comparison src/fftw-3.3.8/dft/scalar/codelets/t1_64.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
29
30 /*
31 * This function contains 1038 FP additions, 644 FP multiplications,
32 * (or, 520 additions, 126 multiplications, 518 fused multiply/add),
33 * 190 stack variables, 15 constants, and 256 memory accesses
34 */
35 #include "dft/scalar/t.h"
36
37 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
43 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
44 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
45 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
46 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
49 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
50 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54 {
55 INT m;
56 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
57 E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X;
58 E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm;
59 E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B;
60 E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH;
61 E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm;
62 E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV;
63 E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h;
64 E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr;
65 E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu;
66 {
67 E T1, TiT, T7, TiS, Te, T7a, Tk, T7c;
68 T1 = ri[0];
69 TiT = ii[0];
70 {
71 E T3, T6, T4, TiR, T2, T5;
72 T3 = ri[WS(rs, 32)];
73 T6 = ii[WS(rs, 32)];
74 T2 = W[62];
75 T4 = T2 * T3;
76 TiR = T2 * T6;
77 T5 = W[63];
78 T7 = FMA(T5, T6, T4);
79 TiS = FNMS(T5, T3, TiR);
80 }
81 {
82 E Ta, Td, Tb, T79, T9, Tc;
83 Ta = ri[WS(rs, 16)];
84 Td = ii[WS(rs, 16)];
85 T9 = W[30];
86 Tb = T9 * Ta;
87 T79 = T9 * Td;
88 Tc = W[31];
89 Te = FMA(Tc, Td, Tb);
90 T7a = FNMS(Tc, Ta, T79);
91 }
92 {
93 E Tg, Tj, Th, T7b, Tf, Ti;
94 Tg = ri[WS(rs, 48)];
95 Tj = ii[WS(rs, 48)];
96 Tf = W[94];
97 Th = Tf * Tg;
98 T7b = Tf * Tj;
99 Ti = W[95];
100 Tk = FMA(Ti, Tj, Th);
101 T7c = FNMS(Ti, Tg, T7b);
102 }
103 {
104 E T8, Tl, TjP, TjQ;
105 T8 = T1 + T7;
106 Tl = Te + Tk;
107 Tm = T8 + Tl;
108 TeM = T8 - Tl;
109 TjP = TiT - TiS;
110 TjQ = Te - Tk;
111 TjR = TjP - TjQ;
112 Tkl = TjQ + TjP;
113 }
114 {
115 E T78, T7d, TiQ, TiU;
116 T78 = T1 - T7;
117 T7d = T7a - T7c;
118 T7e = T78 - T7d;
119 TcA = T78 + T7d;
120 TiQ = T7a + T7c;
121 TiU = TiS + TiT;
122 TiV = TiQ + TiU;
123 Tjm = TiU - TiQ;
124 }
125 }
126 {
127 E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T;
128 {
129 E T1h, T1k, T1i, T7K, T1g, T1j;
130 T1h = ri[WS(rs, 60)];
131 T1k = ii[WS(rs, 60)];
132 T1g = W[118];
133 T1i = T1g * T1h;
134 T7K = T1g * T1k;
135 T1j = W[119];
136 T1l = FMA(T1j, T1k, T1i);
137 T7L = FNMS(T1j, T1h, T7K);
138 }
139 {
140 E T1A, T1D, T1B, T7U, T1z, T1C;
141 T1A = ri[WS(rs, 44)];
142 T1D = ii[WS(rs, 44)];
143 T1z = W[86];
144 T1B = T1z * T1A;
145 T7U = T1z * T1D;
146 T1C = W[87];
147 T1E = FMA(T1C, T1D, T1B);
148 T7V = FNMS(T1C, T1A, T7U);
149 }
150 {
151 E T1n, T1q, T1o, T7M, T1m, T1p;
152 T1n = ri[WS(rs, 28)];
153 T1q = ii[WS(rs, 28)];
154 T1m = W[54];
155 T1o = T1m * T1n;
156 T7M = T1m * T1q;
157 T1p = W[55];
158 T1r = FMA(T1p, T1q, T1o);
159 T7N = FNMS(T1p, T1n, T7M);
160 }
161 {
162 E T1u, T1x, T1v, T7S, T1t, T1w;
163 T1u = ri[WS(rs, 12)];
164 T1x = ii[WS(rs, 12)];
165 T1t = W[22];
166 T1v = T1t * T1u;
167 T7S = T1t * T1x;
168 T1w = W[23];
169 T1y = FMA(T1w, T1x, T1v);
170 T7T = FNMS(T1w, T1u, T7S);
171 }
172 {
173 E T1s, T1F, TeX, TeY;
174 T1s = T1l + T1r;
175 T1F = T1y + T1E;
176 T1G = T1s + T1F;
177 TeW = T1s - T1F;
178 TeX = T7L + T7N;
179 TeY = T7T + T7V;
180 TeZ = TeX - TeY;
181 Ths = TeX + TeY;
182 }
183 {
184 E T7O, T7P, T7R, T7W;
185 T7O = T7L - T7N;
186 T7P = T1y - T1E;
187 T7Q = T7O + T7P;
188 TcJ = T7O - T7P;
189 T7R = T1l - T1r;
190 T7W = T7T - T7V;
191 T7X = T7R - T7W;
192 TcI = T7R + T7W;
193 }
194 }
195 {
196 E T1O, T82, T27, T8s, T1U, T84, T21, T8q;
197 {
198 E T1K, T1N, T1L, T81, T1J, T1M;
199 T1K = ri[WS(rs, 2)];
200 T1N = ii[WS(rs, 2)];
201 T1J = W[2];
202 T1L = T1J * T1K;
203 T81 = T1J * T1N;
204 T1M = W[3];
205 T1O = FMA(T1M, T1N, T1L);
206 T82 = FNMS(T1M, T1K, T81);
207 }
208 {
209 E T23, T26, T24, T8r, T22, T25;
210 T23 = ri[WS(rs, 50)];
211 T26 = ii[WS(rs, 50)];
212 T22 = W[98];
213 T24 = T22 * T23;
214 T8r = T22 * T26;
215 T25 = W[99];
216 T27 = FMA(T25, T26, T24);
217 T8s = FNMS(T25, T23, T8r);
218 }
219 {
220 E T1Q, T1T, T1R, T83, T1P, T1S;
221 T1Q = ri[WS(rs, 34)];
222 T1T = ii[WS(rs, 34)];
223 T1P = W[66];
224 T1R = T1P * T1Q;
225 T83 = T1P * T1T;
226 T1S = W[67];
227 T1U = FMA(T1S, T1T, T1R);
228 T84 = FNMS(T1S, T1Q, T83);
229 }
230 {
231 E T1X, T20, T1Y, T8p, T1W, T1Z;
232 T1X = ri[WS(rs, 18)];
233 T20 = ii[WS(rs, 18)];
234 T1W = W[34];
235 T1Y = T1W * T1X;
236 T8p = T1W * T20;
237 T1Z = W[35];
238 T21 = FMA(T1Z, T20, T1Y);
239 T8q = FNMS(T1Z, T1X, T8p);
240 }
241 {
242 E T1V, T28, Tf3, Tf4;
243 T1V = T1O + T1U;
244 T28 = T21 + T27;
245 T29 = T1V + T28;
246 Tf8 = T1V - T28;
247 Tf3 = T82 + T84;
248 Tf4 = T8q + T8s;
249 Tf5 = Tf3 - Tf4;
250 Thv = Tf3 + Tf4;
251 }
252 {
253 E T85, T86, T8o, T8t;
254 T85 = T82 - T84;
255 T86 = T21 - T27;
256 T87 = T85 + T86;
257 TcN = T85 - T86;
258 T8o = T1O - T1U;
259 T8t = T8q - T8s;
260 T8u = T8o - T8t;
261 TcQ = T8o + T8t;
262 }
263 }
264 {
265 E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf;
266 {
267 E T5l, T5o, T5m, Tak, T5k, T5n;
268 T5l = ri[WS(rs, 63)];
269 T5o = ii[WS(rs, 63)];
270 T5k = W[124];
271 T5m = T5k * T5l;
272 Tak = T5k * T5o;
273 T5n = W[125];
274 T5p = FMA(T5n, T5o, T5m);
275 Tal = FNMS(T5n, T5l, Tak);
276 }
277 {
278 E T5E, T5H, T5F, Tbg, T5D, T5G;
279 T5E = ri[WS(rs, 47)];
280 T5H = ii[WS(rs, 47)];
281 T5D = W[92];
282 T5F = T5D * T5E;
283 Tbg = T5D * T5H;
284 T5G = W[93];
285 T5I = FMA(T5G, T5H, T5F);
286 Tbh = FNMS(T5G, T5E, Tbg);
287 }
288 {
289 E T5r, T5u, T5s, Tam, T5q, T5t;
290 T5r = ri[WS(rs, 31)];
291 T5u = ii[WS(rs, 31)];
292 T5q = W[60];
293 T5s = T5q * T5r;
294 Tam = T5q * T5u;
295 T5t = W[61];
296 T5v = FMA(T5t, T5u, T5s);
297 Tan = FNMS(T5t, T5r, Tam);
298 }
299 {
300 E T5y, T5B, T5z, Tbe, T5x, T5A;
301 T5y = ri[WS(rs, 15)];
302 T5B = ii[WS(rs, 15)];
303 T5x = W[28];
304 T5z = T5x * T5y;
305 Tbe = T5x * T5B;
306 T5A = W[29];
307 T5C = FMA(T5A, T5B, T5z);
308 Tbf = FNMS(T5A, T5y, Tbe);
309 }
310 {
311 E T5w, T5J, TfS, TfT;
312 T5w = T5p + T5v;
313 T5J = T5C + T5I;
314 T5K = T5w + T5J;
315 Tg9 = T5w - T5J;
316 TfS = Tal + Tan;
317 TfT = Tbf + Tbh;
318 TfU = TfS - TfT;
319 ThS = TfS + TfT;
320 }
321 {
322 E Tao, Tap, Tbd, Tbi;
323 Tao = Tal - Tan;
324 Tap = T5C - T5I;
325 Taq = Tao + Tap;
326 Tdm = Tao - Tap;
327 Tbd = T5p - T5v;
328 Tbi = Tbf - Tbh;
329 Tbj = Tbd - Tbi;
330 Tdx = Tbd + Tbi;
331 }
332 }
333 {
334 E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o;
335 {
336 E To, Tr, Tp, T7f, Tn, Tq;
337 To = ri[WS(rs, 8)];
338 Tr = ii[WS(rs, 8)];
339 Tn = W[14];
340 Tp = Tn * To;
341 T7f = Tn * Tr;
342 Tq = W[15];
343 Ts = FMA(Tq, Tr, Tp);
344 T7g = FNMS(Tq, To, T7f);
345 }
346 {
347 E TH, TK, TI, T7p, TG, TJ;
348 TH = ri[WS(rs, 24)];
349 TK = ii[WS(rs, 24)];
350 TG = W[46];
351 TI = TG * TH;
352 T7p = TG * TK;
353 TJ = W[47];
354 TL = FMA(TJ, TK, TI);
355 T7q = FNMS(TJ, TH, T7p);
356 }
357 {
358 E Tu, Tx, Tv, T7h, Tt, Tw;
359 Tu = ri[WS(rs, 40)];
360 Tx = ii[WS(rs, 40)];
361 Tt = W[78];
362 Tv = Tt * Tu;
363 T7h = Tt * Tx;
364 Tw = W[79];
365 Ty = FMA(Tw, Tx, Tv);
366 T7i = FNMS(Tw, Tu, T7h);
367 }
368 {
369 E TB, TE, TC, T7n, TA, TD;
370 TB = ri[WS(rs, 56)];
371 TE = ii[WS(rs, 56)];
372 TA = W[110];
373 TC = TA * TB;
374 T7n = TA * TE;
375 TD = W[111];
376 TF = FMA(TD, TE, TC);
377 T7o = FNMS(TD, TB, T7n);
378 }
379 {
380 E Tz, TM, TeN, TeO;
381 Tz = Ts + Ty;
382 TM = TF + TL;
383 TN = Tz + TM;
384 Tjl = TM - Tz;
385 TeN = T7g + T7i;
386 TeO = T7o + T7q;
387 TeP = TeN - TeO;
388 TiP = TeN + TeO;
389 }
390 {
391 E T7j, T7k, T7m, T7r;
392 T7j = T7g - T7i;
393 T7k = Ts - Ty;
394 T7l = T7j - T7k;
395 TcB = T7k + T7j;
396 T7m = TF - TL;
397 T7r = T7o - T7q;
398 T7s = T7m + T7r;
399 TcC = T7m - T7r;
400 }
401 }
402 {
403 E TU, T7w, T1d, T7G, T10, T7y, T17, T7E;
404 {
405 E TQ, TT, TR, T7v, TP, TS;
406 TQ = ri[WS(rs, 4)];
407 TT = ii[WS(rs, 4)];
408 TP = W[6];
409 TR = TP * TQ;
410 T7v = TP * TT;
411 TS = W[7];
412 TU = FMA(TS, TT, TR);
413 T7w = FNMS(TS, TQ, T7v);
414 }
415 {
416 E T19, T1c, T1a, T7F, T18, T1b;
417 T19 = ri[WS(rs, 52)];
418 T1c = ii[WS(rs, 52)];
419 T18 = W[102];
420 T1a = T18 * T19;
421 T7F = T18 * T1c;
422 T1b = W[103];
423 T1d = FMA(T1b, T1c, T1a);
424 T7G = FNMS(T1b, T19, T7F);
425 }
426 {
427 E TW, TZ, TX, T7x, TV, TY;
428 TW = ri[WS(rs, 36)];
429 TZ = ii[WS(rs, 36)];
430 TV = W[70];
431 TX = TV * TW;
432 T7x = TV * TZ;
433 TY = W[71];
434 T10 = FMA(TY, TZ, TX);
435 T7y = FNMS(TY, TW, T7x);
436 }
437 {
438 E T13, T16, T14, T7D, T12, T15;
439 T13 = ri[WS(rs, 20)];
440 T16 = ii[WS(rs, 20)];
441 T12 = W[38];
442 T14 = T12 * T13;
443 T7D = T12 * T16;
444 T15 = W[39];
445 T17 = FMA(T15, T16, T14);
446 T7E = FNMS(T15, T13, T7D);
447 }
448 {
449 E T11, T1e, TeS, TeT;
450 T11 = TU + T10;
451 T1e = T17 + T1d;
452 T1f = T11 + T1e;
453 TeR = T11 - T1e;
454 TeS = T7w + T7y;
455 TeT = T7E + T7G;
456 TeU = TeS - TeT;
457 Thr = TeS + TeT;
458 }
459 {
460 E T7z, T7A, T7C, T7H;
461 T7z = T7w - T7y;
462 T7A = T17 - T1d;
463 T7B = T7z + T7A;
464 TcG = T7z - T7A;
465 T7C = TU - T10;
466 T7H = T7E - T7G;
467 T7I = T7C - T7H;
468 TcF = T7C + T7H;
469 }
470 }
471 {
472 E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z;
473 {
474 E T2D, T2G, T2E, T8A, T2C, T2F;
475 T2D = ri[WS(rs, 62)];
476 T2G = ii[WS(rs, 62)];
477 T2C = W[122];
478 T2E = T2C * T2D;
479 T8A = T2C * T2G;
480 T2F = W[123];
481 T2H = FMA(T2F, T2G, T2E);
482 T8B = FNMS(T2F, T2D, T8A);
483 }
484 {
485 E T2W, T2Z, T2X, T90, T2V, T2Y;
486 T2W = ri[WS(rs, 46)];
487 T2Z = ii[WS(rs, 46)];
488 T2V = W[90];
489 T2X = T2V * T2W;
490 T90 = T2V * T2Z;
491 T2Y = W[91];
492 T30 = FMA(T2Y, T2Z, T2X);
493 T91 = FNMS(T2Y, T2W, T90);
494 }
495 {
496 E T2J, T2M, T2K, T8C, T2I, T2L;
497 T2J = ri[WS(rs, 30)];
498 T2M = ii[WS(rs, 30)];
499 T2I = W[58];
500 T2K = T2I * T2J;
501 T8C = T2I * T2M;
502 T2L = W[59];
503 T2N = FMA(T2L, T2M, T2K);
504 T8D = FNMS(T2L, T2J, T8C);
505 }
506 {
507 E T2Q, T2T, T2R, T8Y, T2P, T2S;
508 T2Q = ri[WS(rs, 14)];
509 T2T = ii[WS(rs, 14)];
510 T2P = W[26];
511 T2R = T2P * T2Q;
512 T8Y = T2P * T2T;
513 T2S = W[27];
514 T2U = FMA(T2S, T2T, T2R);
515 T8Z = FNMS(T2S, T2Q, T8Y);
516 }
517 {
518 E T2O, T31, Tfe, Tff;
519 T2O = T2H + T2N;
520 T31 = T2U + T30;
521 T32 = T2O + T31;
522 Tfj = T2O - T31;
523 Tfe = T8B + T8D;
524 Tff = T8Z + T91;
525 Tfg = Tfe - Tff;
526 ThB = Tfe + Tff;
527 }
528 {
529 E T8E, T8F, T8X, T92;
530 T8E = T8B - T8D;
531 T8F = T2U - T30;
532 T8G = T8E + T8F;
533 TcU = T8E - T8F;
534 T8X = T2H - T2N;
535 T92 = T8Z - T91;
536 T93 = T8X - T92;
537 TcX = T8X + T92;
538 }
539 }
540 {
541 E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6;
542 {
543 E T3y, T3B, T3z, T9b, T3x, T3A;
544 T3y = ri[WS(rs, 1)];
545 T3B = ii[WS(rs, 1)];
546 T3x = W[0];
547 T3z = T3x * T3y;
548 T9b = T3x * T3B;
549 T3A = W[1];
550 T3C = FMA(T3A, T3B, T3z);
551 T9c = FNMS(T3A, T3y, T9b);
552 }
553 {
554 E T3R, T3U, T3S, Ta7, T3Q, T3T;
555 T3R = ri[WS(rs, 49)];
556 T3U = ii[WS(rs, 49)];
557 T3Q = W[96];
558 T3S = T3Q * T3R;
559 Ta7 = T3Q * T3U;
560 T3T = W[97];
561 T3V = FMA(T3T, T3U, T3S);
562 Ta8 = FNMS(T3T, T3R, Ta7);
563 }
564 {
565 E T3E, T3H, T3F, T9d, T3D, T3G;
566 T3E = ri[WS(rs, 33)];
567 T3H = ii[WS(rs, 33)];
568 T3D = W[64];
569 T3F = T3D * T3E;
570 T9d = T3D * T3H;
571 T3G = W[65];
572 T3I = FMA(T3G, T3H, T3F);
573 T9e = FNMS(T3G, T3E, T9d);
574 }
575 {
576 E T3L, T3O, T3M, Ta5, T3K, T3N;
577 T3L = ri[WS(rs, 17)];
578 T3O = ii[WS(rs, 17)];
579 T3K = W[32];
580 T3M = T3K * T3L;
581 Ta5 = T3K * T3O;
582 T3N = W[33];
583 T3P = FMA(T3N, T3O, T3M);
584 Ta6 = FNMS(T3N, T3L, Ta5);
585 }
586 {
587 E T3J, T3W, Tfr, Tfs;
588 T3J = T3C + T3I;
589 T3W = T3P + T3V;
590 T3X = T3J + T3W;
591 TfI = T3J - T3W;
592 Tfr = T9c + T9e;
593 Tfs = Ta6 + Ta8;
594 Tft = Tfr - Tfs;
595 ThH = Tfr + Tfs;
596 }
597 {
598 E T9f, T9g, Ta4, Ta9;
599 T9f = T9c - T9e;
600 T9g = T3P - T3V;
601 T9h = T9f + T9g;
602 Td3 = T9f - T9g;
603 Ta4 = T3C - T3I;
604 Ta9 = Ta6 - Ta8;
605 Taa = Ta4 - Ta9;
606 Tde = Ta4 + Ta9;
607 }
608 }
609 {
610 E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h;
611 {
612 E T2b, T2e, T2c, T89, T2a, T2d;
613 T2b = ri[WS(rs, 10)];
614 T2e = ii[WS(rs, 10)];
615 T2a = W[18];
616 T2c = T2a * T2b;
617 T89 = T2a * T2e;
618 T2d = W[19];
619 T2f = FMA(T2d, T2e, T2c);
620 T8a = FNMS(T2d, T2b, T89);
621 }
622 {
623 E T2u, T2x, T2v, T8i, T2t, T2w;
624 T2u = ri[WS(rs, 26)];
625 T2x = ii[WS(rs, 26)];
626 T2t = W[50];
627 T2v = T2t * T2u;
628 T8i = T2t * T2x;
629 T2w = W[51];
630 T2y = FMA(T2w, T2x, T2v);
631 T8j = FNMS(T2w, T2u, T8i);
632 }
633 {
634 E T2h, T2k, T2i, T8b, T2g, T2j;
635 T2h = ri[WS(rs, 42)];
636 T2k = ii[WS(rs, 42)];
637 T2g = W[82];
638 T2i = T2g * T2h;
639 T8b = T2g * T2k;
640 T2j = W[83];
641 T2l = FMA(T2j, T2k, T2i);
642 T8c = FNMS(T2j, T2h, T8b);
643 }
644 {
645 E T2o, T2r, T2p, T8g, T2n, T2q;
646 T2o = ri[WS(rs, 58)];
647 T2r = ii[WS(rs, 58)];
648 T2n = W[114];
649 T2p = T2n * T2o;
650 T8g = T2n * T2r;
651 T2q = W[115];
652 T2s = FMA(T2q, T2r, T2p);
653 T8h = FNMS(T2q, T2o, T8g);
654 }
655 {
656 E T2m, T2z, Tf9, Tfa;
657 T2m = T2f + T2l;
658 T2z = T2s + T2y;
659 T2A = T2m + T2z;
660 Tf6 = T2z - T2m;
661 Tf9 = T8a + T8c;
662 Tfa = T8h + T8j;
663 Tfb = Tf9 - Tfa;
664 Thw = Tf9 + Tfa;
665 {
666 E T8e, T8w, T8l, T8v;
667 {
668 E T88, T8d, T8f, T8k;
669 T88 = T2f - T2l;
670 T8d = T8a - T8c;
671 T8e = T88 + T8d;
672 T8w = T8d - T88;
673 T8f = T2s - T2y;
674 T8k = T8h - T8j;
675 T8l = T8f - T8k;
676 T8v = T8f + T8k;
677 }
678 T8m = T8e - T8l;
679 TcR = T8e + T8l;
680 T8x = T8v - T8w;
681 TcO = T8w + T8v;
682 }
683 }
684 }
685 {
686 E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q;
687 {
688 E T34, T37, T35, T8I, T33, T36;
689 T34 = ri[WS(rs, 6)];
690 T37 = ii[WS(rs, 6)];
691 T33 = W[10];
692 T35 = T33 * T34;
693 T8I = T33 * T37;
694 T36 = W[11];
695 T38 = FMA(T36, T37, T35);
696 T8J = FNMS(T36, T34, T8I);
697 }
698 {
699 E T3n, T3q, T3o, T8R, T3m, T3p;
700 T3n = ri[WS(rs, 22)];
701 T3q = ii[WS(rs, 22)];
702 T3m = W[42];
703 T3o = T3m * T3n;
704 T8R = T3m * T3q;
705 T3p = W[43];
706 T3r = FMA(T3p, T3q, T3o);
707 T8S = FNMS(T3p, T3n, T8R);
708 }
709 {
710 E T3a, T3d, T3b, T8K, T39, T3c;
711 T3a = ri[WS(rs, 38)];
712 T3d = ii[WS(rs, 38)];
713 T39 = W[74];
714 T3b = T39 * T3a;
715 T8K = T39 * T3d;
716 T3c = W[75];
717 T3e = FMA(T3c, T3d, T3b);
718 T8L = FNMS(T3c, T3a, T8K);
719 }
720 {
721 E T3h, T3k, T3i, T8P, T3g, T3j;
722 T3h = ri[WS(rs, 54)];
723 T3k = ii[WS(rs, 54)];
724 T3g = W[106];
725 T3i = T3g * T3h;
726 T8P = T3g * T3k;
727 T3j = W[107];
728 T3l = FMA(T3j, T3k, T3i);
729 T8Q = FNMS(T3j, T3h, T8P);
730 }
731 {
732 E T3f, T3s, Tfk, Tfl;
733 T3f = T38 + T3e;
734 T3s = T3l + T3r;
735 T3t = T3f + T3s;
736 Tfh = T3s - T3f;
737 Tfk = T8J + T8L;
738 Tfl = T8Q + T8S;
739 Tfm = Tfk - Tfl;
740 ThC = Tfk + Tfl;
741 {
742 E T8N, T95, T8U, T94;
743 {
744 E T8H, T8M, T8O, T8T;
745 T8H = T38 - T3e;
746 T8M = T8J - T8L;
747 T8N = T8H + T8M;
748 T95 = T8M - T8H;
749 T8O = T3l - T3r;
750 T8T = T8Q - T8S;
751 T8U = T8O - T8T;
752 T94 = T8O + T8T;
753 }
754 T8V = T8N - T8U;
755 TcY = T8N + T8U;
756 T96 = T94 - T95;
757 TcV = T95 + T94;
758 }
759 }
760 }
761 {
762 E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r;
763 {
764 E T3Z, T42, T40, T9j, T3Y, T41;
765 T3Z = ri[WS(rs, 9)];
766 T42 = ii[WS(rs, 9)];
767 T3Y = W[16];
768 T40 = T3Y * T3Z;
769 T9j = T3Y * T42;
770 T41 = W[17];
771 T43 = FMA(T41, T42, T40);
772 T9k = FNMS(T41, T3Z, T9j);
773 }
774 {
775 E T4i, T4l, T4j, T9s, T4h, T4k;
776 T4i = ri[WS(rs, 25)];
777 T4l = ii[WS(rs, 25)];
778 T4h = W[48];
779 T4j = T4h * T4i;
780 T9s = T4h * T4l;
781 T4k = W[49];
782 T4m = FMA(T4k, T4l, T4j);
783 T9t = FNMS(T4k, T4i, T9s);
784 }
785 {
786 E T45, T48, T46, T9l, T44, T47;
787 T45 = ri[WS(rs, 41)];
788 T48 = ii[WS(rs, 41)];
789 T44 = W[80];
790 T46 = T44 * T45;
791 T9l = T44 * T48;
792 T47 = W[81];
793 T49 = FMA(T47, T48, T46);
794 T9m = FNMS(T47, T45, T9l);
795 }
796 {
797 E T4c, T4f, T4d, T9q, T4b, T4e;
798 T4c = ri[WS(rs, 57)];
799 T4f = ii[WS(rs, 57)];
800 T4b = W[112];
801 T4d = T4b * T4c;
802 T9q = T4b * T4f;
803 T4e = W[113];
804 T4g = FMA(T4e, T4f, T4d);
805 T9r = FNMS(T4e, T4c, T9q);
806 }
807 {
808 E T4a, T4n, TfJ, TfK;
809 T4a = T43 + T49;
810 T4n = T4g + T4m;
811 T4o = T4a + T4n;
812 Tfu = T4n - T4a;
813 TfJ = T9k + T9m;
814 TfK = T9r + T9t;
815 TfL = TfJ - TfK;
816 ThI = TfJ + TfK;
817 {
818 E T9o, Tac, T9v, Tab;
819 {
820 E T9i, T9n, T9p, T9u;
821 T9i = T43 - T49;
822 T9n = T9k - T9m;
823 T9o = T9i + T9n;
824 Tac = T9n - T9i;
825 T9p = T4g - T4m;
826 T9u = T9r - T9t;
827 T9v = T9p - T9u;
828 Tab = T9p + T9u;
829 }
830 T9w = T9o - T9v;
831 Tdf = T9o + T9v;
832 Tad = Tab - Tac;
833 Td4 = Tac + Tab;
834 }
835 }
836 }
837 {
838 E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA;
839 {
840 E T5M, T5P, T5N, Tas, T5L, T5O;
841 T5M = ri[WS(rs, 7)];
842 T5P = ii[WS(rs, 7)];
843 T5L = W[12];
844 T5N = T5L * T5M;
845 Tas = T5L * T5P;
846 T5O = W[13];
847 T5Q = FMA(T5O, T5P, T5N);
848 Tat = FNMS(T5O, T5M, Tas);
849 }
850 {
851 E T65, T68, T66, TaB, T64, T67;
852 T65 = ri[WS(rs, 23)];
853 T68 = ii[WS(rs, 23)];
854 T64 = W[44];
855 T66 = T64 * T65;
856 TaB = T64 * T68;
857 T67 = W[45];
858 T69 = FMA(T67, T68, T66);
859 TaC = FNMS(T67, T65, TaB);
860 }
861 {
862 E T5S, T5V, T5T, Tau, T5R, T5U;
863 T5S = ri[WS(rs, 39)];
864 T5V = ii[WS(rs, 39)];
865 T5R = W[76];
866 T5T = T5R * T5S;
867 Tau = T5R * T5V;
868 T5U = W[77];
869 T5W = FMA(T5U, T5V, T5T);
870 Tav = FNMS(T5U, T5S, Tau);
871 }
872 {
873 E T5Z, T62, T60, Taz, T5Y, T61;
874 T5Z = ri[WS(rs, 55)];
875 T62 = ii[WS(rs, 55)];
876 T5Y = W[108];
877 T60 = T5Y * T5Z;
878 Taz = T5Y * T62;
879 T61 = W[109];
880 T63 = FMA(T61, T62, T60);
881 TaA = FNMS(T61, T5Z, Taz);
882 }
883 {
884 E T5X, T6a, Tga, Tgb;
885 T5X = T5Q + T5W;
886 T6a = T63 + T69;
887 T6b = T5X + T6a;
888 TfV = T6a - T5X;
889 Tga = Tat + Tav;
890 Tgb = TaA + TaC;
891 Tgc = Tga - Tgb;
892 ThT = Tga + Tgb;
893 {
894 E Tax, Tbl, TaE, Tbk;
895 {
896 E Tar, Taw, Tay, TaD;
897 Tar = T5Q - T5W;
898 Taw = Tat - Tav;
899 Tax = Tar + Taw;
900 Tbl = Taw - Tar;
901 Tay = T63 - T69;
902 TaD = TaA - TaC;
903 TaE = Tay - TaD;
904 Tbk = Tay + TaD;
905 }
906 TaF = Tax - TaE;
907 Tdy = Tax + TaE;
908 Tbm = Tbk - Tbl;
909 Tdn = Tbl + Tbk;
910 }
911 }
912 }
913 {
914 E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P;
915 {
916 E T4r, T4u, T4s, T9U, T4q, T4t;
917 T4r = ri[WS(rs, 5)];
918 T4u = ii[WS(rs, 5)];
919 T4q = W[8];
920 T4s = T4q * T4r;
921 T9U = T4q * T4u;
922 T4t = W[9];
923 T4v = FMA(T4t, T4u, T4s);
924 T9V = FNMS(T4t, T4r, T9U);
925 }
926 {
927 E T4K, T4N, T4L, T9Q, T4J, T4M;
928 T4K = ri[WS(rs, 53)];
929 T4N = ii[WS(rs, 53)];
930 T4J = W[104];
931 T4L = T4J * T4K;
932 T9Q = T4J * T4N;
933 T4M = W[105];
934 T4O = FMA(T4M, T4N, T4L);
935 T9R = FNMS(T4M, T4K, T9Q);
936 }
937 {
938 E T4x, T4A, T4y, T9W, T4w, T4z;
939 T4x = ri[WS(rs, 37)];
940 T4A = ii[WS(rs, 37)];
941 T4w = W[72];
942 T4y = T4w * T4x;
943 T9W = T4w * T4A;
944 T4z = W[73];
945 T4B = FMA(T4z, T4A, T4y);
946 T9X = FNMS(T4z, T4x, T9W);
947 }
948 {
949 E T4E, T4H, T4F, T9O, T4D, T4G;
950 T4E = ri[WS(rs, 21)];
951 T4H = ii[WS(rs, 21)];
952 T4D = W[40];
953 T4F = T4D * T4E;
954 T9O = T4D * T4H;
955 T4G = W[41];
956 T4I = FMA(T4G, T4H, T4F);
957 T9P = FNMS(T4G, T4E, T9O);
958 }
959 {
960 E T4C, T4P, Tfz, Tfw, Tfx, Tfy;
961 T4C = T4v + T4B;
962 T4P = T4I + T4O;
963 Tfz = T4C - T4P;
964 Tfw = T9V + T9X;
965 Tfx = T9P + T9R;
966 Tfy = Tfw - Tfx;
967 T4Q = T4C + T4P;
968 ThN = Tfw + Tfx;
969 TfA = Tfy - Tfz;
970 TfN = Tfz + Tfy;
971 }
972 {
973 E T9T, Td7, Ta0, Td6;
974 {
975 E T9N, T9S, T9Y, T9Z;
976 T9N = T4v - T4B;
977 T9S = T9P - T9R;
978 T9T = T9N - T9S;
979 Td7 = T9N + T9S;
980 T9Y = T9V - T9X;
981 T9Z = T4I - T4O;
982 Ta0 = T9Y + T9Z;
983 Td6 = T9Y - T9Z;
984 }
985 Ta1 = FNMS(KP414213562, Ta0, T9T);
986 Tdh = FMA(KP414213562, Td6, Td7);
987 Taf = FMA(KP414213562, T9T, Ta0);
988 Td8 = FNMS(KP414213562, Td7, Td6);
989 }
990 }
991 {
992 E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A;
993 {
994 E T4S, T4V, T4T, T9F, T4R, T4U;
995 T4S = ri[WS(rs, 61)];
996 T4V = ii[WS(rs, 61)];
997 T4R = W[120];
998 T4T = T4R * T4S;
999 T9F = T4R * T4V;
1000 T4U = W[121];
1001 T4W = FMA(T4U, T4V, T4T);
1002 T9G = FNMS(T4U, T4S, T9F);
1003 }
1004 {
1005 E T5b, T5e, T5c, T9B, T5a, T5d;
1006 T5b = ri[WS(rs, 45)];
1007 T5e = ii[WS(rs, 45)];
1008 T5a = W[88];
1009 T5c = T5a * T5b;
1010 T9B = T5a * T5e;
1011 T5d = W[89];
1012 T5f = FMA(T5d, T5e, T5c);
1013 T9C = FNMS(T5d, T5b, T9B);
1014 }
1015 {
1016 E T4Y, T51, T4Z, T9H, T4X, T50;
1017 T4Y = ri[WS(rs, 29)];
1018 T51 = ii[WS(rs, 29)];
1019 T4X = W[56];
1020 T4Z = T4X * T4Y;
1021 T9H = T4X * T51;
1022 T50 = W[57];
1023 T52 = FMA(T50, T51, T4Z);
1024 T9I = FNMS(T50, T4Y, T9H);
1025 }
1026 {
1027 E T55, T58, T56, T9z, T54, T57;
1028 T55 = ri[WS(rs, 13)];
1029 T58 = ii[WS(rs, 13)];
1030 T54 = W[24];
1031 T56 = T54 * T55;
1032 T9z = T54 * T58;
1033 T57 = W[25];
1034 T59 = FMA(T57, T58, T56);
1035 T9A = FNMS(T57, T55, T9z);
1036 }
1037 {
1038 E T53, T5g, TfB, TfC, TfD, TfE;
1039 T53 = T4W + T52;
1040 T5g = T59 + T5f;
1041 TfB = T53 - T5g;
1042 TfC = T9G + T9I;
1043 TfD = T9A + T9C;
1044 TfE = TfC - TfD;
1045 T5h = T53 + T5g;
1046 ThO = TfC + TfD;
1047 TfF = TfB + TfE;
1048 TfO = TfB - TfE;
1049 }
1050 {
1051 E T9E, Tda, T9L, Td9;
1052 {
1053 E T9y, T9D, T9J, T9K;
1054 T9y = T4W - T52;
1055 T9D = T9A - T9C;
1056 T9E = T9y - T9D;
1057 Tda = T9y + T9D;
1058 T9J = T9G - T9I;
1059 T9K = T59 - T5f;
1060 T9L = T9J + T9K;
1061 Td9 = T9J - T9K;
1062 }
1063 T9M = FMA(KP414213562, T9L, T9E);
1064 Tdi = FNMS(KP414213562, Td9, Tda);
1065 Tag = FNMS(KP414213562, T9E, T9L);
1066 Tdb = FMA(KP414213562, Tda, Td9);
1067 }
1068 }
1069 {
1070 E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY;
1071 {
1072 E T6e, T6h, T6f, Tb3, T6d, T6g;
1073 T6e = ri[WS(rs, 3)];
1074 T6h = ii[WS(rs, 3)];
1075 T6d = W[4];
1076 T6f = T6d * T6e;
1077 Tb3 = T6d * T6h;
1078 T6g = W[5];
1079 T6i = FMA(T6g, T6h, T6f);
1080 Tb4 = FNMS(T6g, T6e, Tb3);
1081 }
1082 {
1083 E T6x, T6A, T6y, TaZ, T6w, T6z;
1084 T6x = ri[WS(rs, 51)];
1085 T6A = ii[WS(rs, 51)];
1086 T6w = W[100];
1087 T6y = T6w * T6x;
1088 TaZ = T6w * T6A;
1089 T6z = W[101];
1090 T6B = FMA(T6z, T6A, T6y);
1091 Tb0 = FNMS(T6z, T6x, TaZ);
1092 }
1093 {
1094 E T6k, T6n, T6l, Tb5, T6j, T6m;
1095 T6k = ri[WS(rs, 35)];
1096 T6n = ii[WS(rs, 35)];
1097 T6j = W[68];
1098 T6l = T6j * T6k;
1099 Tb5 = T6j * T6n;
1100 T6m = W[69];
1101 T6o = FMA(T6m, T6n, T6l);
1102 Tb6 = FNMS(T6m, T6k, Tb5);
1103 }
1104 {
1105 E T6r, T6u, T6s, TaX, T6q, T6t;
1106 T6r = ri[WS(rs, 19)];
1107 T6u = ii[WS(rs, 19)];
1108 T6q = W[36];
1109 T6s = T6q * T6r;
1110 TaX = T6q * T6u;
1111 T6t = W[37];
1112 T6v = FMA(T6t, T6u, T6s);
1113 TaY = FNMS(T6t, T6r, TaX);
1114 }
1115 {
1116 E T6p, T6C, Tg0, TfX, TfY, TfZ;
1117 T6p = T6i + T6o;
1118 T6C = T6v + T6B;
1119 Tg0 = T6p - T6C;
1120 TfX = Tb4 + Tb6;
1121 TfY = TaY + Tb0;
1122 TfZ = TfX - TfY;
1123 T6D = T6p + T6C;
1124 ThY = TfX + TfY;
1125 Tg1 = TfZ - Tg0;
1126 Tge = Tg0 + TfZ;
1127 }
1128 {
1129 E Tb2, Tdq, Tb9, Tdp;
1130 {
1131 E TaW, Tb1, Tb7, Tb8;
1132 TaW = T6i - T6o;
1133 Tb1 = TaY - Tb0;
1134 Tb2 = TaW - Tb1;
1135 Tdq = TaW + Tb1;
1136 Tb7 = Tb4 - Tb6;
1137 Tb8 = T6v - T6B;
1138 Tb9 = Tb7 + Tb8;
1139 Tdp = Tb7 - Tb8;
1140 }
1141 Tba = FNMS(KP414213562, Tb9, Tb2);
1142 TdA = FMA(KP414213562, Tdp, Tdq);
1143 Tbo = FMA(KP414213562, Tb2, Tb9);
1144 Tdr = FNMS(KP414213562, Tdq, Tdp);
1145 }
1146 }
1147 {
1148 E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ;
1149 {
1150 E T6F, T6I, T6G, TaO, T6E, T6H;
1151 T6F = ri[WS(rs, 59)];
1152 T6I = ii[WS(rs, 59)];
1153 T6E = W[116];
1154 T6G = T6E * T6F;
1155 TaO = T6E * T6I;
1156 T6H = W[117];
1157 T6J = FMA(T6H, T6I, T6G);
1158 TaP = FNMS(T6H, T6F, TaO);
1159 }
1160 {
1161 E T6Y, T71, T6Z, TaK, T6X, T70;
1162 T6Y = ri[WS(rs, 43)];
1163 T71 = ii[WS(rs, 43)];
1164 T6X = W[84];
1165 T6Z = T6X * T6Y;
1166 TaK = T6X * T71;
1167 T70 = W[85];
1168 T72 = FMA(T70, T71, T6Z);
1169 TaL = FNMS(T70, T6Y, TaK);
1170 }
1171 {
1172 E T6L, T6O, T6M, TaQ, T6K, T6N;
1173 T6L = ri[WS(rs, 27)];
1174 T6O = ii[WS(rs, 27)];
1175 T6K = W[52];
1176 T6M = T6K * T6L;
1177 TaQ = T6K * T6O;
1178 T6N = W[53];
1179 T6P = FMA(T6N, T6O, T6M);
1180 TaR = FNMS(T6N, T6L, TaQ);
1181 }
1182 {
1183 E T6S, T6V, T6T, TaI, T6R, T6U;
1184 T6S = ri[WS(rs, 11)];
1185 T6V = ii[WS(rs, 11)];
1186 T6R = W[20];
1187 T6T = T6R * T6S;
1188 TaI = T6R * T6V;
1189 T6U = W[21];
1190 T6W = FMA(T6U, T6V, T6T);
1191 TaJ = FNMS(T6U, T6S, TaI);
1192 }
1193 {
1194 E T6Q, T73, Tg2, Tg3, Tg4, Tg5;
1195 T6Q = T6J + T6P;
1196 T73 = T6W + T72;
1197 Tg2 = T6Q - T73;
1198 Tg3 = TaP + TaR;
1199 Tg4 = TaJ + TaL;
1200 Tg5 = Tg3 - Tg4;
1201 T74 = T6Q + T73;
1202 ThZ = Tg3 + Tg4;
1203 Tg6 = Tg2 + Tg5;
1204 Tgf = Tg2 - Tg5;
1205 }
1206 {
1207 E TaN, Tdt, TaU, Tds;
1208 {
1209 E TaH, TaM, TaS, TaT;
1210 TaH = T6J - T6P;
1211 TaM = TaJ - TaL;
1212 TaN = TaH - TaM;
1213 Tdt = TaH + TaM;
1214 TaS = TaP - TaR;
1215 TaT = T6W - T72;
1216 TaU = TaS + TaT;
1217 Tds = TaS - TaT;
1218 }
1219 TaV = FMA(KP414213562, TaU, TaN);
1220 TdB = FNMS(KP414213562, Tds, Tdt);
1221 Tbp = FNMS(KP414213562, TaN, TaU);
1222 Tdu = FMA(KP414213562, Tdt, Tds);
1223 }
1224 }
1225 {
1226 E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix;
1227 E TiF;
1228 {
1229 E TO, T1H, Tip, Tiq;
1230 TO = Tm + TN;
1231 T1H = T1f + T1G;
1232 T1I = TO + T1H;
1233 Tio = TO - T1H;
1234 {
1235 E T2B, T3u, TiO, TiW;
1236 T2B = T29 + T2A;
1237 T3u = T32 + T3t;
1238 T3v = T2B + T3u;
1239 Tj1 = T3u - T2B;
1240 TiO = Thr + Ths;
1241 TiW = TiP + TiV;
1242 TiX = TiO + TiW;
1243 Tj2 = TiW - TiO;
1244 }
1245 Tip = Thv + Thw;
1246 Tiq = ThB + ThC;
1247 Tir = Tip - Tiq;
1248 TiN = Tip + Tiq;
1249 {
1250 E T6c, T75, Tiy, Tiz, TiA, TiB;
1251 T6c = T5K + T6b;
1252 T75 = T6D + T74;
1253 Tiy = T6c - T75;
1254 Tiz = ThS + ThT;
1255 TiA = ThY + ThZ;
1256 TiB = Tiz - TiA;
1257 T76 = T6c + T75;
1258 TiK = Tiz + TiA;
1259 TiC = Tiy - TiB;
1260 TiG = Tiy + TiB;
1261 }
1262 {
1263 E T4p, T5i, Tit, Tiu, Tiv, Tiw;
1264 T4p = T3X + T4o;
1265 T5i = T4Q + T5h;
1266 Tit = T4p - T5i;
1267 Tiu = ThH + ThI;
1268 Tiv = ThN + ThO;
1269 Tiw = Tiu - Tiv;
1270 T5j = T4p + T5i;
1271 TiJ = Tiu + Tiv;
1272 Tix = Tit + Tiw;
1273 TiF = Tiw - Tit;
1274 }
1275 }
1276 {
1277 E T3w, T77, TiM, TiY;
1278 T3w = T1I + T3v;
1279 T77 = T5j + T76;
1280 ri[WS(rs, 32)] = T3w - T77;
1281 ri[0] = T3w + T77;
1282 TiM = TiJ + TiK;
1283 TiY = TiN + TiX;
1284 ii[0] = TiM + TiY;
1285 ii[WS(rs, 32)] = TiY - TiM;
1286 }
1287 {
1288 E Tis, TiD, Tj3, Tj4;
1289 Tis = Tio + Tir;
1290 TiD = Tix + TiC;
1291 ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
1292 ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
1293 Tj3 = Tj1 + Tj2;
1294 Tj4 = TiF + TiG;
1295 ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
1296 ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
1297 }
1298 {
1299 E TiE, TiH, Tj5, Tj6;
1300 TiE = Tio - Tir;
1301 TiH = TiF - TiG;
1302 ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
1303 ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
1304 Tj5 = Tj2 - Tj1;
1305 Tj6 = TiC - Tix;
1306 ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
1307 ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
1308 }
1309 {
1310 E TiI, TiL, TiZ, Tj0;
1311 TiI = T1I - T3v;
1312 TiL = TiJ - TiK;
1313 ri[WS(rs, 48)] = TiI - TiL;
1314 ri[WS(rs, 16)] = TiI + TiL;
1315 TiZ = T76 - T5j;
1316 Tj0 = TiX - TiN;
1317 ii[WS(rs, 16)] = TiZ + Tj0;
1318 ii[WS(rs, 48)] = Tj0 - TiZ;
1319 }
1320 }
1321 {
1322 E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6;
1323 E Tii;
1324 {
1325 E Thq, Tht, Tj7, Tj8;
1326 Thq = Tm - TN;
1327 Tht = Thr - Ths;
1328 Thu = Thq - Tht;
1329 Ti8 = Thq + Tht;
1330 Tj7 = T1G - T1f;
1331 Tj8 = TiV - TiP;
1332 Tj9 = Tj7 + Tj8;
1333 Tjf = Tj8 - Tj7;
1334 }
1335 {
1336 E Thz, Ti9, ThE, Tia;
1337 {
1338 E Thx, Thy, ThA, ThD;
1339 Thx = Thv - Thw;
1340 Thy = T29 - T2A;
1341 Thz = Thx - Thy;
1342 Ti9 = Thy + Thx;
1343 ThA = T32 - T3t;
1344 ThD = ThB - ThC;
1345 ThE = ThA + ThD;
1346 Tia = ThA - ThD;
1347 }
1348 ThF = Thz - ThE;
1349 Tjg = Tia - Ti9;
1350 Tib = Ti9 + Tia;
1351 Tja = Thz + ThE;
1352 }
1353 {
1354 E ThL, Tie, ThQ, Tid;
1355 {
1356 E ThJ, ThK, ThM, ThP;
1357 ThJ = ThH - ThI;
1358 ThK = T5h - T4Q;
1359 ThL = ThJ - ThK;
1360 Tie = ThJ + ThK;
1361 ThM = T3X - T4o;
1362 ThP = ThN - ThO;
1363 ThQ = ThM - ThP;
1364 Tid = ThM + ThP;
1365 }
1366 ThR = FMA(KP414213562, ThQ, ThL);
1367 Til = FNMS(KP414213562, Tid, Tie);
1368 Ti5 = FNMS(KP414213562, ThL, ThQ);
1369 Tif = FMA(KP414213562, Tie, Tid);
1370 }
1371 {
1372 E ThW, Tih, Ti1, Tig;
1373 {
1374 E ThU, ThV, ThX, Ti0;
1375 ThU = ThS - ThT;
1376 ThV = T74 - T6D;
1377 ThW = ThU - ThV;
1378 Tih = ThU + ThV;
1379 ThX = T5K - T6b;
1380 Ti0 = ThY - ThZ;
1381 Ti1 = ThX - Ti0;
1382 Tig = ThX + Ti0;
1383 }
1384 Ti2 = FNMS(KP414213562, Ti1, ThW);
1385 Tim = FMA(KP414213562, Tig, Tih);
1386 Ti6 = FMA(KP414213562, ThW, Ti1);
1387 Tii = FNMS(KP414213562, Tih, Tig);
1388 }
1389 {
1390 E ThG, Ti3, Tjh, Tji;
1391 ThG = FMA(KP707106781, ThF, Thu);
1392 Ti3 = ThR - Ti2;
1393 ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
1394 ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
1395 Tjh = FMA(KP707106781, Tjg, Tjf);
1396 Tji = Ti6 - Ti5;
1397 ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
1398 ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
1399 }
1400 {
1401 E Ti4, Ti7, Tjj, Tjk;
1402 Ti4 = FNMS(KP707106781, ThF, Thu);
1403 Ti7 = Ti5 + Ti6;
1404 ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
1405 ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
1406 Tjj = FNMS(KP707106781, Tjg, Tjf);
1407 Tjk = ThR + Ti2;
1408 ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
1409 ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
1410 }
1411 {
1412 E Tic, Tij, Tjb, Tjc;
1413 Tic = FMA(KP707106781, Tib, Ti8);
1414 Tij = Tif + Tii;
1415 ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
1416 ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
1417 Tjb = FMA(KP707106781, Tja, Tj9);
1418 Tjc = Til + Tim;
1419 ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
1420 ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
1421 }
1422 {
1423 E Tik, Tin, Tjd, Tje;
1424 Tik = FNMS(KP707106781, Tib, Ti8);
1425 Tin = Til - Tim;
1426 ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
1427 ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
1428 Tjd = FNMS(KP707106781, Tja, Tj9);
1429 Tje = Tii - Tif;
1430 ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
1431 ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
1432 }
1433 }
1434 {
1435 E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8;
1436 E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC;
1437 E Tgm, Tgy;
1438 {
1439 E TeQ, TjB, Tf1, TjC, TeV, Tf0;
1440 TeQ = TeM + TeP;
1441 TjB = Tjm - Tjl;
1442 TeV = TeR + TeU;
1443 Tf0 = TeW - TeZ;
1444 Tf1 = TeV + Tf0;
1445 TjC = Tf0 - TeV;
1446 Tf2 = FNMS(KP707106781, Tf1, TeQ);
1447 TjJ = FNMS(KP707106781, TjC, TjB);
1448 Tgo = FMA(KP707106781, Tf1, TeQ);
1449 TjD = FMA(KP707106781, TjC, TjB);
1450 }
1451 {
1452 E TgE, Tjn, TgH, Tjo, TgF, TgG;
1453 TgE = TeM - TeP;
1454 Tjn = Tjl + Tjm;
1455 TgF = TeU - TeR;
1456 TgG = TeW + TeZ;
1457 TgH = TgF - TgG;
1458 Tjo = TgF + TgG;
1459 TgI = FMA(KP707106781, TgH, TgE);
1460 Tjv = FNMS(KP707106781, Tjo, Tjn);
1461 Tha = FNMS(KP707106781, TgH, TgE);
1462 Tjp = FMA(KP707106781, Tjo, Tjn);
1463 }
1464 {
1465 E Tfd, Tgp, Tfo, Tgq;
1466 {
1467 E Tf7, Tfc, Tfi, Tfn;
1468 Tf7 = Tf5 + Tf6;
1469 Tfc = Tf8 + Tfb;
1470 Tfd = FNMS(KP414213562, Tfc, Tf7);
1471 Tgp = FMA(KP414213562, Tf7, Tfc);
1472 Tfi = Tfg + Tfh;
1473 Tfn = Tfj + Tfm;
1474 Tfo = FMA(KP414213562, Tfn, Tfi);
1475 Tgq = FNMS(KP414213562, Tfi, Tfn);
1476 }
1477 Tfp = Tfd - Tfo;
1478 Tjw = Tgq - Tgp;
1479 Tgr = Tgp + Tgq;
1480 Tjq = Tfd + Tfo;
1481 }
1482 {
1483 E Th0, Thj, Th3, Thi;
1484 {
1485 E TgY, TgZ, Th1, Th2;
1486 TgY = Tg9 - Tgc;
1487 TgZ = Tg6 - Tg1;
1488 Th0 = FNMS(KP707106781, TgZ, TgY);
1489 Thj = FMA(KP707106781, TgZ, TgY);
1490 Th1 = TfU - TfV;
1491 Th2 = Tge - Tgf;
1492 Th3 = FNMS(KP707106781, Th2, Th1);
1493 Thi = FMA(KP707106781, Th2, Th1);
1494 }
1495 Th4 = FNMS(KP668178637, Th3, Th0);
1496 Tho = FMA(KP198912367, Thi, Thj);
1497 Th8 = FMA(KP668178637, Th0, Th3);
1498 Thk = FNMS(KP198912367, Thj, Thi);
1499 }
1500 {
1501 E TfH, Tgu, TfQ, Tgt;
1502 {
1503 E Tfv, TfG, TfM, TfP;
1504 Tfv = Tft + Tfu;
1505 TfG = TfA + TfF;
1506 TfH = FNMS(KP707106781, TfG, Tfv);
1507 Tgu = FMA(KP707106781, TfG, Tfv);
1508 TfM = TfI + TfL;
1509 TfP = TfN + TfO;
1510 TfQ = FNMS(KP707106781, TfP, TfM);
1511 Tgt = FMA(KP707106781, TfP, TfM);
1512 }
1513 TfR = FMA(KP668178637, TfQ, TfH);
1514 TgB = FNMS(KP198912367, Tgt, Tgu);
1515 Tgl = FNMS(KP668178637, TfH, TfQ);
1516 Tgv = FMA(KP198912367, Tgu, Tgt);
1517 }
1518 {
1519 E TgL, Thb, TgO, Thc;
1520 {
1521 E TgJ, TgK, TgM, TgN;
1522 TgJ = Tf5 - Tf6;
1523 TgK = Tf8 - Tfb;
1524 TgL = FMA(KP414213562, TgK, TgJ);
1525 Thb = FNMS(KP414213562, TgJ, TgK);
1526 TgM = Tfg - Tfh;
1527 TgN = Tfj - Tfm;
1528 TgO = FNMS(KP414213562, TgN, TgM);
1529 Thc = FMA(KP414213562, TgM, TgN);
1530 }
1531 TgP = TgL - TgO;
1532 TjK = TgL + TgO;
1533 Thd = Thb + Thc;
1534 TjE = Thc - Thb;
1535 }
1536 {
1537 E TgT, Thg, TgW, Thf;
1538 {
1539 E TgR, TgS, TgU, TgV;
1540 TgR = TfI - TfL;
1541 TgS = TfF - TfA;
1542 TgT = FNMS(KP707106781, TgS, TgR);
1543 Thg = FMA(KP707106781, TgS, TgR);
1544 TgU = Tft - Tfu;
1545 TgV = TfN - TfO;
1546 TgW = FNMS(KP707106781, TgV, TgU);
1547 Thf = FMA(KP707106781, TgV, TgU);
1548 }
1549 TgX = FMA(KP668178637, TgW, TgT);
1550 Thn = FNMS(KP198912367, Thf, Thg);
1551 Th7 = FNMS(KP668178637, TgT, TgW);
1552 Thh = FMA(KP198912367, Thg, Thf);
1553 }
1554 {
1555 E Tg8, Tgx, Tgh, Tgw;
1556 {
1557 E TfW, Tg7, Tgd, Tgg;
1558 TfW = TfU + TfV;
1559 Tg7 = Tg1 + Tg6;
1560 Tg8 = FNMS(KP707106781, Tg7, TfW);
1561 Tgx = FMA(KP707106781, Tg7, TfW);
1562 Tgd = Tg9 + Tgc;
1563 Tgg = Tge + Tgf;
1564 Tgh = FNMS(KP707106781, Tgg, Tgd);
1565 Tgw = FMA(KP707106781, Tgg, Tgd);
1566 }
1567 Tgi = FNMS(KP668178637, Tgh, Tg8);
1568 TgC = FMA(KP198912367, Tgw, Tgx);
1569 Tgm = FMA(KP668178637, Tg8, Tgh);
1570 Tgy = FNMS(KP198912367, Tgx, Tgw);
1571 }
1572 {
1573 E Tfq, Tgj, Tjx, Tjy;
1574 Tfq = FMA(KP923879532, Tfp, Tf2);
1575 Tgj = TfR - Tgi;
1576 ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
1577 ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
1578 Tjx = FMA(KP923879532, Tjw, Tjv);
1579 Tjy = Tgm - Tgl;
1580 ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
1581 ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
1582 }
1583 {
1584 E Tgk, Tgn, Tjz, TjA;
1585 Tgk = FNMS(KP923879532, Tfp, Tf2);
1586 Tgn = Tgl + Tgm;
1587 ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
1588 ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
1589 Tjz = FNMS(KP923879532, Tjw, Tjv);
1590 TjA = TfR + Tgi;
1591 ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
1592 ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
1593 }
1594 {
1595 E Tgs, Tgz, Tjr, Tjs;
1596 Tgs = FMA(KP923879532, Tgr, Tgo);
1597 Tgz = Tgv + Tgy;
1598 ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
1599 ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
1600 Tjr = FMA(KP923879532, Tjq, Tjp);
1601 Tjs = TgB + TgC;
1602 ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
1603 ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
1604 }
1605 {
1606 E TgA, TgD, Tjt, Tju;
1607 TgA = FNMS(KP923879532, Tgr, Tgo);
1608 TgD = TgB - TgC;
1609 ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
1610 ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
1611 Tjt = FNMS(KP923879532, Tjq, Tjp);
1612 Tju = Tgy - Tgv;
1613 ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
1614 ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
1615 }
1616 {
1617 E TgQ, Th5, TjF, TjG;
1618 TgQ = FMA(KP923879532, TgP, TgI);
1619 Th5 = TgX + Th4;
1620 ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
1621 ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
1622 TjF = FMA(KP923879532, TjE, TjD);
1623 TjG = Th7 + Th8;
1624 ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
1625 ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
1626 }
1627 {
1628 E Th6, Th9, TjH, TjI;
1629 Th6 = FNMS(KP923879532, TgP, TgI);
1630 Th9 = Th7 - Th8;
1631 ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
1632 ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
1633 TjH = FNMS(KP923879532, TjE, TjD);
1634 TjI = Th4 - TgX;
1635 ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
1636 ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
1637 }
1638 {
1639 E The, Thl, TjL, TjM;
1640 The = FNMS(KP923879532, Thd, Tha);
1641 Thl = Thh - Thk;
1642 ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
1643 ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
1644 TjL = FNMS(KP923879532, TjK, TjJ);
1645 TjM = Tho - Thn;
1646 ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
1647 ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
1648 }
1649 {
1650 E Thm, Thp, TjN, TjO;
1651 Thm = FMA(KP923879532, Thd, Tha);
1652 Thp = Thn + Tho;
1653 ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
1654 ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
1655 TjN = FMA(KP923879532, TjK, TjJ);
1656 TjO = Thh + Thk;
1657 ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
1658 ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
1659 }
1660 }
1661 {
1662 E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch;
1663 E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp;
1664 E Tkv, Tck;
1665 {
1666 E T8z, Tbz, T98, TbA;
1667 {
1668 E T8n, T8y, T8W, T97;
1669 T8n = FNMS(KP707106781, T8m, T87);
1670 T8y = FNMS(KP707106781, T8x, T8u);
1671 T8z = FNMS(KP668178637, T8y, T8n);
1672 Tbz = FMA(KP668178637, T8n, T8y);
1673 T8W = FNMS(KP707106781, T8V, T8G);
1674 T97 = FNMS(KP707106781, T96, T93);
1675 T98 = FMA(KP668178637, T97, T8W);
1676 TbA = FNMS(KP668178637, T8W, T97);
1677 }
1678 T99 = T8z - T98;
1679 Tkw = TbA - Tbz;
1680 TbB = Tbz + TbA;
1681 Tkq = T8z + T98;
1682 }
1683 {
1684 E Ta3, TbE, Tai, TbD;
1685 {
1686 E T9x, Ta2, Tae, Tah;
1687 T9x = FNMS(KP707106781, T9w, T9h);
1688 Ta2 = T9M - Ta1;
1689 Ta3 = FNMS(KP923879532, Ta2, T9x);
1690 TbE = FMA(KP923879532, Ta2, T9x);
1691 Tae = FNMS(KP707106781, Tad, Taa);
1692 Tah = Taf - Tag;
1693 Tai = FNMS(KP923879532, Tah, Tae);
1694 TbD = FMA(KP923879532, Tah, Tae);
1695 }
1696 Taj = FMA(KP534511135, Tai, Ta3);
1697 TbL = FNMS(KP303346683, TbD, TbE);
1698 Tbv = FNMS(KP534511135, Ta3, Tai);
1699 TbF = FMA(KP303346683, TbE, TbD);
1700 }
1701 {
1702 E Tca, Tct, Tcd, Tcs;
1703 {
1704 E Tc8, Tc9, Tcb, Tcc;
1705 Tc8 = FMA(KP707106781, Tbm, Tbj);
1706 Tc9 = Tba + TaV;
1707 Tca = FNMS(KP923879532, Tc9, Tc8);
1708 Tct = FMA(KP923879532, Tc9, Tc8);
1709 Tcb = FMA(KP707106781, TaF, Taq);
1710 Tcc = Tbo + Tbp;
1711 Tcd = FNMS(KP923879532, Tcc, Tcb);
1712 Tcs = FMA(KP923879532, Tcc, Tcb);
1713 }
1714 Tce = FNMS(KP820678790, Tcd, Tca);
1715 Tcy = FMA(KP098491403, Tcs, Tct);
1716 Tci = FMA(KP820678790, Tca, Tcd);
1717 Tcu = FNMS(KP098491403, Tct, Tcs);
1718 }
1719 {
1720 E Tc3, Tcq, Tc6, Tcp;
1721 {
1722 E Tc1, Tc2, Tc4, Tc5;
1723 Tc1 = FMA(KP707106781, Tad, Taa);
1724 Tc2 = Ta1 + T9M;
1725 Tc3 = FNMS(KP923879532, Tc2, Tc1);
1726 Tcq = FMA(KP923879532, Tc2, Tc1);
1727 Tc4 = FMA(KP707106781, T9w, T9h);
1728 Tc5 = Taf + Tag;
1729 Tc6 = FNMS(KP923879532, Tc5, Tc4);
1730 Tcp = FMA(KP923879532, Tc5, Tc4);
1731 }
1732 Tc7 = FMA(KP820678790, Tc6, Tc3);
1733 Tcx = FNMS(KP098491403, Tcp, Tcq);
1734 Tch = FNMS(KP820678790, Tc3, Tc6);
1735 Tcr = FMA(KP098491403, Tcq, Tcp);
1736 }
1737 {
1738 E TbV, Tcl, TbY, Tcm;
1739 {
1740 E TbT, TbU, TbW, TbX;
1741 TbT = FMA(KP707106781, T8m, T87);
1742 TbU = FMA(KP707106781, T8x, T8u);
1743 TbV = FMA(KP198912367, TbU, TbT);
1744 Tcl = FNMS(KP198912367, TbT, TbU);
1745 TbW = FMA(KP707106781, T8V, T8G);
1746 TbX = FMA(KP707106781, T96, T93);
1747 TbY = FNMS(KP198912367, TbX, TbW);
1748 Tcm = FMA(KP198912367, TbW, TbX);
1749 }
1750 TbZ = TbV - TbY;
1751 TkK = TbV + TbY;
1752 Tcn = Tcl + Tcm;
1753 TkE = Tcm - Tcl;
1754 }
1755 {
1756 E Tbc, TbH, Tbr, TbG;
1757 {
1758 E TaG, Tbb, Tbn, Tbq;
1759 TaG = FNMS(KP707106781, TaF, Taq);
1760 Tbb = TaV - Tba;
1761 Tbc = FNMS(KP923879532, Tbb, TaG);
1762 TbH = FMA(KP923879532, Tbb, TaG);
1763 Tbn = FNMS(KP707106781, Tbm, Tbj);
1764 Tbq = Tbo - Tbp;
1765 Tbr = FNMS(KP923879532, Tbq, Tbn);
1766 TbG = FMA(KP923879532, Tbq, Tbn);
1767 }
1768 Tbs = FNMS(KP534511135, Tbr, Tbc);
1769 TbM = FMA(KP303346683, TbG, TbH);
1770 Tbw = FMA(KP534511135, Tbc, Tbr);
1771 TbI = FNMS(KP303346683, TbH, TbG);
1772 }
1773 {
1774 E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm;
1775 T7t = T7l - T7s;
1776 T7u = FMA(KP707106781, T7t, T7e);
1777 TbO = FNMS(KP707106781, T7t, T7e);
1778 Tkm = TcC - TcB;
1779 Tkn = FMA(KP707106781, Tkm, Tkl);
1780 TkB = FNMS(KP707106781, Tkm, Tkl);
1781 {
1782 E T7J, T7Y, TbP, TbQ;
1783 T7J = FMA(KP414213562, T7I, T7B);
1784 T7Y = FNMS(KP414213562, T7X, T7Q);
1785 T7Z = T7J - T7Y;
1786 TkC = T7J + T7Y;
1787 TbP = FNMS(KP414213562, T7B, T7I);
1788 TbQ = FMA(KP414213562, T7Q, T7X);
1789 TbR = TbP + TbQ;
1790 Tko = TbQ - TbP;
1791 }
1792 T80 = FNMS(KP923879532, T7Z, T7u);
1793 TkD = FNMS(KP923879532, TkC, TkB);
1794 TkJ = FMA(KP923879532, TkC, TkB);
1795 Tby = FMA(KP923879532, T7Z, T7u);
1796 TbS = FNMS(KP923879532, TbR, TbO);
1797 Tkp = FMA(KP923879532, Tko, Tkn);
1798 Tkv = FNMS(KP923879532, Tko, Tkn);
1799 Tck = FMA(KP923879532, TbR, TbO);
1800 }
1801 {
1802 E T9a, Tbt, Tkx, Tky;
1803 T9a = FMA(KP831469612, T99, T80);
1804 Tbt = Taj - Tbs;
1805 ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
1806 ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
1807 Tkx = FMA(KP831469612, Tkw, Tkv);
1808 Tky = Tbw - Tbv;
1809 ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
1810 ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
1811 }
1812 {
1813 E Tbu, Tbx, Tkz, TkA;
1814 Tbu = FNMS(KP831469612, T99, T80);
1815 Tbx = Tbv + Tbw;
1816 ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
1817 ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
1818 Tkz = FNMS(KP831469612, Tkw, Tkv);
1819 TkA = Taj + Tbs;
1820 ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
1821 ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
1822 }
1823 {
1824 E TbC, TbJ, Tkr, Tks;
1825 TbC = FMA(KP831469612, TbB, Tby);
1826 TbJ = TbF + TbI;
1827 ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
1828 ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
1829 Tkr = FMA(KP831469612, Tkq, Tkp);
1830 Tks = TbL + TbM;
1831 ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
1832 ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
1833 }
1834 {
1835 E TbK, TbN, Tkt, Tku;
1836 TbK = FNMS(KP831469612, TbB, Tby);
1837 TbN = TbL - TbM;
1838 ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
1839 ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
1840 Tkt = FNMS(KP831469612, Tkq, Tkp);
1841 Tku = TbI - TbF;
1842 ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
1843 ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
1844 }
1845 {
1846 E Tc0, Tcf, TkF, TkG;
1847 Tc0 = FMA(KP980785280, TbZ, TbS);
1848 Tcf = Tc7 + Tce;
1849 ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
1850 ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
1851 TkF = FMA(KP980785280, TkE, TkD);
1852 TkG = Tch + Tci;
1853 ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
1854 ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
1855 }
1856 {
1857 E Tcg, Tcj, TkH, TkI;
1858 Tcg = FNMS(KP980785280, TbZ, TbS);
1859 Tcj = Tch - Tci;
1860 ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
1861 ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
1862 TkH = FNMS(KP980785280, TkE, TkD);
1863 TkI = Tce - Tc7;
1864 ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
1865 ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
1866 }
1867 {
1868 E Tco, Tcv, TkL, TkM;
1869 Tco = FNMS(KP980785280, Tcn, Tck);
1870 Tcv = Tcr - Tcu;
1871 ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
1872 ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
1873 TkL = FNMS(KP980785280, TkK, TkJ);
1874 TkM = Tcy - Tcx;
1875 ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
1876 ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
1877 }
1878 {
1879 E Tcw, Tcz, TkN, TkO;
1880 Tcw = FMA(KP980785280, Tcn, Tck);
1881 Tcz = Tcx + Tcy;
1882 ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
1883 ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
1884 TkN = FMA(KP980785280, TkK, TkJ);
1885 TkO = Tcr + Tcu;
1886 ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
1887 ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
1888 }
1889 }
1890 {
1891 E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet;
1892 E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV;
1893 E Tk1, Tew;
1894 {
1895 E TcT, TdL, Td0, TdM;
1896 {
1897 E TcP, TcS, TcW, TcZ;
1898 TcP = FMA(KP707106781, TcO, TcN);
1899 TcS = FMA(KP707106781, TcR, TcQ);
1900 TcT = FNMS(KP198912367, TcS, TcP);
1901 TdL = FMA(KP198912367, TcP, TcS);
1902 TcW = FMA(KP707106781, TcV, TcU);
1903 TcZ = FMA(KP707106781, TcY, TcX);
1904 Td0 = FMA(KP198912367, TcZ, TcW);
1905 TdM = FNMS(KP198912367, TcW, TcZ);
1906 }
1907 Td1 = TcT - Td0;
1908 Tk2 = TdM - TdL;
1909 TdN = TdL + TdM;
1910 TjW = TcT + Td0;
1911 }
1912 {
1913 E Tdd, TdQ, Tdk, TdP;
1914 {
1915 E Td5, Tdc, Tdg, Tdj;
1916 Td5 = FMA(KP707106781, Td4, Td3);
1917 Tdc = Td8 + Tdb;
1918 Tdd = FNMS(KP923879532, Tdc, Td5);
1919 TdQ = FMA(KP923879532, Tdc, Td5);
1920 Tdg = FMA(KP707106781, Tdf, Tde);
1921 Tdj = Tdh + Tdi;
1922 Tdk = FNMS(KP923879532, Tdj, Tdg);
1923 TdP = FMA(KP923879532, Tdj, Tdg);
1924 }
1925 Tdl = FMA(KP820678790, Tdk, Tdd);
1926 TdX = FNMS(KP098491403, TdP, TdQ);
1927 TdH = FNMS(KP820678790, Tdd, Tdk);
1928 TdR = FMA(KP098491403, TdQ, TdP);
1929 }
1930 {
1931 E Tem, TeF, Tep, TeE;
1932 {
1933 E Tek, Tel, Ten, Teo;
1934 Tek = FNMS(KP707106781, Tdy, Tdx);
1935 Tel = Tdu - Tdr;
1936 Tem = FNMS(KP923879532, Tel, Tek);
1937 TeF = FMA(KP923879532, Tel, Tek);
1938 Ten = FNMS(KP707106781, Tdn, Tdm);
1939 Teo = TdA - TdB;
1940 Tep = FNMS(KP923879532, Teo, Ten);
1941 TeE = FMA(KP923879532, Teo, Ten);
1942 }
1943 Teq = FNMS(KP534511135, Tep, Tem);
1944 TeK = FMA(KP303346683, TeE, TeF);
1945 Teu = FMA(KP534511135, Tem, Tep);
1946 TeG = FNMS(KP303346683, TeF, TeE);
1947 }
1948 {
1949 E Tef, TeC, Tei, TeB;
1950 {
1951 E Ted, Tee, Teg, Teh;
1952 Ted = FNMS(KP707106781, Tdf, Tde);
1953 Tee = Tdb - Td8;
1954 Tef = FNMS(KP923879532, Tee, Ted);
1955 TeC = FMA(KP923879532, Tee, Ted);
1956 Teg = FNMS(KP707106781, Td4, Td3);
1957 Teh = Tdh - Tdi;
1958 Tei = FNMS(KP923879532, Teh, Teg);
1959 TeB = FMA(KP923879532, Teh, Teg);
1960 }
1961 Tej = FMA(KP534511135, Tei, Tef);
1962 TeJ = FNMS(KP303346683, TeB, TeC);
1963 Tet = FNMS(KP534511135, Tef, Tei);
1964 TeD = FMA(KP303346683, TeC, TeB);
1965 }
1966 {
1967 E Te7, Tex, Tea, Tey;
1968 {
1969 E Te5, Te6, Te8, Te9;
1970 Te5 = FNMS(KP707106781, TcO, TcN);
1971 Te6 = FNMS(KP707106781, TcR, TcQ);
1972 Te7 = FMA(KP668178637, Te6, Te5);
1973 Tex = FNMS(KP668178637, Te5, Te6);
1974 Te8 = FNMS(KP707106781, TcV, TcU);
1975 Te9 = FNMS(KP707106781, TcY, TcX);
1976 Tea = FNMS(KP668178637, Te9, Te8);
1977 Tey = FMA(KP668178637, Te8, Te9);
1978 }
1979 Teb = Te7 - Tea;
1980 Tkg = Te7 + Tea;
1981 Tez = Tex + Tey;
1982 Tka = Tey - Tex;
1983 }
1984 {
1985 E Tdw, TdT, TdD, TdS;
1986 {
1987 E Tdo, Tdv, Tdz, TdC;
1988 Tdo = FMA(KP707106781, Tdn, Tdm);
1989 Tdv = Tdr + Tdu;
1990 Tdw = FNMS(KP923879532, Tdv, Tdo);
1991 TdT = FMA(KP923879532, Tdv, Tdo);
1992 Tdz = FMA(KP707106781, Tdy, Tdx);
1993 TdC = TdA + TdB;
1994 TdD = FNMS(KP923879532, TdC, Tdz);
1995 TdS = FMA(KP923879532, TdC, Tdz);
1996 }
1997 TdE = FNMS(KP820678790, TdD, Tdw);
1998 TdY = FMA(KP098491403, TdS, TdT);
1999 TdI = FMA(KP820678790, Tdw, TdD);
2000 TdU = FNMS(KP098491403, TdT, TdS);
2001 }
2002 {
2003 E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS;
2004 TcD = TcB + TcC;
2005 TcE = FMA(KP707106781, TcD, TcA);
2006 Te0 = FNMS(KP707106781, TcD, TcA);
2007 TjS = T7l + T7s;
2008 TjT = FMA(KP707106781, TjS, TjR);
2009 Tk7 = FNMS(KP707106781, TjS, TjR);
2010 {
2011 E TcH, TcK, Te1, Te2;
2012 TcH = FMA(KP414213562, TcG, TcF);
2013 TcK = FNMS(KP414213562, TcJ, TcI);
2014 TcL = TcH + TcK;
2015 Tk8 = TcK - TcH;
2016 Te1 = FNMS(KP414213562, TcF, TcG);
2017 Te2 = FMA(KP414213562, TcI, TcJ);
2018 Te3 = Te1 - Te2;
2019 TjU = Te1 + Te2;
2020 }
2021 TcM = FNMS(KP923879532, TcL, TcE);
2022 Tk9 = FMA(KP923879532, Tk8, Tk7);
2023 Tkf = FNMS(KP923879532, Tk8, Tk7);
2024 TdK = FMA(KP923879532, TcL, TcE);
2025 Te4 = FMA(KP923879532, Te3, Te0);
2026 TjV = FMA(KP923879532, TjU, TjT);
2027 Tk1 = FNMS(KP923879532, TjU, TjT);
2028 Tew = FNMS(KP923879532, Te3, Te0);
2029 }
2030 {
2031 E Td2, TdF, Tk3, Tk4;
2032 Td2 = FMA(KP980785280, Td1, TcM);
2033 TdF = Tdl - TdE;
2034 ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
2035 ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
2036 Tk3 = FMA(KP980785280, Tk2, Tk1);
2037 Tk4 = TdI - TdH;
2038 ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
2039 ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
2040 }
2041 {
2042 E TdG, TdJ, Tk5, Tk6;
2043 TdG = FNMS(KP980785280, Td1, TcM);
2044 TdJ = TdH + TdI;
2045 ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
2046 ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
2047 Tk5 = FNMS(KP980785280, Tk2, Tk1);
2048 Tk6 = Tdl + TdE;
2049 ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
2050 ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
2051 }
2052 {
2053 E TdO, TdV, TjX, TjY;
2054 TdO = FMA(KP980785280, TdN, TdK);
2055 TdV = TdR + TdU;
2056 ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
2057 ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
2058 TjX = FMA(KP980785280, TjW, TjV);
2059 TjY = TdX + TdY;
2060 ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
2061 ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
2062 }
2063 {
2064 E TdW, TdZ, TjZ, Tk0;
2065 TdW = FNMS(KP980785280, TdN, TdK);
2066 TdZ = TdX - TdY;
2067 ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
2068 ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
2069 TjZ = FNMS(KP980785280, TjW, TjV);
2070 Tk0 = TdU - TdR;
2071 ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
2072 ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
2073 }
2074 {
2075 E Tec, Ter, Tkb, Tkc;
2076 Tec = FMA(KP831469612, Teb, Te4);
2077 Ter = Tej + Teq;
2078 ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
2079 ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
2080 Tkb = FMA(KP831469612, Tka, Tk9);
2081 Tkc = Tet + Teu;
2082 ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
2083 ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
2084 }
2085 {
2086 E Tes, Tev, Tkd, Tke;
2087 Tes = FNMS(KP831469612, Teb, Te4);
2088 Tev = Tet - Teu;
2089 ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
2090 ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
2091 Tkd = FNMS(KP831469612, Tka, Tk9);
2092 Tke = Teq - Tej;
2093 ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
2094 ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
2095 }
2096 {
2097 E TeA, TeH, Tkh, Tki;
2098 TeA = FNMS(KP831469612, Tez, Tew);
2099 TeH = TeD - TeG;
2100 ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
2101 ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
2102 Tkh = FNMS(KP831469612, Tkg, Tkf);
2103 Tki = TeK - TeJ;
2104 ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
2105 ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
2106 }
2107 {
2108 E TeI, TeL, Tkj, Tkk;
2109 TeI = FMA(KP831469612, Tez, Tew);
2110 TeL = TeJ + TeK;
2111 ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
2112 ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
2113 Tkj = FMA(KP831469612, Tkg, Tkf);
2114 Tkk = TeD + TeG;
2115 ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
2116 ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
2117 }
2118 }
2119 }
2120 }
2121 }
2122
2123 static const tw_instr twinstr[] = {
2124 {TW_FULL, 0, 64},
2125 {TW_NEXT, 1, 0}
2126 };
2127
2128 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 };
2129
2130 void X(codelet_t1_64) (planner *p) {
2131 X(kdft_dit_register) (p, t1_64, &desc);
2132 }
2133 #else
2134
2135 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
2136
2137 /*
2138 * This function contains 1038 FP additions, 500 FP multiplications,
2139 * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
2140 * 176 stack variables, 15 constants, and 256 memory accesses
2141 */
2142 #include "dft/scalar/t.h"
2143
2144 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
2145 {
2146 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
2147 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
2148 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
2149 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
2150 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
2151 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
2152 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
2153 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
2154 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
2155 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
2156 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
2157 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
2158 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
2159 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
2160 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
2161 {
2162 INT m;
2163 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
2164 E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
2165 E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
2166 E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
2167 E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
2168 E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
2169 E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
2170 E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
2171 E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
2172 E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
2173 {
2174 E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
2175 T1 = ri[0];
2176 TgR = ii[0];
2177 {
2178 E T3, T5, T2, T4;
2179 T3 = ri[WS(rs, 32)];
2180 T5 = ii[WS(rs, 32)];
2181 T2 = W[62];
2182 T4 = W[63];
2183 T6 = FMA(T2, T3, T4 * T5);
2184 TgQ = FNMS(T4, T3, T2 * T5);
2185 }
2186 {
2187 E T9, Tb, T8, Ta;
2188 T9 = ri[WS(rs, 16)];
2189 Tb = ii[WS(rs, 16)];
2190 T8 = W[30];
2191 Ta = W[31];
2192 Tc = FMA(T8, T9, Ta * Tb);
2193 T68 = FNMS(Ta, T9, T8 * Tb);
2194 }
2195 {
2196 E Te, Tg, Td, Tf;
2197 Te = ri[WS(rs, 48)];
2198 Tg = ii[WS(rs, 48)];
2199 Td = W[94];
2200 Tf = W[95];
2201 Th = FMA(Td, Te, Tf * Tg);
2202 T69 = FNMS(Tf, Te, Td * Tg);
2203 }
2204 {
2205 E T7, Ti, ThR, ThS;
2206 T7 = T1 + T6;
2207 Ti = Tc + Th;
2208 Tj = T7 + Ti;
2209 TcL = T7 - Ti;
2210 ThR = TgR - TgQ;
2211 ThS = Tc - Th;
2212 ThT = ThR - ThS;
2213 Tin = ThS + ThR;
2214 }
2215 {
2216 E T67, T6a, TgP, TgS;
2217 T67 = T1 - T6;
2218 T6a = T68 - T69;
2219 T6b = T67 - T6a;
2220 Taz = T67 + T6a;
2221 TgP = T68 + T69;
2222 TgS = TgQ + TgR;
2223 TgT = TgP + TgS;
2224 Thn = TgS - TgP;
2225 }
2226 }
2227 {
2228 E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
2229 {
2230 E Tl, Tn, Tk, Tm;
2231 Tl = ri[WS(rs, 8)];
2232 Tn = ii[WS(rs, 8)];
2233 Tk = W[14];
2234 Tm = W[15];
2235 To = FMA(Tk, Tl, Tm * Tn);
2236 T6c = FNMS(Tm, Tl, Tk * Tn);
2237 }
2238 {
2239 E Tq, Ts, Tp, Tr;
2240 Tq = ri[WS(rs, 40)];
2241 Ts = ii[WS(rs, 40)];
2242 Tp = W[78];
2243 Tr = W[79];
2244 Tt = FMA(Tp, Tq, Tr * Ts);
2245 T6d = FNMS(Tr, Tq, Tp * Ts);
2246 }
2247 T6e = T6c - T6d;
2248 T6f = To - Tt;
2249 {
2250 E Tw, Ty, Tv, Tx;
2251 Tw = ri[WS(rs, 56)];
2252 Ty = ii[WS(rs, 56)];
2253 Tv = W[110];
2254 Tx = W[111];
2255 Tz = FMA(Tv, Tw, Tx * Ty);
2256 T6i = FNMS(Tx, Tw, Tv * Ty);
2257 }
2258 {
2259 E TB, TD, TA, TC;
2260 TB = ri[WS(rs, 24)];
2261 TD = ii[WS(rs, 24)];
2262 TA = W[46];
2263 TC = W[47];
2264 TE = FMA(TA, TB, TC * TD);
2265 T6j = FNMS(TC, TB, TA * TD);
2266 }
2267 T6h = Tz - TE;
2268 T6k = T6i - T6j;
2269 {
2270 E Tu, TF, TcM, TcN;
2271 Tu = To + Tt;
2272 TF = Tz + TE;
2273 TG = Tu + TF;
2274 Thm = TF - Tu;
2275 TcM = T6c + T6d;
2276 TcN = T6i + T6j;
2277 TcO = TcM - TcN;
2278 TgO = TcM + TcN;
2279 }
2280 {
2281 E T6g, T6l, TaA, TaB;
2282 T6g = T6e - T6f;
2283 T6l = T6h + T6k;
2284 T6m = KP707106781 * (T6g - T6l);
2285 ThQ = KP707106781 * (T6g + T6l);
2286 TaA = T6f + T6e;
2287 TaB = T6h - T6k;
2288 TaC = KP707106781 * (TaA + TaB);
2289 Tim = KP707106781 * (TaB - TaA);
2290 }
2291 }
2292 {
2293 E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
2294 {
2295 E TM, T6o, TR, T6p;
2296 {
2297 E TJ, TL, TI, TK;
2298 TJ = ri[WS(rs, 4)];
2299 TL = ii[WS(rs, 4)];
2300 TI = W[6];
2301 TK = W[7];
2302 TM = FMA(TI, TJ, TK * TL);
2303 T6o = FNMS(TK, TJ, TI * TL);
2304 }
2305 {
2306 E TO, TQ, TN, TP;
2307 TO = ri[WS(rs, 36)];
2308 TQ = ii[WS(rs, 36)];
2309 TN = W[70];
2310 TP = W[71];
2311 TR = FMA(TN, TO, TP * TQ);
2312 T6p = FNMS(TP, TO, TN * TQ);
2313 }
2314 TS = TM + TR;
2315 TcQ = T6o + T6p;
2316 T6q = T6o - T6p;
2317 T6t = TM - TR;
2318 }
2319 {
2320 E TX, T6u, T12, T6v;
2321 {
2322 E TU, TW, TT, TV;
2323 TU = ri[WS(rs, 20)];
2324 TW = ii[WS(rs, 20)];
2325 TT = W[38];
2326 TV = W[39];
2327 TX = FMA(TT, TU, TV * TW);
2328 T6u = FNMS(TV, TU, TT * TW);
2329 }
2330 {
2331 E TZ, T11, TY, T10;
2332 TZ = ri[WS(rs, 52)];
2333 T11 = ii[WS(rs, 52)];
2334 TY = W[102];
2335 T10 = W[103];
2336 T12 = FMA(TY, TZ, T10 * T11);
2337 T6v = FNMS(T10, TZ, TY * T11);
2338 }
2339 T13 = TX + T12;
2340 TcR = T6u + T6v;
2341 T6r = TX - T12;
2342 T6w = T6u - T6v;
2343 }
2344 T14 = TS + T13;
2345 Tfq = TcQ + TcR;
2346 T6s = T6q + T6r;
2347 T6x = T6t - T6w;
2348 T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
2349 T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
2350 {
2351 E TaE, TaF, TcS, TcT;
2352 TaE = T6q - T6r;
2353 TaF = T6t + T6w;
2354 TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
2355 Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
2356 TcS = TcQ - TcR;
2357 TcT = TS - T13;
2358 TcU = TcS - TcT;
2359 TeE = TcT + TcS;
2360 }
2361 }
2362 {
2363 E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
2364 {
2365 E T19, T6z, T1e, T6A;
2366 {
2367 E T16, T18, T15, T17;
2368 T16 = ri[WS(rs, 60)];
2369 T18 = ii[WS(rs, 60)];
2370 T15 = W[118];
2371 T17 = W[119];
2372 T19 = FMA(T15, T16, T17 * T18);
2373 T6z = FNMS(T17, T16, T15 * T18);
2374 }
2375 {
2376 E T1b, T1d, T1a, T1c;
2377 T1b = ri[WS(rs, 28)];
2378 T1d = ii[WS(rs, 28)];
2379 T1a = W[54];
2380 T1c = W[55];
2381 T1e = FMA(T1a, T1b, T1c * T1d);
2382 T6A = FNMS(T1c, T1b, T1a * T1d);
2383 }
2384 T1f = T19 + T1e;
2385 TcW = T6z + T6A;
2386 T6B = T6z - T6A;
2387 T6E = T19 - T1e;
2388 }
2389 {
2390 E T1k, T6F, T1p, T6G;
2391 {
2392 E T1h, T1j, T1g, T1i;
2393 T1h = ri[WS(rs, 12)];
2394 T1j = ii[WS(rs, 12)];
2395 T1g = W[22];
2396 T1i = W[23];
2397 T1k = FMA(T1g, T1h, T1i * T1j);
2398 T6F = FNMS(T1i, T1h, T1g * T1j);
2399 }
2400 {
2401 E T1m, T1o, T1l, T1n;
2402 T1m = ri[WS(rs, 44)];
2403 T1o = ii[WS(rs, 44)];
2404 T1l = W[86];
2405 T1n = W[87];
2406 T1p = FMA(T1l, T1m, T1n * T1o);
2407 T6G = FNMS(T1n, T1m, T1l * T1o);
2408 }
2409 T1q = T1k + T1p;
2410 TcX = T6F + T6G;
2411 T6C = T1k - T1p;
2412 T6H = T6F - T6G;
2413 }
2414 T1r = T1f + T1q;
2415 Tfr = TcW + TcX;
2416 T6D = T6B + T6C;
2417 T6I = T6E - T6H;
2418 T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
2419 T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
2420 {
2421 E TaH, TaI, TcV, TcY;
2422 TaH = T6B - T6C;
2423 TaI = T6E + T6H;
2424 TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
2425 Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
2426 TcV = T1f - T1q;
2427 TcY = TcW - TcX;
2428 TcZ = TcV + TcY;
2429 TeF = TcV - TcY;
2430 }
2431 }
2432 {
2433 E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
2434 E T6Z, T2c, Td9, T6R, T6U;
2435 {
2436 E T1v, T1x, T1u, T1w;
2437 T1v = ri[WS(rs, 2)];
2438 T1x = ii[WS(rs, 2)];
2439 T1u = W[2];
2440 T1w = W[3];
2441 T1y = FMA(T1u, T1v, T1w * T1x);
2442 T6M = FNMS(T1w, T1v, T1u * T1x);
2443 }
2444 {
2445 E T1A, T1C, T1z, T1B;
2446 T1A = ri[WS(rs, 34)];
2447 T1C = ii[WS(rs, 34)];
2448 T1z = W[66];
2449 T1B = W[67];
2450 T1D = FMA(T1z, T1A, T1B * T1C);
2451 T6N = FNMS(T1B, T1A, T1z * T1C);
2452 }
2453 T1E = T1y + T1D;
2454 Td2 = T6M + T6N;
2455 {
2456 E T1G, T1I, T1F, T1H;
2457 T1G = ri[WS(rs, 18)];
2458 T1I = ii[WS(rs, 18)];
2459 T1F = W[34];
2460 T1H = W[35];
2461 T1J = FMA(T1F, T1G, T1H * T1I);
2462 T74 = FNMS(T1H, T1G, T1F * T1I);
2463 }
2464 {
2465 E T1L, T1N, T1K, T1M;
2466 T1L = ri[WS(rs, 50)];
2467 T1N = ii[WS(rs, 50)];
2468 T1K = W[98];
2469 T1M = W[99];
2470 T1O = FMA(T1K, T1L, T1M * T1N);
2471 T75 = FNMS(T1M, T1L, T1K * T1N);
2472 }
2473 T1P = T1J + T1O;
2474 Td3 = T74 + T75;
2475 {
2476 E T1V, T6X, T20, T6Y;
2477 {
2478 E T1S, T1U, T1R, T1T;
2479 T1S = ri[WS(rs, 10)];
2480 T1U = ii[WS(rs, 10)];
2481 T1R = W[18];
2482 T1T = W[19];
2483 T1V = FMA(T1R, T1S, T1T * T1U);
2484 T6X = FNMS(T1T, T1S, T1R * T1U);
2485 }
2486 {
2487 E T1X, T1Z, T1W, T1Y;
2488 T1X = ri[WS(rs, 42)];
2489 T1Z = ii[WS(rs, 42)];
2490 T1W = W[82];
2491 T1Y = W[83];
2492 T20 = FMA(T1W, T1X, T1Y * T1Z);
2493 T6Y = FNMS(T1Y, T1X, T1W * T1Z);
2494 }
2495 T21 = T1V + T20;
2496 Td8 = T6X + T6Y;
2497 T6W = T1V - T20;
2498 T6Z = T6X - T6Y;
2499 }
2500 {
2501 E T26, T6S, T2b, T6T;
2502 {
2503 E T23, T25, T22, T24;
2504 T23 = ri[WS(rs, 58)];
2505 T25 = ii[WS(rs, 58)];
2506 T22 = W[114];
2507 T24 = W[115];
2508 T26 = FMA(T22, T23, T24 * T25);
2509 T6S = FNMS(T24, T23, T22 * T25);
2510 }
2511 {
2512 E T28, T2a, T27, T29;
2513 T28 = ri[WS(rs, 26)];
2514 T2a = ii[WS(rs, 26)];
2515 T27 = W[50];
2516 T29 = W[51];
2517 T2b = FMA(T27, T28, T29 * T2a);
2518 T6T = FNMS(T29, T28, T27 * T2a);
2519 }
2520 T2c = T26 + T2b;
2521 Td9 = T6S + T6T;
2522 T6R = T26 - T2b;
2523 T6U = T6S - T6T;
2524 }
2525 T1Q = T1E + T1P;
2526 T2d = T21 + T2c;
2527 Tfx = T1Q - T2d;
2528 Tfu = Td2 + Td3;
2529 Tfv = Td8 + Td9;
2530 Tfw = Tfu - Tfv;
2531 {
2532 E T6O, T6P, Td7, Tda;
2533 T6O = T6M - T6N;
2534 T6P = T1J - T1O;
2535 T6Q = T6O + T6P;
2536 TaM = T6O - T6P;
2537 Td7 = T1E - T1P;
2538 Tda = Td8 - Td9;
2539 Tdb = Td7 - Tda;
2540 TeJ = Td7 + Tda;
2541 }
2542 {
2543 E T6V, T70, T78, T79;
2544 T6V = T6R - T6U;
2545 T70 = T6W + T6Z;
2546 T71 = KP707106781 * (T6V - T70);
2547 TaQ = KP707106781 * (T70 + T6V);
2548 T78 = T6Z - T6W;
2549 T79 = T6R + T6U;
2550 T7a = KP707106781 * (T78 - T79);
2551 TaN = KP707106781 * (T78 + T79);
2552 }
2553 {
2554 E Td4, Td5, T73, T76;
2555 Td4 = Td2 - Td3;
2556 Td5 = T2c - T21;
2557 Td6 = Td4 - Td5;
2558 TeI = Td4 + Td5;
2559 T73 = T1y - T1D;
2560 T76 = T74 - T75;
2561 T77 = T73 - T76;
2562 TaP = T73 + T76;
2563 }
2564 }
2565 {
2566 E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
2567 E T7q, T2X, Tdk, T7i, T7l;
2568 {
2569 E T2g, T2i, T2f, T2h;
2570 T2g = ri[WS(rs, 62)];
2571 T2i = ii[WS(rs, 62)];
2572 T2f = W[122];
2573 T2h = W[123];
2574 T2j = FMA(T2f, T2g, T2h * T2i);
2575 T7d = FNMS(T2h, T2g, T2f * T2i);
2576 }
2577 {
2578 E T2l, T2n, T2k, T2m;
2579 T2l = ri[WS(rs, 30)];
2580 T2n = ii[WS(rs, 30)];
2581 T2k = W[58];
2582 T2m = W[59];
2583 T2o = FMA(T2k, T2l, T2m * T2n);
2584 T7e = FNMS(T2m, T2l, T2k * T2n);
2585 }
2586 T2p = T2j + T2o;
2587 Tdd = T7d + T7e;
2588 {
2589 E T2r, T2t, T2q, T2s;
2590 T2r = ri[WS(rs, 14)];
2591 T2t = ii[WS(rs, 14)];
2592 T2q = W[26];
2593 T2s = W[27];
2594 T2u = FMA(T2q, T2r, T2s * T2t);
2595 T7v = FNMS(T2s, T2r, T2q * T2t);
2596 }
2597 {
2598 E T2w, T2y, T2v, T2x;
2599 T2w = ri[WS(rs, 46)];
2600 T2y = ii[WS(rs, 46)];
2601 T2v = W[90];
2602 T2x = W[91];
2603 T2z = FMA(T2v, T2w, T2x * T2y);
2604 T7w = FNMS(T2x, T2w, T2v * T2y);
2605 }
2606 T2A = T2u + T2z;
2607 Tde = T7v + T7w;
2608 {
2609 E T2G, T7o, T2L, T7p;
2610 {
2611 E T2D, T2F, T2C, T2E;
2612 T2D = ri[WS(rs, 6)];
2613 T2F = ii[WS(rs, 6)];
2614 T2C = W[10];
2615 T2E = W[11];
2616 T2G = FMA(T2C, T2D, T2E * T2F);
2617 T7o = FNMS(T2E, T2D, T2C * T2F);
2618 }
2619 {
2620 E T2I, T2K, T2H, T2J;
2621 T2I = ri[WS(rs, 38)];
2622 T2K = ii[WS(rs, 38)];
2623 T2H = W[74];
2624 T2J = W[75];
2625 T2L = FMA(T2H, T2I, T2J * T2K);
2626 T7p = FNMS(T2J, T2I, T2H * T2K);
2627 }
2628 T2M = T2G + T2L;
2629 Tdj = T7o + T7p;
2630 T7n = T2G - T2L;
2631 T7q = T7o - T7p;
2632 }
2633 {
2634 E T2R, T7j, T2W, T7k;
2635 {
2636 E T2O, T2Q, T2N, T2P;
2637 T2O = ri[WS(rs, 54)];
2638 T2Q = ii[WS(rs, 54)];
2639 T2N = W[106];
2640 T2P = W[107];
2641 T2R = FMA(T2N, T2O, T2P * T2Q);
2642 T7j = FNMS(T2P, T2O, T2N * T2Q);
2643 }
2644 {
2645 E T2T, T2V, T2S, T2U;
2646 T2T = ri[WS(rs, 22)];
2647 T2V = ii[WS(rs, 22)];
2648 T2S = W[42];
2649 T2U = W[43];
2650 T2W = FMA(T2S, T2T, T2U * T2V);
2651 T7k = FNMS(T2U, T2T, T2S * T2V);
2652 }
2653 T2X = T2R + T2W;
2654 Tdk = T7j + T7k;
2655 T7i = T2R - T2W;
2656 T7l = T7j - T7k;
2657 }
2658 T2B = T2p + T2A;
2659 T2Y = T2M + T2X;
2660 Tfz = T2B - T2Y;
2661 TfA = Tdd + Tde;
2662 TfB = Tdj + Tdk;
2663 TfC = TfA - TfB;
2664 {
2665 E T7f, T7g, Tdi, Tdl;
2666 T7f = T7d - T7e;
2667 T7g = T2u - T2z;
2668 T7h = T7f + T7g;
2669 TaW = T7f - T7g;
2670 Tdi = T2p - T2A;
2671 Tdl = Tdj - Tdk;
2672 Tdm = Tdi - Tdl;
2673 TeM = Tdi + Tdl;
2674 }
2675 {
2676 E T7m, T7r, T7z, T7A;
2677 T7m = T7i - T7l;
2678 T7r = T7n + T7q;
2679 T7s = KP707106781 * (T7m - T7r);
2680 TaU = KP707106781 * (T7r + T7m);
2681 T7z = T7q - T7n;
2682 T7A = T7i + T7l;
2683 T7B = KP707106781 * (T7z - T7A);
2684 TaX = KP707106781 * (T7z + T7A);
2685 }
2686 {
2687 E Tdf, Tdg, T7u, T7x;
2688 Tdf = Tdd - Tde;
2689 Tdg = T2X - T2M;
2690 Tdh = Tdf - Tdg;
2691 TeL = Tdf + Tdg;
2692 T7u = T2j - T2o;
2693 T7x = T7v - T7w;
2694 T7y = T7u - T7x;
2695 TaT = T7u + T7x;
2696 }
2697 }
2698 {
2699 E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
2700 E T8H, T5h, TdT, T8J, T8M;
2701 {
2702 E T4A, T4C, T4z, T4B;
2703 T4A = ri[WS(rs, 63)];
2704 T4C = ii[WS(rs, 63)];
2705 T4z = W[124];
2706 T4B = W[125];
2707 T4D = FMA(T4z, T4A, T4B * T4C);
2708 T9e = FNMS(T4B, T4A, T4z * T4C);
2709 }
2710 {
2711 E T4F, T4H, T4E, T4G;
2712 T4F = ri[WS(rs, 31)];
2713 T4H = ii[WS(rs, 31)];
2714 T4E = W[60];
2715 T4G = W[61];
2716 T4I = FMA(T4E, T4F, T4G * T4H);
2717 T9f = FNMS(T4G, T4F, T4E * T4H);
2718 }
2719 T4J = T4D + T4I;
2720 Te8 = T9e + T9f;
2721 {
2722 E T4L, T4N, T4K, T4M;
2723 T4L = ri[WS(rs, 15)];
2724 T4N = ii[WS(rs, 15)];
2725 T4K = W[28];
2726 T4M = W[29];
2727 T4O = FMA(T4K, T4L, T4M * T4N);
2728 T8A = FNMS(T4M, T4L, T4K * T4N);
2729 }
2730 {
2731 E T4Q, T4S, T4P, T4R;
2732 T4Q = ri[WS(rs, 47)];
2733 T4S = ii[WS(rs, 47)];
2734 T4P = W[92];
2735 T4R = W[93];
2736 T4T = FMA(T4P, T4Q, T4R * T4S);
2737 T8B = FNMS(T4R, T4Q, T4P * T4S);
2738 }
2739 T4U = T4O + T4T;
2740 Te9 = T8A + T8B;
2741 {
2742 E T50, T8E, T55, T8F;
2743 {
2744 E T4X, T4Z, T4W, T4Y;
2745 T4X = ri[WS(rs, 7)];
2746 T4Z = ii[WS(rs, 7)];
2747 T4W = W[12];
2748 T4Y = W[13];
2749 T50 = FMA(T4W, T4X, T4Y * T4Z);
2750 T8E = FNMS(T4Y, T4X, T4W * T4Z);
2751 }
2752 {
2753 E T52, T54, T51, T53;
2754 T52 = ri[WS(rs, 39)];
2755 T54 = ii[WS(rs, 39)];
2756 T51 = W[76];
2757 T53 = W[77];
2758 T55 = FMA(T51, T52, T53 * T54);
2759 T8F = FNMS(T53, T52, T51 * T54);
2760 }
2761 T56 = T50 + T55;
2762 TdS = T8E + T8F;
2763 T8G = T8E - T8F;
2764 T8H = T50 - T55;
2765 }
2766 {
2767 E T5b, T8K, T5g, T8L;
2768 {
2769 E T58, T5a, T57, T59;
2770 T58 = ri[WS(rs, 55)];
2771 T5a = ii[WS(rs, 55)];
2772 T57 = W[108];
2773 T59 = W[109];
2774 T5b = FMA(T57, T58, T59 * T5a);
2775 T8K = FNMS(T59, T58, T57 * T5a);
2776 }
2777 {
2778 E T5d, T5f, T5c, T5e;
2779 T5d = ri[WS(rs, 23)];
2780 T5f = ii[WS(rs, 23)];
2781 T5c = W[44];
2782 T5e = W[45];
2783 T5g = FMA(T5c, T5d, T5e * T5f);
2784 T8L = FNMS(T5e, T5d, T5c * T5f);
2785 }
2786 T5h = T5b + T5g;
2787 TdT = T8K + T8L;
2788 T8J = T5b - T5g;
2789 T8M = T8K - T8L;
2790 }
2791 {
2792 E T4V, T5i, Tea, Teb;
2793 T4V = T4J + T4U;
2794 T5i = T56 + T5h;
2795 T5j = T4V + T5i;
2796 TfR = T4V - T5i;
2797 Tea = Te8 - Te9;
2798 Teb = T5h - T56;
2799 Tec = Tea - Teb;
2800 Tf0 = Tea + Teb;
2801 }
2802 {
2803 E TfW, TfX, T8z, T8C;
2804 TfW = Te8 + Te9;
2805 TfX = TdS + TdT;
2806 TfY = TfW - TfX;
2807 Tgy = TfW + TfX;
2808 T8z = T4D - T4I;
2809 T8C = T8A - T8B;
2810 T8D = T8z - T8C;
2811 Tbl = T8z + T8C;
2812 }
2813 {
2814 E T8I, T8N, T9j, T9k;
2815 T8I = T8G - T8H;
2816 T8N = T8J + T8M;
2817 T8O = KP707106781 * (T8I - T8N);
2818 Tbx = KP707106781 * (T8I + T8N);
2819 T9j = T8J - T8M;
2820 T9k = T8H + T8G;
2821 T9l = KP707106781 * (T9j - T9k);
2822 Tbm = KP707106781 * (T9k + T9j);
2823 }
2824 {
2825 E TdR, TdU, T9g, T9h;
2826 TdR = T4J - T4U;
2827 TdU = TdS - TdT;
2828 TdV = TdR - TdU;
2829 TeX = TdR + TdU;
2830 T9g = T9e - T9f;
2831 T9h = T4O - T4T;
2832 T9i = T9g + T9h;
2833 Tbw = T9g - T9h;
2834 }
2835 }
2836 {
2837 E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
2838 E T7T, T3K, TdJ, T7L, T7O;
2839 {
2840 E T33, T35, T32, T34;
2841 T33 = ri[WS(rs, 1)];
2842 T35 = ii[WS(rs, 1)];
2843 T32 = W[0];
2844 T34 = W[1];
2845 T36 = FMA(T32, T33, T34 * T35);
2846 T7G = FNMS(T34, T33, T32 * T35);
2847 }
2848 {
2849 E T38, T3a, T37, T39;
2850 T38 = ri[WS(rs, 33)];
2851 T3a = ii[WS(rs, 33)];
2852 T37 = W[64];
2853 T39 = W[65];
2854 T3b = FMA(T37, T38, T39 * T3a);
2855 T7H = FNMS(T39, T38, T37 * T3a);
2856 }
2857 T3c = T36 + T3b;
2858 Tdq = T7G + T7H;
2859 {
2860 E T3e, T3g, T3d, T3f;
2861 T3e = ri[WS(rs, 17)];
2862 T3g = ii[WS(rs, 17)];
2863 T3d = W[32];
2864 T3f = W[33];
2865 T3h = FMA(T3d, T3e, T3f * T3g);
2866 T8m = FNMS(T3f, T3e, T3d * T3g);
2867 }
2868 {
2869 E T3j, T3l, T3i, T3k;
2870 T3j = ri[WS(rs, 49)];
2871 T3l = ii[WS(rs, 49)];
2872 T3i = W[96];
2873 T3k = W[97];
2874 T3m = FMA(T3i, T3j, T3k * T3l);
2875 T8n = FNMS(T3k, T3j, T3i * T3l);
2876 }
2877 T3n = T3h + T3m;
2878 Tdr = T8m + T8n;
2879 {
2880 E T3t, T7R, T3y, T7S;
2881 {
2882 E T3q, T3s, T3p, T3r;
2883 T3q = ri[WS(rs, 9)];
2884 T3s = ii[WS(rs, 9)];
2885 T3p = W[16];
2886 T3r = W[17];
2887 T3t = FMA(T3p, T3q, T3r * T3s);
2888 T7R = FNMS(T3r, T3q, T3p * T3s);
2889 }
2890 {
2891 E T3v, T3x, T3u, T3w;
2892 T3v = ri[WS(rs, 41)];
2893 T3x = ii[WS(rs, 41)];
2894 T3u = W[80];
2895 T3w = W[81];
2896 T3y = FMA(T3u, T3v, T3w * T3x);
2897 T7S = FNMS(T3w, T3v, T3u * T3x);
2898 }
2899 T3z = T3t + T3y;
2900 TdI = T7R + T7S;
2901 T7Q = T3t - T3y;
2902 T7T = T7R - T7S;
2903 }
2904 {
2905 E T3E, T7M, T3J, T7N;
2906 {
2907 E T3B, T3D, T3A, T3C;
2908 T3B = ri[WS(rs, 57)];
2909 T3D = ii[WS(rs, 57)];
2910 T3A = W[112];
2911 T3C = W[113];
2912 T3E = FMA(T3A, T3B, T3C * T3D);
2913 T7M = FNMS(T3C, T3B, T3A * T3D);
2914 }
2915 {
2916 E T3G, T3I, T3F, T3H;
2917 T3G = ri[WS(rs, 25)];
2918 T3I = ii[WS(rs, 25)];
2919 T3F = W[48];
2920 T3H = W[49];
2921 T3J = FMA(T3F, T3G, T3H * T3I);
2922 T7N = FNMS(T3H, T3G, T3F * T3I);
2923 }
2924 T3K = T3E + T3J;
2925 TdJ = T7M + T7N;
2926 T7L = T3E - T3J;
2927 T7O = T7M - T7N;
2928 }
2929 {
2930 E T3o, T3L, TdH, TdK;
2931 T3o = T3c + T3n;
2932 T3L = T3z + T3K;
2933 T3M = T3o + T3L;
2934 TfL = T3o - T3L;
2935 TdH = T3c - T3n;
2936 TdK = TdI - TdJ;
2937 TdL = TdH - TdK;
2938 TeQ = TdH + TdK;
2939 }
2940 {
2941 E TfG, TfH, T7I, T7J;
2942 TfG = Tdq + Tdr;
2943 TfH = TdI + TdJ;
2944 TfI = TfG - TfH;
2945 Tgt = TfG + TfH;
2946 T7I = T7G - T7H;
2947 T7J = T3h - T3m;
2948 T7K = T7I + T7J;
2949 Tb2 = T7I - T7J;
2950 }
2951 {
2952 E T7P, T7U, T8q, T8r;
2953 T7P = T7L - T7O;
2954 T7U = T7Q + T7T;
2955 T7V = KP707106781 * (T7P - T7U);
2956 Tbe = KP707106781 * (T7U + T7P);
2957 T8q = T7T - T7Q;
2958 T8r = T7L + T7O;
2959 T8s = KP707106781 * (T8q - T8r);
2960 Tb3 = KP707106781 * (T8q + T8r);
2961 }
2962 {
2963 E Tds, Tdt, T8l, T8o;
2964 Tds = Tdq - Tdr;
2965 Tdt = T3K - T3z;
2966 Tdu = Tds - Tdt;
2967 TeT = Tds + Tdt;
2968 T8l = T36 - T3b;
2969 T8o = T8m - T8n;
2970 T8p = T8l - T8o;
2971 Tbd = T8l + T8o;
2972 }
2973 }
2974 {
2975 E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
2976 E T84;
2977 {
2978 E T3R, T88, T3W, T89;
2979 {
2980 E T3O, T3Q, T3N, T3P;
2981 T3O = ri[WS(rs, 5)];
2982 T3Q = ii[WS(rs, 5)];
2983 T3N = W[8];
2984 T3P = W[9];
2985 T3R = FMA(T3N, T3O, T3P * T3Q);
2986 T88 = FNMS(T3P, T3O, T3N * T3Q);
2987 }
2988 {
2989 E T3T, T3V, T3S, T3U;
2990 T3T = ri[WS(rs, 37)];
2991 T3V = ii[WS(rs, 37)];
2992 T3S = W[72];
2993 T3U = W[73];
2994 T3W = FMA(T3S, T3T, T3U * T3V);
2995 T89 = FNMS(T3U, T3T, T3S * T3V);
2996 }
2997 T3X = T3R + T3W;
2998 TdB = T88 + T89;
2999 T8a = T88 - T89;
3000 T8d = T3R - T3W;
3001 }
3002 {
3003 E T4p, T7Y, T4u, T7Z;
3004 {
3005 E T4m, T4o, T4l, T4n;
3006 T4m = ri[WS(rs, 13)];
3007 T4o = ii[WS(rs, 13)];
3008 T4l = W[24];
3009 T4n = W[25];
3010 T4p = FMA(T4l, T4m, T4n * T4o);
3011 T7Y = FNMS(T4n, T4m, T4l * T4o);
3012 }
3013 {
3014 E T4r, T4t, T4q, T4s;
3015 T4r = ri[WS(rs, 45)];
3016 T4t = ii[WS(rs, 45)];
3017 T4q = W[88];
3018 T4s = W[89];
3019 T4u = FMA(T4q, T4r, T4s * T4t);
3020 T7Z = FNMS(T4s, T4r, T4q * T4t);
3021 }
3022 T4v = T4p + T4u;
3023 Tdx = T7Y + T7Z;
3024 T80 = T7Y - T7Z;
3025 T85 = T4p - T4u;
3026 }
3027 {
3028 E T42, T8e, T47, T8f;
3029 {
3030 E T3Z, T41, T3Y, T40;
3031 T3Z = ri[WS(rs, 21)];
3032 T41 = ii[WS(rs, 21)];
3033 T3Y = W[40];
3034 T40 = W[41];
3035 T42 = FMA(T3Y, T3Z, T40 * T41);
3036 T8e = FNMS(T40, T3Z, T3Y * T41);
3037 }
3038 {
3039 E T44, T46, T43, T45;
3040 T44 = ri[WS(rs, 53)];
3041 T46 = ii[WS(rs, 53)];
3042 T43 = W[104];
3043 T45 = W[105];
3044 T47 = FMA(T43, T44, T45 * T46);
3045 T8f = FNMS(T45, T44, T43 * T46);
3046 }
3047 T48 = T42 + T47;
3048 TdC = T8e + T8f;
3049 T8b = T42 - T47;
3050 T8g = T8e - T8f;
3051 }
3052 {
3053 E T4e, T82, T4j, T83;
3054 {
3055 E T4b, T4d, T4a, T4c;
3056 T4b = ri[WS(rs, 61)];
3057 T4d = ii[WS(rs, 61)];
3058 T4a = W[120];
3059 T4c = W[121];
3060 T4e = FMA(T4a, T4b, T4c * T4d);
3061 T82 = FNMS(T4c, T4b, T4a * T4d);
3062 }
3063 {
3064 E T4g, T4i, T4f, T4h;
3065 T4g = ri[WS(rs, 29)];
3066 T4i = ii[WS(rs, 29)];
3067 T4f = W[56];
3068 T4h = W[57];
3069 T4j = FMA(T4f, T4g, T4h * T4i);
3070 T83 = FNMS(T4h, T4g, T4f * T4i);
3071 }
3072 T4k = T4e + T4j;
3073 Tdw = T82 + T83;
3074 T7X = T4e - T4j;
3075 T84 = T82 - T83;
3076 }
3077 {
3078 E T49, T4w, TdA, TdD;
3079 T49 = T3X + T48;
3080 T4w = T4k + T4v;
3081 T4x = T49 + T4w;
3082 TfJ = T4w - T49;
3083 TdA = T3X - T48;
3084 TdD = TdB - TdC;
3085 TdE = TdA + TdD;
3086 TdM = TdD - TdA;
3087 }
3088 {
3089 E TfM, TfN, T81, T86;
3090 TfM = TdB + TdC;
3091 TfN = Tdw + Tdx;
3092 TfO = TfM - TfN;
3093 Tgu = TfM + TfN;
3094 T81 = T7X - T80;
3095 T86 = T84 + T85;
3096 T87 = FNMS(KP923879532, T86, KP382683432 * T81);
3097 T8v = FMA(KP382683432, T86, KP923879532 * T81);
3098 }
3099 {
3100 E T8c, T8h, Tb8, Tb9;
3101 T8c = T8a + T8b;
3102 T8h = T8d - T8g;
3103 T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
3104 T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
3105 Tb8 = T8a - T8b;
3106 Tb9 = T8d + T8g;
3107 Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
3108 Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
3109 }
3110 {
3111 E Tdv, Tdy, Tb5, Tb6;
3112 Tdv = T4k - T4v;
3113 Tdy = Tdw - Tdx;
3114 Tdz = Tdv - Tdy;
3115 TdN = Tdv + Tdy;
3116 Tb5 = T7X + T80;
3117 Tb6 = T84 - T85;
3118 Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
3119 Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
3120 }
3121 }
3122 {
3123 E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
3124 E T96;
3125 {
3126 E T5o, T8Q, T5t, T8R;
3127 {
3128 E T5l, T5n, T5k, T5m;
3129 T5l = ri[WS(rs, 3)];
3130 T5n = ii[WS(rs, 3)];
3131 T5k = W[4];
3132 T5m = W[5];
3133 T5o = FMA(T5k, T5l, T5m * T5n);
3134 T8Q = FNMS(T5m, T5l, T5k * T5n);
3135 }
3136 {
3137 E T5q, T5s, T5p, T5r;
3138 T5q = ri[WS(rs, 35)];
3139 T5s = ii[WS(rs, 35)];
3140 T5p = W[68];
3141 T5r = W[69];
3142 T5t = FMA(T5p, T5q, T5r * T5s);
3143 T8R = FNMS(T5r, T5q, T5p * T5s);
3144 }
3145 T5u = T5o + T5t;
3146 TdW = T8Q + T8R;
3147 T8S = T8Q - T8R;
3148 T8V = T5o - T5t;
3149 }
3150 {
3151 E T5W, T97, T61, T98;
3152 {
3153 E T5T, T5V, T5S, T5U;
3154 T5T = ri[WS(rs, 11)];
3155 T5V = ii[WS(rs, 11)];
3156 T5S = W[20];
3157 T5U = W[21];
3158 T5W = FMA(T5S, T5T, T5U * T5V);
3159 T97 = FNMS(T5U, T5T, T5S * T5V);
3160 }
3161 {
3162 E T5Y, T60, T5X, T5Z;
3163 T5Y = ri[WS(rs, 43)];
3164 T60 = ii[WS(rs, 43)];
3165 T5X = W[84];
3166 T5Z = W[85];
3167 T61 = FMA(T5X, T5Y, T5Z * T60);
3168 T98 = FNMS(T5Z, T5Y, T5X * T60);
3169 }
3170 T62 = T5W + T61;
3171 Te3 = T97 + T98;
3172 T94 = T5W - T61;
3173 T99 = T97 - T98;
3174 }
3175 {
3176 E T5z, T8W, T5E, T8X;
3177 {
3178 E T5w, T5y, T5v, T5x;
3179 T5w = ri[WS(rs, 19)];
3180 T5y = ii[WS(rs, 19)];
3181 T5v = W[36];
3182 T5x = W[37];
3183 T5z = FMA(T5v, T5w, T5x * T5y);
3184 T8W = FNMS(T5x, T5w, T5v * T5y);
3185 }
3186 {
3187 E T5B, T5D, T5A, T5C;
3188 T5B = ri[WS(rs, 51)];
3189 T5D = ii[WS(rs, 51)];
3190 T5A = W[100];
3191 T5C = W[101];
3192 T5E = FMA(T5A, T5B, T5C * T5D);
3193 T8X = FNMS(T5C, T5B, T5A * T5D);
3194 }
3195 T5F = T5z + T5E;
3196 TdX = T8W + T8X;
3197 T8T = T5z - T5E;
3198 T8Y = T8W - T8X;
3199 }
3200 {
3201 E T5L, T91, T5Q, T92;
3202 {
3203 E T5I, T5K, T5H, T5J;
3204 T5I = ri[WS(rs, 59)];
3205 T5K = ii[WS(rs, 59)];
3206 T5H = W[116];
3207 T5J = W[117];
3208 T5L = FMA(T5H, T5I, T5J * T5K);
3209 T91 = FNMS(T5J, T5I, T5H * T5K);
3210 }
3211 {
3212 E T5N, T5P, T5M, T5O;
3213 T5N = ri[WS(rs, 27)];
3214 T5P = ii[WS(rs, 27)];
3215 T5M = W[52];
3216 T5O = W[53];
3217 T5Q = FMA(T5M, T5N, T5O * T5P);
3218 T92 = FNMS(T5O, T5N, T5M * T5P);
3219 }
3220 T5R = T5L + T5Q;
3221 Te2 = T91 + T92;
3222 T93 = T91 - T92;
3223 T96 = T5L - T5Q;
3224 }
3225 {
3226 E T5G, T63, Te1, Te4;
3227 T5G = T5u + T5F;
3228 T63 = T5R + T62;
3229 T64 = T5G + T63;
3230 TfZ = T63 - T5G;
3231 Te1 = T5R - T62;
3232 Te4 = Te2 - Te3;
3233 Te5 = Te1 + Te4;
3234 Ted = Te1 - Te4;
3235 }
3236 {
3237 E TfS, TfT, T8U, T8Z;
3238 TfS = TdW + TdX;
3239 TfT = Te2 + Te3;
3240 TfU = TfS - TfT;
3241 Tgz = TfS + TfT;
3242 T8U = T8S + T8T;
3243 T8Z = T8V - T8Y;
3244 T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
3245 T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
3246 }
3247 {
3248 E T95, T9a, Tbr, Tbs;
3249 T95 = T93 + T94;
3250 T9a = T96 - T99;
3251 T9b = FMA(KP382683432, T95, KP923879532 * T9a);
3252 T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
3253 Tbr = T93 - T94;
3254 Tbs = T96 + T99;
3255 Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
3256 Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
3257 }
3258 {
3259 E TdY, TdZ, Tbo, Tbp;
3260 TdY = TdW - TdX;
3261 TdZ = T5u - T5F;
3262 Te0 = TdY - TdZ;
3263 Tee = TdZ + TdY;
3264 Tbo = T8S - T8T;
3265 Tbp = T8V + T8Y;
3266 Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
3267 TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
3268 }
3269 }
3270 {
3271 E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
3272 E TgM;
3273 {
3274 E TH, T1s, TgI, TgJ;
3275 TH = Tj + TG;
3276 T1s = T14 + T1r;
3277 T1t = TH + T1s;
3278 Tgn = TH - T1s;
3279 TgI = Tgt + Tgu;
3280 TgJ = Tgy + Tgz;
3281 TgK = TgI - TgJ;
3282 TgL = TgI + TgJ;
3283 }
3284 {
3285 E TgN, TgU, T2e, T2Z;
3286 TgN = Tfq + Tfr;
3287 TgU = TgO + TgT;
3288 TgV = TgN + TgU;
3289 Th1 = TgU - TgN;
3290 T2e = T1Q + T2d;
3291 T2Z = T2B + T2Y;
3292 T30 = T2e + T2Z;
3293 Th0 = T2Z - T2e;
3294 }
3295 {
3296 E T4y, T65, Tgs, Tgv;
3297 T4y = T3M + T4x;
3298 T65 = T5j + T64;
3299 T66 = T4y + T65;
3300 TgX = T65 - T4y;
3301 Tgs = T3M - T4x;
3302 Tgv = Tgt - Tgu;
3303 Tgw = Tgs + Tgv;
3304 TgE = Tgv - Tgs;
3305 }
3306 {
3307 E Tgx, TgA, Tgo, Tgp;
3308 Tgx = T5j - T64;
3309 TgA = Tgy - Tgz;
3310 TgB = Tgx - TgA;
3311 TgF = Tgx + TgA;
3312 Tgo = Tfu + Tfv;
3313 Tgp = TfA + TfB;
3314 Tgq = Tgo - Tgp;
3315 TgM = Tgo + Tgp;
3316 }
3317 {
3318 E T31, TgW, TgH, TgY;
3319 T31 = T1t + T30;
3320 ri[WS(rs, 32)] = T31 - T66;
3321 ri[0] = T31 + T66;
3322 TgW = TgM + TgV;
3323 ii[0] = TgL + TgW;
3324 ii[WS(rs, 32)] = TgW - TgL;
3325 TgH = T1t - T30;
3326 ri[WS(rs, 48)] = TgH - TgK;
3327 ri[WS(rs, 16)] = TgH + TgK;
3328 TgY = TgV - TgM;
3329 ii[WS(rs, 16)] = TgX + TgY;
3330 ii[WS(rs, 48)] = TgY - TgX;
3331 }
3332 {
3333 E Tgr, TgC, TgZ, Th2;
3334 Tgr = Tgn + Tgq;
3335 TgC = KP707106781 * (Tgw + TgB);
3336 ri[WS(rs, 40)] = Tgr - TgC;
3337 ri[WS(rs, 8)] = Tgr + TgC;
3338 TgZ = KP707106781 * (TgE + TgF);
3339 Th2 = Th0 + Th1;
3340 ii[WS(rs, 8)] = TgZ + Th2;
3341 ii[WS(rs, 40)] = Th2 - TgZ;
3342 }
3343 {
3344 E TgD, TgG, Th3, Th4;
3345 TgD = Tgn - Tgq;
3346 TgG = KP707106781 * (TgE - TgF);
3347 ri[WS(rs, 56)] = TgD - TgG;
3348 ri[WS(rs, 24)] = TgD + TgG;
3349 Th3 = KP707106781 * (TgB - Tgw);
3350 Th4 = Th1 - Th0;
3351 ii[WS(rs, 24)] = Th3 + Th4;
3352 ii[WS(rs, 56)] = Th4 - Th3;
3353 }
3354 }
3355 {
3356 E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
3357 E Tg5;
3358 {
3359 E Tfp, Tfs, Tgf, Tgg;
3360 Tfp = Tj - TG;
3361 Tfs = Tfq - Tfr;
3362 Tft = Tfp - Tfs;
3363 Tg7 = Tfp + Tfs;
3364 Tgf = TfR + TfU;
3365 Tgg = TfY + TfZ;
3366 Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
3367 Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
3368 }
3369 {
3370 E Th7, Th8, Tfy, TfD;
3371 Th7 = T1r - T14;
3372 Th8 = TgT - TgO;
3373 Th9 = Th7 + Th8;
3374 Thf = Th8 - Th7;
3375 Tfy = Tfw - Tfx;
3376 TfD = Tfz + TfC;
3377 TfE = KP707106781 * (Tfy - TfD);
3378 Th6 = KP707106781 * (Tfy + TfD);
3379 }
3380 {
3381 E TfK, TfP, Tg8, Tg9;
3382 TfK = TfI - TfJ;
3383 TfP = TfL - TfO;
3384 TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
3385 Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
3386 Tg8 = Tfx + Tfw;
3387 Tg9 = Tfz - TfC;
3388 Tga = KP707106781 * (Tg8 + Tg9);
3389 The = KP707106781 * (Tg9 - Tg8);
3390 }
3391 {
3392 E Tgc, Tgd, TfV, Tg0;
3393 Tgc = TfI + TfJ;
3394 Tgd = TfL + TfO;
3395 Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
3396 Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
3397 TfV = TfR - TfU;
3398 Tg0 = TfY - TfZ;
3399 Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
3400 Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
3401 }
3402 {
3403 E TfF, Tg2, Thd, Thg;
3404 TfF = Tft + TfE;
3405 Tg2 = TfQ + Tg1;
3406 ri[WS(rs, 44)] = TfF - Tg2;
3407 ri[WS(rs, 12)] = TfF + Tg2;
3408 Thd = Tg4 + Tg5;
3409 Thg = The + Thf;
3410 ii[WS(rs, 12)] = Thd + Thg;
3411 ii[WS(rs, 44)] = Thg - Thd;
3412 }
3413 {
3414 E Tg3, Tg6, Thh, Thi;
3415 Tg3 = Tft - TfE;
3416 Tg6 = Tg4 - Tg5;
3417 ri[WS(rs, 60)] = Tg3 - Tg6;
3418 ri[WS(rs, 28)] = Tg3 + Tg6;
3419 Thh = Tg1 - TfQ;
3420 Thi = Thf - The;
3421 ii[WS(rs, 28)] = Thh + Thi;
3422 ii[WS(rs, 60)] = Thi - Thh;
3423 }
3424 {
3425 E Tgb, Tgi, Th5, Tha;
3426 Tgb = Tg7 + Tga;
3427 Tgi = Tge + Tgh;
3428 ri[WS(rs, 36)] = Tgb - Tgi;
3429 ri[WS(rs, 4)] = Tgb + Tgi;
3430 Th5 = Tgk + Tgl;
3431 Tha = Th6 + Th9;
3432 ii[WS(rs, 4)] = Th5 + Tha;
3433 ii[WS(rs, 36)] = Tha - Th5;
3434 }
3435 {
3436 E Tgj, Tgm, Thb, Thc;
3437 Tgj = Tg7 - Tga;
3438 Tgm = Tgk - Tgl;
3439 ri[WS(rs, 52)] = Tgj - Tgm;
3440 ri[WS(rs, 20)] = Tgj + Tgm;
3441 Thb = Tgh - Tge;
3442 Thc = Th9 - Th6;
3443 ii[WS(rs, 20)] = Thb + Thc;
3444 ii[WS(rs, 52)] = Thc - Thb;
3445 }
3446 }
3447 {
3448 E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
3449 E Teu;
3450 {
3451 E TcP, Td0, Teo, Tep;
3452 TcP = TcL - TcO;
3453 Td0 = KP707106781 * (TcU - TcZ);
3454 Td1 = TcP - Td0;
3455 Ten = TcP + Td0;
3456 {
3457 E Tdc, Tdn, ThB, ThC;
3458 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
3459 Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
3460 Tdo = Tdc - Tdn;
3461 ThA = Tdc + Tdn;
3462 ThB = KP707106781 * (TeF - TeE);
3463 ThC = Thn - Thm;
3464 ThD = ThB + ThC;
3465 ThJ = ThC - ThB;
3466 }
3467 Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
3468 Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
3469 Teq = Teo + Tep;
3470 ThI = Tep - Teo;
3471 {
3472 E Te7, Tev, Teg, Tew, Te6, Tef;
3473 Te6 = KP707106781 * (Te0 - Te5);
3474 Te7 = TdV - Te6;
3475 Tev = TdV + Te6;
3476 Tef = KP707106781 * (Ted - Tee);
3477 Teg = Tec - Tef;
3478 Tew = Tec + Tef;
3479 Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
3480 TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
3481 Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
3482 Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
3483 }
3484 {
3485 E TdG, Tes, TdP, Tet, TdF, TdO;
3486 TdF = KP707106781 * (Tdz - TdE);
3487 TdG = Tdu - TdF;
3488 Tes = Tdu + TdF;
3489 TdO = KP707106781 * (TdM - TdN);
3490 TdP = TdL - TdO;
3491 Tet = TdL + TdO;
3492 TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
3493 TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
3494 Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
3495 Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
3496 }
3497 }
3498 {
3499 E Tdp, Tei, ThH, ThK;
3500 Tdp = Td1 + Tdo;
3501 Tei = TdQ + Teh;
3502 ri[WS(rs, 46)] = Tdp - Tei;
3503 ri[WS(rs, 14)] = Tdp + Tei;
3504 ThH = Tek + Tel;
3505 ThK = ThI + ThJ;
3506 ii[WS(rs, 14)] = ThH + ThK;
3507 ii[WS(rs, 46)] = ThK - ThH;
3508 }
3509 {
3510 E Tej, Tem, ThL, ThM;
3511 Tej = Td1 - Tdo;
3512 Tem = Tek - Tel;
3513 ri[WS(rs, 62)] = Tej - Tem;
3514 ri[WS(rs, 30)] = Tej + Tem;
3515 ThL = Teh - TdQ;
3516 ThM = ThJ - ThI;
3517 ii[WS(rs, 30)] = ThL + ThM;
3518 ii[WS(rs, 62)] = ThM - ThL;
3519 }
3520 {
3521 E Ter, Tey, Thz, ThE;
3522 Ter = Ten + Teq;
3523 Tey = Teu + Tex;
3524 ri[WS(rs, 38)] = Ter - Tey;
3525 ri[WS(rs, 6)] = Ter + Tey;
3526 Thz = TeA + TeB;
3527 ThE = ThA + ThD;
3528 ii[WS(rs, 6)] = Thz + ThE;
3529 ii[WS(rs, 38)] = ThE - Thz;
3530 }
3531 {
3532 E Tez, TeC, ThF, ThG;
3533 Tez = Ten - Teq;
3534 TeC = TeA - TeB;
3535 ri[WS(rs, 54)] = Tez - TeC;
3536 ri[WS(rs, 22)] = Tez + TeC;
3537 ThF = Tex - Teu;
3538 ThG = ThD - ThA;
3539 ii[WS(rs, 22)] = ThF + ThG;
3540 ii[WS(rs, 54)] = ThG - ThF;
3541 }
3542 }
3543 {
3544 E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
3545 E Tfg;
3546 {
3547 E TeD, TeG, Tfa, Tfb;
3548 TeD = TcL + TcO;
3549 TeG = KP707106781 * (TeE + TeF);
3550 TeH = TeD - TeG;
3551 Tf9 = TeD + TeG;
3552 {
3553 E TeK, TeN, Thl, Tho;
3554 TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
3555 TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
3556 TeO = TeK - TeN;
3557 Thk = TeK + TeN;
3558 Thl = KP707106781 * (TcU + TcZ);
3559 Tho = Thm + Thn;
3560 Thp = Thl + Tho;
3561 Thv = Tho - Thl;
3562 }
3563 Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
3564 Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
3565 Tfc = Tfa + Tfb;
3566 Thu = Tfb - Tfa;
3567 {
3568 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
3569 TeY = KP707106781 * (Tee + Ted);
3570 TeZ = TeX - TeY;
3571 Tfh = TeX + TeY;
3572 Tf1 = KP707106781 * (Te0 + Te5);
3573 Tf2 = Tf0 - Tf1;
3574 Tfi = Tf0 + Tf1;
3575 Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
3576 Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
3577 Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
3578 Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
3579 }
3580 {
3581 E TeS, Tfe, TeV, Tff, TeR, TeU;
3582 TeR = KP707106781 * (TdE + Tdz);
3583 TeS = TeQ - TeR;
3584 Tfe = TeQ + TeR;
3585 TeU = KP707106781 * (TdM + TdN);
3586 TeV = TeT - TeU;
3587 Tff = TeT + TeU;
3588 TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
3589 Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
3590 Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
3591 Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
3592 }
3593 }
3594 {
3595 E TeP, Tf4, Tht, Thw;
3596 TeP = TeH + TeO;
3597 Tf4 = TeW + Tf3;
3598 ri[WS(rs, 42)] = TeP - Tf4;
3599 ri[WS(rs, 10)] = TeP + Tf4;
3600 Tht = Tf6 + Tf7;
3601 Thw = Thu + Thv;
3602 ii[WS(rs, 10)] = Tht + Thw;
3603 ii[WS(rs, 42)] = Thw - Tht;
3604 }
3605 {
3606 E Tf5, Tf8, Thx, Thy;
3607 Tf5 = TeH - TeO;
3608 Tf8 = Tf6 - Tf7;
3609 ri[WS(rs, 58)] = Tf5 - Tf8;
3610 ri[WS(rs, 26)] = Tf5 + Tf8;
3611 Thx = Tf3 - TeW;
3612 Thy = Thv - Thu;
3613 ii[WS(rs, 26)] = Thx + Thy;
3614 ii[WS(rs, 58)] = Thy - Thx;
3615 }
3616 {
3617 E Tfd, Tfk, Thj, Thq;
3618 Tfd = Tf9 + Tfc;
3619 Tfk = Tfg + Tfj;
3620 ri[WS(rs, 34)] = Tfd - Tfk;
3621 ri[WS(rs, 2)] = Tfd + Tfk;
3622 Thj = Tfm + Tfn;
3623 Thq = Thk + Thp;
3624 ii[WS(rs, 2)] = Thj + Thq;
3625 ii[WS(rs, 34)] = Thq - Thj;
3626 }
3627 {
3628 E Tfl, Tfo, Thr, Ths;
3629 Tfl = Tf9 - Tfc;
3630 Tfo = Tfm - Tfn;
3631 ri[WS(rs, 50)] = Tfl - Tfo;
3632 ri[WS(rs, 18)] = Tfl + Tfo;
3633 Thr = Tfj - Tfg;
3634 Ths = Thp - Thk;
3635 ii[WS(rs, 18)] = Thr + Ths;
3636 ii[WS(rs, 50)] = Ths - Thr;
3637 }
3638 }
3639 {
3640 E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
3641 E T9H;
3642 {
3643 E T6n, T6K, TiB, TiC;
3644 T6n = T6b - T6m;
3645 T6K = T6y - T6J;
3646 T6L = T6n - T6K;
3647 T9x = T6n + T6K;
3648 TiB = T9P - T9O;
3649 TiC = Tin - Tim;
3650 TiD = TiB + TiC;
3651 TiJ = TiC - TiB;
3652 }
3653 {
3654 E T7c, T9y, T7D, T9z;
3655 {
3656 E T72, T7b, T7t, T7C;
3657 T72 = T6Q - T71;
3658 T7b = T77 - T7a;
3659 T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
3660 T9y = FMA(KP980785280, T72, KP195090322 * T7b);
3661 T7t = T7h - T7s;
3662 T7C = T7y - T7B;
3663 T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
3664 T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
3665 }
3666 T7E = T7c - T7D;
3667 TiI = T9z - T9y;
3668 T9A = T9y + T9z;
3669 TiA = T7c + T7D;
3670 }
3671 {
3672 E T8k, T9C, T8x, T9D;
3673 {
3674 E T7W, T8j, T8t, T8w;
3675 T7W = T7K - T7V;
3676 T8j = T87 - T8i;
3677 T8k = T7W - T8j;
3678 T9C = T7W + T8j;
3679 T8t = T8p - T8s;
3680 T8w = T8u - T8v;
3681 T8x = T8t - T8w;
3682 T9D = T8t + T8w;
3683 }
3684 T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
3685 T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
3686 T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
3687 T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
3688 }
3689 {
3690 E T9d, T9F, T9q, T9G;
3691 {
3692 E T8P, T9c, T9m, T9p;
3693 T8P = T8D - T8O;
3694 T9c = T90 - T9b;
3695 T9d = T8P - T9c;
3696 T9F = T8P + T9c;
3697 T9m = T9i - T9l;
3698 T9p = T9n - T9o;
3699 T9q = T9m - T9p;
3700 T9G = T9m + T9p;
3701 }
3702 T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
3703 T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
3704 T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
3705 T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
3706 }
3707 {
3708 E T7F, T9s, TiH, TiK;
3709 T7F = T6L + T7E;
3710 T9s = T8y + T9r;
3711 ri[WS(rs, 47)] = T7F - T9s;
3712 ri[WS(rs, 15)] = T7F + T9s;
3713 TiH = T9u + T9v;
3714 TiK = TiI + TiJ;
3715 ii[WS(rs, 15)] = TiH + TiK;
3716 ii[WS(rs, 47)] = TiK - TiH;
3717 }
3718 {
3719 E T9t, T9w, TiL, TiM;
3720 T9t = T6L - T7E;
3721 T9w = T9u - T9v;
3722 ri[WS(rs, 63)] = T9t - T9w;
3723 ri[WS(rs, 31)] = T9t + T9w;
3724 TiL = T9r - T8y;
3725 TiM = TiJ - TiI;
3726 ii[WS(rs, 31)] = TiL + TiM;
3727 ii[WS(rs, 63)] = TiM - TiL;
3728 }
3729 {
3730 E T9B, T9I, Tiz, TiE;
3731 T9B = T9x + T9A;
3732 T9I = T9E + T9H;
3733 ri[WS(rs, 39)] = T9B - T9I;
3734 ri[WS(rs, 7)] = T9B + T9I;
3735 Tiz = T9K + T9L;
3736 TiE = TiA + TiD;
3737 ii[WS(rs, 7)] = Tiz + TiE;
3738 ii[WS(rs, 39)] = TiE - Tiz;
3739 }
3740 {
3741 E T9J, T9M, TiF, TiG;
3742 T9J = T9x - T9A;
3743 T9M = T9K - T9L;
3744 ri[WS(rs, 55)] = T9J - T9M;
3745 ri[WS(rs, 23)] = T9J + T9M;
3746 TiF = T9H - T9E;
3747 TiG = TiD - TiA;
3748 ii[WS(rs, 23)] = TiF + TiG;
3749 ii[WS(rs, 55)] = TiG - TiF;
3750 }
3751 }
3752 {
3753 E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
3754 E TbT;
3755 {
3756 E TaD, TaK, Ti7, Ti8;
3757 TaD = Taz - TaC;
3758 TaK = TaG - TaJ;
3759 TaL = TaD - TaK;
3760 TbJ = TaD + TaK;
3761 Ti7 = Tc1 - Tc0;
3762 Ti8 = ThT - ThQ;
3763 Ti9 = Ti7 + Ti8;
3764 Tif = Ti8 - Ti7;
3765 }
3766 {
3767 E TaS, TbK, TaZ, TbL;
3768 {
3769 E TaO, TaR, TaV, TaY;
3770 TaO = TaM - TaN;
3771 TaR = TaP - TaQ;
3772 TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
3773 TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
3774 TaV = TaT - TaU;
3775 TaY = TaW - TaX;
3776 TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
3777 TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
3778 }
3779 Tb0 = TaS - TaZ;
3780 Tie = TbL - TbK;
3781 TbM = TbK + TbL;
3782 Ti6 = TaS + TaZ;
3783 }
3784 {
3785 E Tbc, TbO, Tbj, TbP;
3786 {
3787 E Tb4, Tbb, Tbf, Tbi;
3788 Tb4 = Tb2 - Tb3;
3789 Tbb = Tb7 - Tba;
3790 Tbc = Tb4 - Tbb;
3791 TbO = Tb4 + Tbb;
3792 Tbf = Tbd - Tbe;
3793 Tbi = Tbg - Tbh;
3794 Tbj = Tbf - Tbi;
3795 TbP = Tbf + Tbi;
3796 }
3797 Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
3798 TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
3799 TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
3800 TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
3801 }
3802 {
3803 E Tbv, TbR, TbC, TbS;
3804 {
3805 E Tbn, Tbu, Tby, TbB;
3806 Tbn = Tbl - Tbm;
3807 Tbu = Tbq - Tbt;
3808 Tbv = Tbn - Tbu;
3809 TbR = Tbn + Tbu;
3810 Tby = Tbw - Tbx;
3811 TbB = Tbz - TbA;
3812 TbC = Tby - TbB;
3813 TbS = Tby + TbB;
3814 }
3815 TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
3816 TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
3817 TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
3818 TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
3819 }
3820 {
3821 E Tb1, TbE, Tid, Tig;
3822 Tb1 = TaL + Tb0;
3823 TbE = Tbk + TbD;
3824 ri[WS(rs, 45)] = Tb1 - TbE;
3825 ri[WS(rs, 13)] = Tb1 + TbE;
3826 Tid = TbG + TbH;
3827 Tig = Tie + Tif;
3828 ii[WS(rs, 13)] = Tid + Tig;
3829 ii[WS(rs, 45)] = Tig - Tid;
3830 }
3831 {
3832 E TbF, TbI, Tih, Tii;
3833 TbF = TaL - Tb0;
3834 TbI = TbG - TbH;
3835 ri[WS(rs, 61)] = TbF - TbI;
3836 ri[WS(rs, 29)] = TbF + TbI;
3837 Tih = TbD - Tbk;
3838 Tii = Tif - Tie;
3839 ii[WS(rs, 29)] = Tih + Tii;
3840 ii[WS(rs, 61)] = Tii - Tih;
3841 }
3842 {
3843 E TbN, TbU, Ti5, Tia;
3844 TbN = TbJ + TbM;
3845 TbU = TbQ + TbT;
3846 ri[WS(rs, 37)] = TbN - TbU;
3847 ri[WS(rs, 5)] = TbN + TbU;
3848 Ti5 = TbW + TbX;
3849 Tia = Ti6 + Ti9;
3850 ii[WS(rs, 5)] = Ti5 + Tia;
3851 ii[WS(rs, 37)] = Tia - Ti5;
3852 }
3853 {
3854 E TbV, TbY, Tib, Tic;
3855 TbV = TbJ - TbM;
3856 TbY = TbW - TbX;
3857 ri[WS(rs, 53)] = TbV - TbY;
3858 ri[WS(rs, 21)] = TbV + TbY;
3859 Tib = TbT - TbQ;
3860 Tic = Ti9 - Ti6;
3861 ii[WS(rs, 21)] = Tib + Tic;
3862 ii[WS(rs, 53)] = Tic - Tib;
3863 }
3864 }
3865 {
3866 E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
3867 E TcF;
3868 {
3869 E TbZ, Tc2, ThP, ThU;
3870 TbZ = Taz + TaC;
3871 Tc2 = Tc0 + Tc1;
3872 Tc3 = TbZ - Tc2;
3873 Tcv = TbZ + Tc2;
3874 ThP = TaG + TaJ;
3875 ThU = ThQ + ThT;
3876 ThV = ThP + ThU;
3877 Ti1 = ThU - ThP;
3878 }
3879 {
3880 E Tc6, Tcw, Tc9, Tcx;
3881 {
3882 E Tc4, Tc5, Tc7, Tc8;
3883 Tc4 = TaM + TaN;
3884 Tc5 = TaP + TaQ;
3885 Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
3886 Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
3887 Tc7 = TaT + TaU;
3888 Tc8 = TaW + TaX;
3889 Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
3890 Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
3891 }
3892 Tca = Tc6 - Tc9;
3893 Ti0 = Tcx - Tcw;
3894 Tcy = Tcw + Tcx;
3895 ThO = Tc6 + Tc9;
3896 }
3897 {
3898 E Tce, TcA, Tch, TcB;
3899 {
3900 E Tcc, Tcd, Tcf, Tcg;
3901 Tcc = Tbd + Tbe;
3902 Tcd = Tba + Tb7;
3903 Tce = Tcc - Tcd;
3904 TcA = Tcc + Tcd;
3905 Tcf = Tb2 + Tb3;
3906 Tcg = Tbg + Tbh;
3907 Tch = Tcf - Tcg;
3908 TcB = Tcf + Tcg;
3909 }
3910 Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
3911 TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
3912 Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
3913 TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
3914 }
3915 {
3916 E Tcl, TcD, Tco, TcE;
3917 {
3918 E Tcj, Tck, Tcm, Tcn;
3919 Tcj = Tbl + Tbm;
3920 Tck = TbA + Tbz;
3921 Tcl = Tcj - Tck;
3922 TcD = Tcj + Tck;
3923 Tcm = Tbw + Tbx;
3924 Tcn = Tbq + Tbt;
3925 Tco = Tcm - Tcn;
3926 TcE = Tcm + Tcn;
3927 }
3928 Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
3929 TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
3930 Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
3931 TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
3932 }
3933 {
3934 E Tcb, Tcq, ThZ, Ti2;
3935 Tcb = Tc3 + Tca;
3936 Tcq = Tci + Tcp;
3937 ri[WS(rs, 41)] = Tcb - Tcq;
3938 ri[WS(rs, 9)] = Tcb + Tcq;
3939 ThZ = Tcs + Tct;
3940 Ti2 = Ti0 + Ti1;
3941 ii[WS(rs, 9)] = ThZ + Ti2;
3942 ii[WS(rs, 41)] = Ti2 - ThZ;
3943 }
3944 {
3945 E Tcr, Tcu, Ti3, Ti4;
3946 Tcr = Tc3 - Tca;
3947 Tcu = Tcs - Tct;
3948 ri[WS(rs, 57)] = Tcr - Tcu;
3949 ri[WS(rs, 25)] = Tcr + Tcu;
3950 Ti3 = Tcp - Tci;
3951 Ti4 = Ti1 - Ti0;
3952 ii[WS(rs, 25)] = Ti3 + Ti4;
3953 ii[WS(rs, 57)] = Ti4 - Ti3;
3954 }
3955 {
3956 E Tcz, TcG, ThN, ThW;
3957 Tcz = Tcv + Tcy;
3958 TcG = TcC + TcF;
3959 ri[WS(rs, 33)] = Tcz - TcG;
3960 ri[WS(rs, 1)] = Tcz + TcG;
3961 ThN = TcI + TcJ;
3962 ThW = ThO + ThV;
3963 ii[WS(rs, 1)] = ThN + ThW;
3964 ii[WS(rs, 33)] = ThW - ThN;
3965 }
3966 {
3967 E TcH, TcK, ThX, ThY;
3968 TcH = Tcv - Tcy;
3969 TcK = TcI - TcJ;
3970 ri[WS(rs, 49)] = TcH - TcK;
3971 ri[WS(rs, 17)] = TcH + TcK;
3972 ThX = TcF - TcC;
3973 ThY = ThV - ThO;
3974 ii[WS(rs, 17)] = ThX + ThY;
3975 ii[WS(rs, 49)] = ThY - ThX;
3976 }
3977 }
3978 {
3979 E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
3980 E Tat;
3981 {
3982 E T9N, T9Q, Til, Tio;
3983 T9N = T6b + T6m;
3984 T9Q = T9O + T9P;
3985 T9R = T9N - T9Q;
3986 Taj = T9N + T9Q;
3987 Til = T6y + T6J;
3988 Tio = Tim + Tin;
3989 Tip = Til + Tio;
3990 Tiv = Tio - Til;
3991 }
3992 {
3993 E T9U, Tak, T9X, Tal;
3994 {
3995 E T9S, T9T, T9V, T9W;
3996 T9S = T6Q + T71;
3997 T9T = T77 + T7a;
3998 T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
3999 Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
4000 T9V = T7h + T7s;
4001 T9W = T7y + T7B;
4002 T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
4003 Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
4004 }
4005 T9Y = T9U - T9X;
4006 Tiu = Tal - Tak;
4007 Tam = Tak + Tal;
4008 Tik = T9U + T9X;
4009 }
4010 {
4011 E Ta2, Tao, Ta5, Tap;
4012 {
4013 E Ta0, Ta1, Ta3, Ta4;
4014 Ta0 = T8p + T8s;
4015 Ta1 = T8i + T87;
4016 Ta2 = Ta0 - Ta1;
4017 Tao = Ta0 + Ta1;
4018 Ta3 = T7K + T7V;
4019 Ta4 = T8u + T8v;
4020 Ta5 = Ta3 - Ta4;
4021 Tap = Ta3 + Ta4;
4022 }
4023 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
4024 Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
4025 Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
4026 Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
4027 }
4028 {
4029 E Ta9, Tar, Tac, Tas;
4030 {
4031 E Ta7, Ta8, Taa, Tab;
4032 Ta7 = T8D + T8O;
4033 Ta8 = T9o + T9n;
4034 Ta9 = Ta7 - Ta8;
4035 Tar = Ta7 + Ta8;
4036 Taa = T9i + T9l;
4037 Tab = T90 + T9b;
4038 Tac = Taa - Tab;
4039 Tas = Taa + Tab;
4040 }
4041 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
4042 Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
4043 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
4044 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
4045 }
4046 {
4047 E T9Z, Tae, Tit, Tiw;
4048 T9Z = T9R + T9Y;
4049 Tae = Ta6 + Tad;
4050 ri[WS(rs, 43)] = T9Z - Tae;
4051 ri[WS(rs, 11)] = T9Z + Tae;
4052 Tit = Tag + Tah;
4053 Tiw = Tiu + Tiv;
4054 ii[WS(rs, 11)] = Tit + Tiw;
4055 ii[WS(rs, 43)] = Tiw - Tit;
4056 }
4057 {
4058 E Taf, Tai, Tix, Tiy;
4059 Taf = T9R - T9Y;
4060 Tai = Tag - Tah;
4061 ri[WS(rs, 59)] = Taf - Tai;
4062 ri[WS(rs, 27)] = Taf + Tai;
4063 Tix = Tad - Ta6;
4064 Tiy = Tiv - Tiu;
4065 ii[WS(rs, 27)] = Tix + Tiy;
4066 ii[WS(rs, 59)] = Tiy - Tix;
4067 }
4068 {
4069 E Tan, Tau, Tij, Tiq;
4070 Tan = Taj + Tam;
4071 Tau = Taq + Tat;
4072 ri[WS(rs, 35)] = Tan - Tau;
4073 ri[WS(rs, 3)] = Tan + Tau;
4074 Tij = Taw + Tax;
4075 Tiq = Tik + Tip;
4076 ii[WS(rs, 3)] = Tij + Tiq;
4077 ii[WS(rs, 35)] = Tiq - Tij;
4078 }
4079 {
4080 E Tav, Tay, Tir, Tis;
4081 Tav = Taj - Tam;
4082 Tay = Taw - Tax;
4083 ri[WS(rs, 51)] = Tav - Tay;
4084 ri[WS(rs, 19)] = Tav + Tay;
4085 Tir = Tat - Taq;
4086 Tis = Tip - Tik;
4087 ii[WS(rs, 19)] = Tir + Tis;
4088 ii[WS(rs, 51)] = Tis - Tir;
4089 }
4090 }
4091 }
4092 }
4093 }
4094
4095 static const tw_instr twinstr[] = {
4096 {TW_FULL, 0, 64},
4097 {TW_NEXT, 1, 0}
4098 };
4099
4100 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 };
4101
4102 void X(codelet_t1_64) (planner *p) {
4103 X(kdft_dit_register) (p, t1_64, &desc);
4104 }
4105 #endif