Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t2_10.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:25 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 114 FP additions, 94 FP multiplications, | |
32 * (or, 48 additions, 28 multiplications, 66 fused multiply/add), | |
33 * 63 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { | |
46 E T2, T3, T8, Tc, T5, T6, Tl, T7, TB, TF, T12, TY, To, Ts, Tw; | |
47 E Tb, Td, Th; | |
48 { | |
49 E TA, TX, TE, T11, Ta, T4; | |
50 T2 = W[0]; | |
51 T3 = W[2]; | |
52 T4 = T2 * T3; | |
53 T8 = W[4]; | |
54 TA = T2 * T8; | |
55 TX = T3 * T8; | |
56 Tc = W[5]; | |
57 TE = T2 * Tc; | |
58 T11 = T3 * Tc; | |
59 T5 = W[1]; | |
60 T6 = W[3]; | |
61 Ta = T2 * T6; | |
62 Tl = FMA(T5, T6, T4); | |
63 T7 = FNMS(T5, T6, T4); | |
64 TB = FMA(T5, Tc, TA); | |
65 TF = FNMS(T5, T8, TE); | |
66 T12 = FNMS(T6, T8, T11); | |
67 TY = FMA(T6, Tc, TX); | |
68 { | |
69 E Tr, Tv, T9, Tg; | |
70 Tr = Tl * T8; | |
71 Tv = Tl * Tc; | |
72 To = FNMS(T5, T3, Ta); | |
73 Ts = FMA(To, Tc, Tr); | |
74 Tw = FNMS(To, T8, Tv); | |
75 T9 = T7 * T8; | |
76 Tg = T7 * Tc; | |
77 Tb = FMA(T5, T3, Ta); | |
78 Td = FMA(Tb, Tc, T9); | |
79 Th = FNMS(Tb, T8, Tg); | |
80 } | |
81 } | |
82 { | |
83 E Tk, T1c, T24, T2d, TW, T19, T1a, T1P, T1Q, T1Z, T1g, T1h, T1i, T1C, T1H; | |
84 E T2f, Tz, TM, TN, T1S, T1T, T1Y, T1d, T1e, T1f, T1r, T1w, T2e; | |
85 { | |
86 E T1, T23, Te, Tf, Ti, T21, Tj, T22; | |
87 T1 = ri[0]; | |
88 T23 = ii[0]; | |
89 Te = ri[WS(rs, 5)]; | |
90 Tf = Td * Te; | |
91 Ti = ii[WS(rs, 5)]; | |
92 T21 = Td * Ti; | |
93 Tj = FMA(Th, Ti, Tf); | |
94 Tk = T1 - Tj; | |
95 T1c = T1 + Tj; | |
96 T22 = FNMS(Th, Te, T21); | |
97 T24 = T22 + T23; | |
98 T2d = T23 - T22; | |
99 } | |
100 { | |
101 E TR, T1z, T18, T1G, TV, T1B, T14, T1E; | |
102 { | |
103 E TO, TP, TQ, T1y; | |
104 TO = ri[WS(rs, 4)]; | |
105 TP = T7 * TO; | |
106 TQ = ii[WS(rs, 4)]; | |
107 T1y = T7 * TQ; | |
108 TR = FMA(Tb, TQ, TP); | |
109 T1z = FNMS(Tb, TO, T1y); | |
110 } | |
111 { | |
112 E T15, T16, T17, T1F; | |
113 T15 = ri[WS(rs, 1)]; | |
114 T16 = T2 * T15; | |
115 T17 = ii[WS(rs, 1)]; | |
116 T1F = T2 * T17; | |
117 T18 = FMA(T5, T17, T16); | |
118 T1G = FNMS(T5, T15, T1F); | |
119 } | |
120 { | |
121 E TS, TT, TU, T1A; | |
122 TS = ri[WS(rs, 9)]; | |
123 TT = T8 * TS; | |
124 TU = ii[WS(rs, 9)]; | |
125 T1A = T8 * TU; | |
126 TV = FMA(Tc, TU, TT); | |
127 T1B = FNMS(Tc, TS, T1A); | |
128 } | |
129 { | |
130 E TZ, T10, T13, T1D; | |
131 TZ = ri[WS(rs, 6)]; | |
132 T10 = TY * TZ; | |
133 T13 = ii[WS(rs, 6)]; | |
134 T1D = TY * T13; | |
135 T14 = FMA(T12, T13, T10); | |
136 T1E = FNMS(T12, TZ, T1D); | |
137 } | |
138 TW = TR - TV; | |
139 T19 = T14 - T18; | |
140 T1a = TW + T19; | |
141 T1P = T1z + T1B; | |
142 T1Q = T1E + T1G; | |
143 T1Z = T1P + T1Q; | |
144 T1g = TR + TV; | |
145 T1h = T14 + T18; | |
146 T1i = T1g + T1h; | |
147 T1C = T1z - T1B; | |
148 T1H = T1E - T1G; | |
149 T2f = T1C + T1H; | |
150 } | |
151 { | |
152 E Tq, T1o, TL, T1v, Ty, T1q, TH, T1t; | |
153 { | |
154 E Tm, Tn, Tp, T1n; | |
155 Tm = ri[WS(rs, 2)]; | |
156 Tn = Tl * Tm; | |
157 Tp = ii[WS(rs, 2)]; | |
158 T1n = Tl * Tp; | |
159 Tq = FMA(To, Tp, Tn); | |
160 T1o = FNMS(To, Tm, T1n); | |
161 } | |
162 { | |
163 E TI, TJ, TK, T1u; | |
164 TI = ri[WS(rs, 3)]; | |
165 TJ = T3 * TI; | |
166 TK = ii[WS(rs, 3)]; | |
167 T1u = T3 * TK; | |
168 TL = FMA(T6, TK, TJ); | |
169 T1v = FNMS(T6, TI, T1u); | |
170 } | |
171 { | |
172 E Tt, Tu, Tx, T1p; | |
173 Tt = ri[WS(rs, 7)]; | |
174 Tu = Ts * Tt; | |
175 Tx = ii[WS(rs, 7)]; | |
176 T1p = Ts * Tx; | |
177 Ty = FMA(Tw, Tx, Tu); | |
178 T1q = FNMS(Tw, Tt, T1p); | |
179 } | |
180 { | |
181 E TC, TD, TG, T1s; | |
182 TC = ri[WS(rs, 8)]; | |
183 TD = TB * TC; | |
184 TG = ii[WS(rs, 8)]; | |
185 T1s = TB * TG; | |
186 TH = FMA(TF, TG, TD); | |
187 T1t = FNMS(TF, TC, T1s); | |
188 } | |
189 Tz = Tq - Ty; | |
190 TM = TH - TL; | |
191 TN = Tz + TM; | |
192 T1S = T1o + T1q; | |
193 T1T = T1t + T1v; | |
194 T1Y = T1S + T1T; | |
195 T1d = Tq + Ty; | |
196 T1e = TH + TL; | |
197 T1f = T1d + T1e; | |
198 T1r = T1o - T1q; | |
199 T1w = T1t - T1v; | |
200 T2e = T1r + T1w; | |
201 } | |
202 { | |
203 E T1l, T1b, T1k, T1J, T1L, T1x, T1I, T1K, T1m; | |
204 T1l = TN - T1a; | |
205 T1b = TN + T1a; | |
206 T1k = FNMS(KP250000000, T1b, Tk); | |
207 T1x = T1r - T1w; | |
208 T1I = T1C - T1H; | |
209 T1J = FMA(KP618033988, T1I, T1x); | |
210 T1L = FNMS(KP618033988, T1x, T1I); | |
211 ri[WS(rs, 5)] = Tk + T1b; | |
212 T1K = FNMS(KP559016994, T1l, T1k); | |
213 ri[WS(rs, 7)] = FNMS(KP951056516, T1L, T1K); | |
214 ri[WS(rs, 3)] = FMA(KP951056516, T1L, T1K); | |
215 T1m = FMA(KP559016994, T1l, T1k); | |
216 ri[WS(rs, 9)] = FNMS(KP951056516, T1J, T1m); | |
217 ri[WS(rs, 1)] = FMA(KP951056516, T1J, T1m); | |
218 } | |
219 { | |
220 E T2i, T2g, T2h, T2m, T2o, T2k, T2l, T2n, T2j; | |
221 T2i = T2e - T2f; | |
222 T2g = T2e + T2f; | |
223 T2h = FNMS(KP250000000, T2g, T2d); | |
224 T2k = Tz - TM; | |
225 T2l = TW - T19; | |
226 T2m = FMA(KP618033988, T2l, T2k); | |
227 T2o = FNMS(KP618033988, T2k, T2l); | |
228 ii[WS(rs, 5)] = T2g + T2d; | |
229 T2n = FNMS(KP559016994, T2i, T2h); | |
230 ii[WS(rs, 3)] = FNMS(KP951056516, T2o, T2n); | |
231 ii[WS(rs, 7)] = FMA(KP951056516, T2o, T2n); | |
232 T2j = FMA(KP559016994, T2i, T2h); | |
233 ii[WS(rs, 1)] = FNMS(KP951056516, T2m, T2j); | |
234 ii[WS(rs, 9)] = FMA(KP951056516, T2m, T2j); | |
235 } | |
236 { | |
237 E T1N, T1j, T1M, T1V, T1X, T1R, T1U, T1W, T1O; | |
238 T1N = T1f - T1i; | |
239 T1j = T1f + T1i; | |
240 T1M = FNMS(KP250000000, T1j, T1c); | |
241 T1R = T1P - T1Q; | |
242 T1U = T1S - T1T; | |
243 T1V = FNMS(KP618033988, T1U, T1R); | |
244 T1X = FMA(KP618033988, T1R, T1U); | |
245 ri[0] = T1c + T1j; | |
246 T1W = FMA(KP559016994, T1N, T1M); | |
247 ri[WS(rs, 4)] = FNMS(KP951056516, T1X, T1W); | |
248 ri[WS(rs, 6)] = FMA(KP951056516, T1X, T1W); | |
249 T1O = FNMS(KP559016994, T1N, T1M); | |
250 ri[WS(rs, 2)] = FNMS(KP951056516, T1V, T1O); | |
251 ri[WS(rs, 8)] = FMA(KP951056516, T1V, T1O); | |
252 } | |
253 { | |
254 E T26, T20, T25, T2a, T2c, T28, T29, T2b, T27; | |
255 T26 = T1Y - T1Z; | |
256 T20 = T1Y + T1Z; | |
257 T25 = FNMS(KP250000000, T20, T24); | |
258 T28 = T1g - T1h; | |
259 T29 = T1d - T1e; | |
260 T2a = FNMS(KP618033988, T29, T28); | |
261 T2c = FMA(KP618033988, T28, T29); | |
262 ii[0] = T20 + T24; | |
263 T2b = FMA(KP559016994, T26, T25); | |
264 ii[WS(rs, 4)] = FMA(KP951056516, T2c, T2b); | |
265 ii[WS(rs, 6)] = FNMS(KP951056516, T2c, T2b); | |
266 T27 = FNMS(KP559016994, T26, T25); | |
267 ii[WS(rs, 2)] = FMA(KP951056516, T2a, T27); | |
268 ii[WS(rs, 8)] = FNMS(KP951056516, T2a, T27); | |
269 } | |
270 } | |
271 } | |
272 } | |
273 } | |
274 | |
275 static const tw_instr twinstr[] = { | |
276 {TW_CEXP, 0, 1}, | |
277 {TW_CEXP, 0, 3}, | |
278 {TW_CEXP, 0, 9}, | |
279 {TW_NEXT, 1, 0} | |
280 }; | |
281 | |
282 static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {48, 28, 66, 0}, 0, 0, 0 }; | |
283 | |
284 void X(codelet_t2_10) (planner *p) { | |
285 X(kdft_dit_register) (p, t2_10, &desc); | |
286 } | |
287 #else | |
288 | |
289 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */ | |
290 | |
291 /* | |
292 * This function contains 114 FP additions, 80 FP multiplications, | |
293 * (or, 76 additions, 42 multiplications, 38 fused multiply/add), | |
294 * 63 stack variables, 4 constants, and 40 memory accesses | |
295 */ | |
296 #include "dft/scalar/t.h" | |
297 | |
298 static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
299 { | |
300 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
301 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
302 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
303 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
304 { | |
305 INT m; | |
306 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { | |
307 E T2, T5, T3, T6, T8, Tm, Tc, Tk, T9, Td, Te, TM, TO, Tg, Tp; | |
308 E Tv, Tx, Tr; | |
309 { | |
310 E T4, Tb, T7, Ta; | |
311 T2 = W[0]; | |
312 T5 = W[1]; | |
313 T3 = W[2]; | |
314 T6 = W[3]; | |
315 T4 = T2 * T3; | |
316 Tb = T5 * T3; | |
317 T7 = T5 * T6; | |
318 Ta = T2 * T6; | |
319 T8 = T4 - T7; | |
320 Tm = Ta - Tb; | |
321 Tc = Ta + Tb; | |
322 Tk = T4 + T7; | |
323 T9 = W[4]; | |
324 Td = W[5]; | |
325 Te = FMA(T8, T9, Tc * Td); | |
326 TM = FMA(T3, T9, T6 * Td); | |
327 TO = FNMS(T6, T9, T3 * Td); | |
328 Tg = FNMS(Tc, T9, T8 * Td); | |
329 Tp = FMA(Tk, T9, Tm * Td); | |
330 Tv = FMA(T2, T9, T5 * Td); | |
331 Tx = FNMS(T5, T9, T2 * Td); | |
332 Tr = FNMS(Tm, T9, Tk * Td); | |
333 } | |
334 { | |
335 E Tj, T1S, TX, T1G, TL, TU, TV, T1s, T1t, T1C, T11, T12, T13, T1h, T1k; | |
336 E T1Q, Tu, TD, TE, T1v, T1w, T1B, TY, TZ, T10, T1a, T1d, T1P; | |
337 { | |
338 E T1, T1F, Ti, T1E, Tf, Th; | |
339 T1 = ri[0]; | |
340 T1F = ii[0]; | |
341 Tf = ri[WS(rs, 5)]; | |
342 Th = ii[WS(rs, 5)]; | |
343 Ti = FMA(Te, Tf, Tg * Th); | |
344 T1E = FNMS(Tg, Tf, Te * Th); | |
345 Tj = T1 - Ti; | |
346 T1S = T1F - T1E; | |
347 TX = T1 + Ti; | |
348 T1G = T1E + T1F; | |
349 } | |
350 { | |
351 E TH, T1f, TT, T1j, TK, T1g, TQ, T1i; | |
352 { | |
353 E TF, TG, TR, TS; | |
354 TF = ri[WS(rs, 4)]; | |
355 TG = ii[WS(rs, 4)]; | |
356 TH = FMA(T8, TF, Tc * TG); | |
357 T1f = FNMS(Tc, TF, T8 * TG); | |
358 TR = ri[WS(rs, 1)]; | |
359 TS = ii[WS(rs, 1)]; | |
360 TT = FMA(T2, TR, T5 * TS); | |
361 T1j = FNMS(T5, TR, T2 * TS); | |
362 } | |
363 { | |
364 E TI, TJ, TN, TP; | |
365 TI = ri[WS(rs, 9)]; | |
366 TJ = ii[WS(rs, 9)]; | |
367 TK = FMA(T9, TI, Td * TJ); | |
368 T1g = FNMS(Td, TI, T9 * TJ); | |
369 TN = ri[WS(rs, 6)]; | |
370 TP = ii[WS(rs, 6)]; | |
371 TQ = FMA(TM, TN, TO * TP); | |
372 T1i = FNMS(TO, TN, TM * TP); | |
373 } | |
374 TL = TH - TK; | |
375 TU = TQ - TT; | |
376 TV = TL + TU; | |
377 T1s = T1f + T1g; | |
378 T1t = T1i + T1j; | |
379 T1C = T1s + T1t; | |
380 T11 = TH + TK; | |
381 T12 = TQ + TT; | |
382 T13 = T11 + T12; | |
383 T1h = T1f - T1g; | |
384 T1k = T1i - T1j; | |
385 T1Q = T1h + T1k; | |
386 } | |
387 { | |
388 E To, T18, TC, T1c, Tt, T19, Tz, T1b; | |
389 { | |
390 E Tl, Tn, TA, TB; | |
391 Tl = ri[WS(rs, 2)]; | |
392 Tn = ii[WS(rs, 2)]; | |
393 To = FMA(Tk, Tl, Tm * Tn); | |
394 T18 = FNMS(Tm, Tl, Tk * Tn); | |
395 TA = ri[WS(rs, 3)]; | |
396 TB = ii[WS(rs, 3)]; | |
397 TC = FMA(T3, TA, T6 * TB); | |
398 T1c = FNMS(T6, TA, T3 * TB); | |
399 } | |
400 { | |
401 E Tq, Ts, Tw, Ty; | |
402 Tq = ri[WS(rs, 7)]; | |
403 Ts = ii[WS(rs, 7)]; | |
404 Tt = FMA(Tp, Tq, Tr * Ts); | |
405 T19 = FNMS(Tr, Tq, Tp * Ts); | |
406 Tw = ri[WS(rs, 8)]; | |
407 Ty = ii[WS(rs, 8)]; | |
408 Tz = FMA(Tv, Tw, Tx * Ty); | |
409 T1b = FNMS(Tx, Tw, Tv * Ty); | |
410 } | |
411 Tu = To - Tt; | |
412 TD = Tz - TC; | |
413 TE = Tu + TD; | |
414 T1v = T18 + T19; | |
415 T1w = T1b + T1c; | |
416 T1B = T1v + T1w; | |
417 TY = To + Tt; | |
418 TZ = Tz + TC; | |
419 T10 = TY + TZ; | |
420 T1a = T18 - T19; | |
421 T1d = T1b - T1c; | |
422 T1P = T1a + T1d; | |
423 } | |
424 { | |
425 E T15, TW, T16, T1m, T1o, T1e, T1l, T1n, T17; | |
426 T15 = KP559016994 * (TE - TV); | |
427 TW = TE + TV; | |
428 T16 = FNMS(KP250000000, TW, Tj); | |
429 T1e = T1a - T1d; | |
430 T1l = T1h - T1k; | |
431 T1m = FMA(KP951056516, T1e, KP587785252 * T1l); | |
432 T1o = FNMS(KP587785252, T1e, KP951056516 * T1l); | |
433 ri[WS(rs, 5)] = Tj + TW; | |
434 T1n = T16 - T15; | |
435 ri[WS(rs, 7)] = T1n - T1o; | |
436 ri[WS(rs, 3)] = T1n + T1o; | |
437 T17 = T15 + T16; | |
438 ri[WS(rs, 9)] = T17 - T1m; | |
439 ri[WS(rs, 1)] = T17 + T1m; | |
440 } | |
441 { | |
442 E T1R, T1T, T1U, T1Y, T20, T1W, T1X, T1Z, T1V; | |
443 T1R = KP559016994 * (T1P - T1Q); | |
444 T1T = T1P + T1Q; | |
445 T1U = FNMS(KP250000000, T1T, T1S); | |
446 T1W = Tu - TD; | |
447 T1X = TL - TU; | |
448 T1Y = FMA(KP951056516, T1W, KP587785252 * T1X); | |
449 T20 = FNMS(KP587785252, T1W, KP951056516 * T1X); | |
450 ii[WS(rs, 5)] = T1T + T1S; | |
451 T1Z = T1U - T1R; | |
452 ii[WS(rs, 3)] = T1Z - T20; | |
453 ii[WS(rs, 7)] = T20 + T1Z; | |
454 T1V = T1R + T1U; | |
455 ii[WS(rs, 1)] = T1V - T1Y; | |
456 ii[WS(rs, 9)] = T1Y + T1V; | |
457 } | |
458 { | |
459 E T1q, T14, T1p, T1y, T1A, T1u, T1x, T1z, T1r; | |
460 T1q = KP559016994 * (T10 - T13); | |
461 T14 = T10 + T13; | |
462 T1p = FNMS(KP250000000, T14, TX); | |
463 T1u = T1s - T1t; | |
464 T1x = T1v - T1w; | |
465 T1y = FNMS(KP587785252, T1x, KP951056516 * T1u); | |
466 T1A = FMA(KP951056516, T1x, KP587785252 * T1u); | |
467 ri[0] = TX + T14; | |
468 T1z = T1q + T1p; | |
469 ri[WS(rs, 4)] = T1z - T1A; | |
470 ri[WS(rs, 6)] = T1z + T1A; | |
471 T1r = T1p - T1q; | |
472 ri[WS(rs, 2)] = T1r - T1y; | |
473 ri[WS(rs, 8)] = T1r + T1y; | |
474 } | |
475 { | |
476 E T1L, T1D, T1K, T1J, T1N, T1H, T1I, T1O, T1M; | |
477 T1L = KP559016994 * (T1B - T1C); | |
478 T1D = T1B + T1C; | |
479 T1K = FNMS(KP250000000, T1D, T1G); | |
480 T1H = T11 - T12; | |
481 T1I = TY - TZ; | |
482 T1J = FNMS(KP587785252, T1I, KP951056516 * T1H); | |
483 T1N = FMA(KP951056516, T1I, KP587785252 * T1H); | |
484 ii[0] = T1D + T1G; | |
485 T1O = T1L + T1K; | |
486 ii[WS(rs, 4)] = T1N + T1O; | |
487 ii[WS(rs, 6)] = T1O - T1N; | |
488 T1M = T1K - T1L; | |
489 ii[WS(rs, 2)] = T1J + T1M; | |
490 ii[WS(rs, 8)] = T1M - T1J; | |
491 } | |
492 } | |
493 } | |
494 } | |
495 } | |
496 | |
497 static const tw_instr twinstr[] = { | |
498 {TW_CEXP, 0, 1}, | |
499 {TW_CEXP, 0, 3}, | |
500 {TW_CEXP, 0, 9}, | |
501 {TW_NEXT, 1, 0} | |
502 }; | |
503 | |
504 static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {76, 42, 38, 0}, 0, 0, 0 }; | |
505 | |
506 void X(codelet_t2_10) (planner *p) { | |
507 X(kdft_dit_register) (p, t2_10, &desc); | |
508 } | |
509 #endif |