T4h;
1007 T4g = T4e + T4f;
1008 ii[WS(rs, 4)] = T4d + T4g;
1009 ii[WS(rs, 16)] = T4g - T4d;
1010 }
1011 {
1012 E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a;
1013 T39 = KP559016994 * (T2V - T36);
1014 T37 = T2V + T36;
1015 T38 = FNMS(KP250000000, T37, T2K);
1016 T2t = T2n - T2s;
1017 T2E = T2y - T2D;
1018 T2F = FNMS(KP587785252, T2E, KP951056516 * T2t);
1019 T3b = FMA(KP951056516, T2E, KP587785252 * T2t);
1020 ri[WS(rs, 15)] = T2K + T37;
1021 T3c = T39 + T38;
1022 ri[WS(rs, 11)] = T3b + T3c;
1023 ri[WS(rs, 19)] = T3c - T3b;
1024 T3a = T38 - T39;
1025 ri[WS(rs, 3)] = T2F + T3a;
1026 ri[WS(rs, 7)] = T3a - T2F;
1027 }
1028 {
1029 E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P;
1030 T4O = KP559016994 * (T4K - T4L);
1031 T4M = T4K + T4L;
1032 T4N = FNMS(KP250000000, T4M, T4J);
1033 T4Q = T30 - T35;
1034 T4R = T2P - T2U;
1035 T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q);
1036 T4U = FMA(KP951056516, T4R, KP587785252 * T4Q);
1037 ii[WS(rs, 15)] = T4M + T4J;
1038 T4T = T4O + T4N;
1039 ii[WS(rs, 11)] = T4T - T4U;
1040 ii[WS(rs, 19)] = T4U + T4T;
1041 T4P = T4N - T4O;
1042 ii[WS(rs, 3)] = T4P - T4S;
1043 ii[WS(rs, 7)] = T4S + T4P;
1044 }
1045 {
1046 E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u;
1047 T3q = KP559016994 * (T3m - T3p);
1048 T3s = T3m + T3p;
1049 T3t = FNMS(KP250000000, T3s, T3r);
1050 T3f = T3d - T3e;
1051 T3i = T3g - T3h;
1052 T3j = FMA(KP951056516, T3f, KP587785252 * T3i);
1053 T3v = FNMS(KP587785252, T3f, KP951056516 * T3i);
1054 ri[WS(rs, 5)] = T3r + T3s;
1055 T3w = T3t - T3q;
1056 ri[WS(rs, 13)] = T3v + T3w;
1057 ri[WS(rs, 17)] = T3w - T3v;
1058 T3u = T3q + T3t;
1059 ri[WS(rs, 1)] = T3j + T3u;
1060 ri[WS(rs, 9)] = T3u - T3j;
1061 }
1062 {
1063 E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D;
1064 T4x = KP559016994 * (T4v - T4w);
1065 T4B = T4v + T4w;
1066 T4C = FNMS(KP250000000, T4B, T4A);
1067 T4E = T3k - T3l;
1068 T4F = T3n - T3o;
1069 T4G = FMA(KP951056516, T4E, KP587785252 * T4F);
1070 T4I = FNMS(KP587785252, T4E, KP951056516 * T4F);
1071 ii[WS(rs, 5)] = T4B + T4A;
1072 T4H = T4C - T4x;
1073 ii[WS(rs, 13)] = T4H - T4I;
1074 ii[WS(rs, 17)] = T4I + T4H;
1075 T4D = T4x + T4C;
1076 ii[WS(rs, 1)] = T4D - T4G;
1077 ii[WS(rs, 9)] = T4G + T4D;
1078 }
1079 }
1080 }
1081 }
1082 }
1083
1084 static const tw_instr twinstr[] = {
1085 {TW_CEXP, 0, 1},
1086 {TW_CEXP, 0, 3},
1087 {TW_CEXP, 0, 9},
1088 {TW_CEXP, 0, 19},
1089 {TW_NEXT, 1, 0}
1090 };
1091
1092 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {204, 92, 72, 0}, 0, 0, 0 };
1093
1094 void X(codelet_t2_20) (planner *p) {
1095 X(kdft_dit_register) (p, t2_20, &desc);
1096 }
1097 #endif