Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_64.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 1038 FP additions, 644 FP multiplications, | |
32 * (or, 520 additions, 126 multiplications, 518 fused multiply/add), | |
33 * 190 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
43 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
44 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
45 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
46 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
49 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
50 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT m; | |
56 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
57 E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X; | |
58 E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm; | |
59 E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B; | |
60 E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH; | |
61 E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; | |
62 E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV; | |
63 E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h; | |
64 E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr; | |
65 E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu; | |
66 { | |
67 E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; | |
68 T1 = ri[0]; | |
69 TiT = ii[0]; | |
70 { | |
71 E T3, T6, T4, TiR, T2, T5; | |
72 T3 = ri[WS(rs, 32)]; | |
73 T6 = ii[WS(rs, 32)]; | |
74 T2 = W[62]; | |
75 T4 = T2 * T3; | |
76 TiR = T2 * T6; | |
77 T5 = W[63]; | |
78 T7 = FMA(T5, T6, T4); | |
79 TiS = FNMS(T5, T3, TiR); | |
80 } | |
81 { | |
82 E Ta, Td, Tb, T79, T9, Tc; | |
83 Ta = ri[WS(rs, 16)]; | |
84 Td = ii[WS(rs, 16)]; | |
85 T9 = W[30]; | |
86 Tb = T9 * Ta; | |
87 T79 = T9 * Td; | |
88 Tc = W[31]; | |
89 Te = FMA(Tc, Td, Tb); | |
90 T7a = FNMS(Tc, Ta, T79); | |
91 } | |
92 { | |
93 E Tg, Tj, Th, T7b, Tf, Ti; | |
94 Tg = ri[WS(rs, 48)]; | |
95 Tj = ii[WS(rs, 48)]; | |
96 Tf = W[94]; | |
97 Th = Tf * Tg; | |
98 T7b = Tf * Tj; | |
99 Ti = W[95]; | |
100 Tk = FMA(Ti, Tj, Th); | |
101 T7c = FNMS(Ti, Tg, T7b); | |
102 } | |
103 { | |
104 E T8, Tl, TjP, TjQ; | |
105 T8 = T1 + T7; | |
106 Tl = Te + Tk; | |
107 Tm = T8 + Tl; | |
108 TeM = T8 - Tl; | |
109 TjP = TiT - TiS; | |
110 TjQ = Te - Tk; | |
111 TjR = TjP - TjQ; | |
112 Tkl = TjQ + TjP; | |
113 } | |
114 { | |
115 E T78, T7d, TiQ, TiU; | |
116 T78 = T1 - T7; | |
117 T7d = T7a - T7c; | |
118 T7e = T78 - T7d; | |
119 TcA = T78 + T7d; | |
120 TiQ = T7a + T7c; | |
121 TiU = TiS + TiT; | |
122 TiV = TiQ + TiU; | |
123 Tjm = TiU - TiQ; | |
124 } | |
125 } | |
126 { | |
127 E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T; | |
128 { | |
129 E T1h, T1k, T1i, T7K, T1g, T1j; | |
130 T1h = ri[WS(rs, 60)]; | |
131 T1k = ii[WS(rs, 60)]; | |
132 T1g = W[118]; | |
133 T1i = T1g * T1h; | |
134 T7K = T1g * T1k; | |
135 T1j = W[119]; | |
136 T1l = FMA(T1j, T1k, T1i); | |
137 T7L = FNMS(T1j, T1h, T7K); | |
138 } | |
139 { | |
140 E T1A, T1D, T1B, T7U, T1z, T1C; | |
141 T1A = ri[WS(rs, 44)]; | |
142 T1D = ii[WS(rs, 44)]; | |
143 T1z = W[86]; | |
144 T1B = T1z * T1A; | |
145 T7U = T1z * T1D; | |
146 T1C = W[87]; | |
147 T1E = FMA(T1C, T1D, T1B); | |
148 T7V = FNMS(T1C, T1A, T7U); | |
149 } | |
150 { | |
151 E T1n, T1q, T1o, T7M, T1m, T1p; | |
152 T1n = ri[WS(rs, 28)]; | |
153 T1q = ii[WS(rs, 28)]; | |
154 T1m = W[54]; | |
155 T1o = T1m * T1n; | |
156 T7M = T1m * T1q; | |
157 T1p = W[55]; | |
158 T1r = FMA(T1p, T1q, T1o); | |
159 T7N = FNMS(T1p, T1n, T7M); | |
160 } | |
161 { | |
162 E T1u, T1x, T1v, T7S, T1t, T1w; | |
163 T1u = ri[WS(rs, 12)]; | |
164 T1x = ii[WS(rs, 12)]; | |
165 T1t = W[22]; | |
166 T1v = T1t * T1u; | |
167 T7S = T1t * T1x; | |
168 T1w = W[23]; | |
169 T1y = FMA(T1w, T1x, T1v); | |
170 T7T = FNMS(T1w, T1u, T7S); | |
171 } | |
172 { | |
173 E T1s, T1F, TeX, TeY; | |
174 T1s = T1l + T1r; | |
175 T1F = T1y + T1E; | |
176 T1G = T1s + T1F; | |
177 TeW = T1s - T1F; | |
178 TeX = T7L + T7N; | |
179 TeY = T7T + T7V; | |
180 TeZ = TeX - TeY; | |
181 Ths = TeX + TeY; | |
182 } | |
183 { | |
184 E T7O, T7P, T7R, T7W; | |
185 T7O = T7L - T7N; | |
186 T7P = T1y - T1E; | |
187 T7Q = T7O + T7P; | |
188 TcJ = T7O - T7P; | |
189 T7R = T1l - T1r; | |
190 T7W = T7T - T7V; | |
191 T7X = T7R - T7W; | |
192 TcI = T7R + T7W; | |
193 } | |
194 } | |
195 { | |
196 E T1O, T82, T27, T8s, T1U, T84, T21, T8q; | |
197 { | |
198 E T1K, T1N, T1L, T81, T1J, T1M; | |
199 T1K = ri[WS(rs, 2)]; | |
200 T1N = ii[WS(rs, 2)]; | |
201 T1J = W[2]; | |
202 T1L = T1J * T1K; | |
203 T81 = T1J * T1N; | |
204 T1M = W[3]; | |
205 T1O = FMA(T1M, T1N, T1L); | |
206 T82 = FNMS(T1M, T1K, T81); | |
207 } | |
208 { | |
209 E T23, T26, T24, T8r, T22, T25; | |
210 T23 = ri[WS(rs, 50)]; | |
211 T26 = ii[WS(rs, 50)]; | |
212 T22 = W[98]; | |
213 T24 = T22 * T23; | |
214 T8r = T22 * T26; | |
215 T25 = W[99]; | |
216 T27 = FMA(T25, T26, T24); | |
217 T8s = FNMS(T25, T23, T8r); | |
218 } | |
219 { | |
220 E T1Q, T1T, T1R, T83, T1P, T1S; | |
221 T1Q = ri[WS(rs, 34)]; | |
222 T1T = ii[WS(rs, 34)]; | |
223 T1P = W[66]; | |
224 T1R = T1P * T1Q; | |
225 T83 = T1P * T1T; | |
226 T1S = W[67]; | |
227 T1U = FMA(T1S, T1T, T1R); | |
228 T84 = FNMS(T1S, T1Q, T83); | |
229 } | |
230 { | |
231 E T1X, T20, T1Y, T8p, T1W, T1Z; | |
232 T1X = ri[WS(rs, 18)]; | |
233 T20 = ii[WS(rs, 18)]; | |
234 T1W = W[34]; | |
235 T1Y = T1W * T1X; | |
236 T8p = T1W * T20; | |
237 T1Z = W[35]; | |
238 T21 = FMA(T1Z, T20, T1Y); | |
239 T8q = FNMS(T1Z, T1X, T8p); | |
240 } | |
241 { | |
242 E T1V, T28, Tf3, Tf4; | |
243 T1V = T1O + T1U; | |
244 T28 = T21 + T27; | |
245 T29 = T1V + T28; | |
246 Tf8 = T1V - T28; | |
247 Tf3 = T82 + T84; | |
248 Tf4 = T8q + T8s; | |
249 Tf5 = Tf3 - Tf4; | |
250 Thv = Tf3 + Tf4; | |
251 } | |
252 { | |
253 E T85, T86, T8o, T8t; | |
254 T85 = T82 - T84; | |
255 T86 = T21 - T27; | |
256 T87 = T85 + T86; | |
257 TcN = T85 - T86; | |
258 T8o = T1O - T1U; | |
259 T8t = T8q - T8s; | |
260 T8u = T8o - T8t; | |
261 TcQ = T8o + T8t; | |
262 } | |
263 } | |
264 { | |
265 E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf; | |
266 { | |
267 E T5l, T5o, T5m, Tak, T5k, T5n; | |
268 T5l = ri[WS(rs, 63)]; | |
269 T5o = ii[WS(rs, 63)]; | |
270 T5k = W[124]; | |
271 T5m = T5k * T5l; | |
272 Tak = T5k * T5o; | |
273 T5n = W[125]; | |
274 T5p = FMA(T5n, T5o, T5m); | |
275 Tal = FNMS(T5n, T5l, Tak); | |
276 } | |
277 { | |
278 E T5E, T5H, T5F, Tbg, T5D, T5G; | |
279 T5E = ri[WS(rs, 47)]; | |
280 T5H = ii[WS(rs, 47)]; | |
281 T5D = W[92]; | |
282 T5F = T5D * T5E; | |
283 Tbg = T5D * T5H; | |
284 T5G = W[93]; | |
285 T5I = FMA(T5G, T5H, T5F); | |
286 Tbh = FNMS(T5G, T5E, Tbg); | |
287 } | |
288 { | |
289 E T5r, T5u, T5s, Tam, T5q, T5t; | |
290 T5r = ri[WS(rs, 31)]; | |
291 T5u = ii[WS(rs, 31)]; | |
292 T5q = W[60]; | |
293 T5s = T5q * T5r; | |
294 Tam = T5q * T5u; | |
295 T5t = W[61]; | |
296 T5v = FMA(T5t, T5u, T5s); | |
297 Tan = FNMS(T5t, T5r, Tam); | |
298 } | |
299 { | |
300 E T5y, T5B, T5z, Tbe, T5x, T5A; | |
301 T5y = ri[WS(rs, 15)]; | |
302 T5B = ii[WS(rs, 15)]; | |
303 T5x = W[28]; | |
304 T5z = T5x * T5y; | |
305 Tbe = T5x * T5B; | |
306 T5A = W[29]; | |
307 T5C = FMA(T5A, T5B, T5z); | |
308 Tbf = FNMS(T5A, T5y, Tbe); | |
309 } | |
310 { | |
311 E T5w, T5J, TfS, TfT; | |
312 T5w = T5p + T5v; | |
313 T5J = T5C + T5I; | |
314 T5K = T5w + T5J; | |
315 Tg9 = T5w - T5J; | |
316 TfS = Tal + Tan; | |
317 TfT = Tbf + Tbh; | |
318 TfU = TfS - TfT; | |
319 ThS = TfS + TfT; | |
320 } | |
321 { | |
322 E Tao, Tap, Tbd, Tbi; | |
323 Tao = Tal - Tan; | |
324 Tap = T5C - T5I; | |
325 Taq = Tao + Tap; | |
326 Tdm = Tao - Tap; | |
327 Tbd = T5p - T5v; | |
328 Tbi = Tbf - Tbh; | |
329 Tbj = Tbd - Tbi; | |
330 Tdx = Tbd + Tbi; | |
331 } | |
332 } | |
333 { | |
334 E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o; | |
335 { | |
336 E To, Tr, Tp, T7f, Tn, Tq; | |
337 To = ri[WS(rs, 8)]; | |
338 Tr = ii[WS(rs, 8)]; | |
339 Tn = W[14]; | |
340 Tp = Tn * To; | |
341 T7f = Tn * Tr; | |
342 Tq = W[15]; | |
343 Ts = FMA(Tq, Tr, Tp); | |
344 T7g = FNMS(Tq, To, T7f); | |
345 } | |
346 { | |
347 E TH, TK, TI, T7p, TG, TJ; | |
348 TH = ri[WS(rs, 24)]; | |
349 TK = ii[WS(rs, 24)]; | |
350 TG = W[46]; | |
351 TI = TG * TH; | |
352 T7p = TG * TK; | |
353 TJ = W[47]; | |
354 TL = FMA(TJ, TK, TI); | |
355 T7q = FNMS(TJ, TH, T7p); | |
356 } | |
357 { | |
358 E Tu, Tx, Tv, T7h, Tt, Tw; | |
359 Tu = ri[WS(rs, 40)]; | |
360 Tx = ii[WS(rs, 40)]; | |
361 Tt = W[78]; | |
362 Tv = Tt * Tu; | |
363 T7h = Tt * Tx; | |
364 Tw = W[79]; | |
365 Ty = FMA(Tw, Tx, Tv); | |
366 T7i = FNMS(Tw, Tu, T7h); | |
367 } | |
368 { | |
369 E TB, TE, TC, T7n, TA, TD; | |
370 TB = ri[WS(rs, 56)]; | |
371 TE = ii[WS(rs, 56)]; | |
372 TA = W[110]; | |
373 TC = TA * TB; | |
374 T7n = TA * TE; | |
375 TD = W[111]; | |
376 TF = FMA(TD, TE, TC); | |
377 T7o = FNMS(TD, TB, T7n); | |
378 } | |
379 { | |
380 E Tz, TM, TeN, TeO; | |
381 Tz = Ts + Ty; | |
382 TM = TF + TL; | |
383 TN = Tz + TM; | |
384 Tjl = TM - Tz; | |
385 TeN = T7g + T7i; | |
386 TeO = T7o + T7q; | |
387 TeP = TeN - TeO; | |
388 TiP = TeN + TeO; | |
389 } | |
390 { | |
391 E T7j, T7k, T7m, T7r; | |
392 T7j = T7g - T7i; | |
393 T7k = Ts - Ty; | |
394 T7l = T7j - T7k; | |
395 TcB = T7k + T7j; | |
396 T7m = TF - TL; | |
397 T7r = T7o - T7q; | |
398 T7s = T7m + T7r; | |
399 TcC = T7m - T7r; | |
400 } | |
401 } | |
402 { | |
403 E TU, T7w, T1d, T7G, T10, T7y, T17, T7E; | |
404 { | |
405 E TQ, TT, TR, T7v, TP, TS; | |
406 TQ = ri[WS(rs, 4)]; | |
407 TT = ii[WS(rs, 4)]; | |
408 TP = W[6]; | |
409 TR = TP * TQ; | |
410 T7v = TP * TT; | |
411 TS = W[7]; | |
412 TU = FMA(TS, TT, TR); | |
413 T7w = FNMS(TS, TQ, T7v); | |
414 } | |
415 { | |
416 E T19, T1c, T1a, T7F, T18, T1b; | |
417 T19 = ri[WS(rs, 52)]; | |
418 T1c = ii[WS(rs, 52)]; | |
419 T18 = W[102]; | |
420 T1a = T18 * T19; | |
421 T7F = T18 * T1c; | |
422 T1b = W[103]; | |
423 T1d = FMA(T1b, T1c, T1a); | |
424 T7G = FNMS(T1b, T19, T7F); | |
425 } | |
426 { | |
427 E TW, TZ, TX, T7x, TV, TY; | |
428 TW = ri[WS(rs, 36)]; | |
429 TZ = ii[WS(rs, 36)]; | |
430 TV = W[70]; | |
431 TX = TV * TW; | |
432 T7x = TV * TZ; | |
433 TY = W[71]; | |
434 T10 = FMA(TY, TZ, TX); | |
435 T7y = FNMS(TY, TW, T7x); | |
436 } | |
437 { | |
438 E T13, T16, T14, T7D, T12, T15; | |
439 T13 = ri[WS(rs, 20)]; | |
440 T16 = ii[WS(rs, 20)]; | |
441 T12 = W[38]; | |
442 T14 = T12 * T13; | |
443 T7D = T12 * T16; | |
444 T15 = W[39]; | |
445 T17 = FMA(T15, T16, T14); | |
446 T7E = FNMS(T15, T13, T7D); | |
447 } | |
448 { | |
449 E T11, T1e, TeS, TeT; | |
450 T11 = TU + T10; | |
451 T1e = T17 + T1d; | |
452 T1f = T11 + T1e; | |
453 TeR = T11 - T1e; | |
454 TeS = T7w + T7y; | |
455 TeT = T7E + T7G; | |
456 TeU = TeS - TeT; | |
457 Thr = TeS + TeT; | |
458 } | |
459 { | |
460 E T7z, T7A, T7C, T7H; | |
461 T7z = T7w - T7y; | |
462 T7A = T17 - T1d; | |
463 T7B = T7z + T7A; | |
464 TcG = T7z - T7A; | |
465 T7C = TU - T10; | |
466 T7H = T7E - T7G; | |
467 T7I = T7C - T7H; | |
468 TcF = T7C + T7H; | |
469 } | |
470 } | |
471 { | |
472 E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z; | |
473 { | |
474 E T2D, T2G, T2E, T8A, T2C, T2F; | |
475 T2D = ri[WS(rs, 62)]; | |
476 T2G = ii[WS(rs, 62)]; | |
477 T2C = W[122]; | |
478 T2E = T2C * T2D; | |
479 T8A = T2C * T2G; | |
480 T2F = W[123]; | |
481 T2H = FMA(T2F, T2G, T2E); | |
482 T8B = FNMS(T2F, T2D, T8A); | |
483 } | |
484 { | |
485 E T2W, T2Z, T2X, T90, T2V, T2Y; | |
486 T2W = ri[WS(rs, 46)]; | |
487 T2Z = ii[WS(rs, 46)]; | |
488 T2V = W[90]; | |
489 T2X = T2V * T2W; | |
490 T90 = T2V * T2Z; | |
491 T2Y = W[91]; | |
492 T30 = FMA(T2Y, T2Z, T2X); | |
493 T91 = FNMS(T2Y, T2W, T90); | |
494 } | |
495 { | |
496 E T2J, T2M, T2K, T8C, T2I, T2L; | |
497 T2J = ri[WS(rs, 30)]; | |
498 T2M = ii[WS(rs, 30)]; | |
499 T2I = W[58]; | |
500 T2K = T2I * T2J; | |
501 T8C = T2I * T2M; | |
502 T2L = W[59]; | |
503 T2N = FMA(T2L, T2M, T2K); | |
504 T8D = FNMS(T2L, T2J, T8C); | |
505 } | |
506 { | |
507 E T2Q, T2T, T2R, T8Y, T2P, T2S; | |
508 T2Q = ri[WS(rs, 14)]; | |
509 T2T = ii[WS(rs, 14)]; | |
510 T2P = W[26]; | |
511 T2R = T2P * T2Q; | |
512 T8Y = T2P * T2T; | |
513 T2S = W[27]; | |
514 T2U = FMA(T2S, T2T, T2R); | |
515 T8Z = FNMS(T2S, T2Q, T8Y); | |
516 } | |
517 { | |
518 E T2O, T31, Tfe, Tff; | |
519 T2O = T2H + T2N; | |
520 T31 = T2U + T30; | |
521 T32 = T2O + T31; | |
522 Tfj = T2O - T31; | |
523 Tfe = T8B + T8D; | |
524 Tff = T8Z + T91; | |
525 Tfg = Tfe - Tff; | |
526 ThB = Tfe + Tff; | |
527 } | |
528 { | |
529 E T8E, T8F, T8X, T92; | |
530 T8E = T8B - T8D; | |
531 T8F = T2U - T30; | |
532 T8G = T8E + T8F; | |
533 TcU = T8E - T8F; | |
534 T8X = T2H - T2N; | |
535 T92 = T8Z - T91; | |
536 T93 = T8X - T92; | |
537 TcX = T8X + T92; | |
538 } | |
539 } | |
540 { | |
541 E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6; | |
542 { | |
543 E T3y, T3B, T3z, T9b, T3x, T3A; | |
544 T3y = ri[WS(rs, 1)]; | |
545 T3B = ii[WS(rs, 1)]; | |
546 T3x = W[0]; | |
547 T3z = T3x * T3y; | |
548 T9b = T3x * T3B; | |
549 T3A = W[1]; | |
550 T3C = FMA(T3A, T3B, T3z); | |
551 T9c = FNMS(T3A, T3y, T9b); | |
552 } | |
553 { | |
554 E T3R, T3U, T3S, Ta7, T3Q, T3T; | |
555 T3R = ri[WS(rs, 49)]; | |
556 T3U = ii[WS(rs, 49)]; | |
557 T3Q = W[96]; | |
558 T3S = T3Q * T3R; | |
559 Ta7 = T3Q * T3U; | |
560 T3T = W[97]; | |
561 T3V = FMA(T3T, T3U, T3S); | |
562 Ta8 = FNMS(T3T, T3R, Ta7); | |
563 } | |
564 { | |
565 E T3E, T3H, T3F, T9d, T3D, T3G; | |
566 T3E = ri[WS(rs, 33)]; | |
567 T3H = ii[WS(rs, 33)]; | |
568 T3D = W[64]; | |
569 T3F = T3D * T3E; | |
570 T9d = T3D * T3H; | |
571 T3G = W[65]; | |
572 T3I = FMA(T3G, T3H, T3F); | |
573 T9e = FNMS(T3G, T3E, T9d); | |
574 } | |
575 { | |
576 E T3L, T3O, T3M, Ta5, T3K, T3N; | |
577 T3L = ri[WS(rs, 17)]; | |
578 T3O = ii[WS(rs, 17)]; | |
579 T3K = W[32]; | |
580 T3M = T3K * T3L; | |
581 Ta5 = T3K * T3O; | |
582 T3N = W[33]; | |
583 T3P = FMA(T3N, T3O, T3M); | |
584 Ta6 = FNMS(T3N, T3L, Ta5); | |
585 } | |
586 { | |
587 E T3J, T3W, Tfr, Tfs; | |
588 T3J = T3C + T3I; | |
589 T3W = T3P + T3V; | |
590 T3X = T3J + T3W; | |
591 TfI = T3J - T3W; | |
592 Tfr = T9c + T9e; | |
593 Tfs = Ta6 + Ta8; | |
594 Tft = Tfr - Tfs; | |
595 ThH = Tfr + Tfs; | |
596 } | |
597 { | |
598 E T9f, T9g, Ta4, Ta9; | |
599 T9f = T9c - T9e; | |
600 T9g = T3P - T3V; | |
601 T9h = T9f + T9g; | |
602 Td3 = T9f - T9g; | |
603 Ta4 = T3C - T3I; | |
604 Ta9 = Ta6 - Ta8; | |
605 Taa = Ta4 - Ta9; | |
606 Tde = Ta4 + Ta9; | |
607 } | |
608 } | |
609 { | |
610 E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; | |
611 { | |
612 E T2b, T2e, T2c, T89, T2a, T2d; | |
613 T2b = ri[WS(rs, 10)]; | |
614 T2e = ii[WS(rs, 10)]; | |
615 T2a = W[18]; | |
616 T2c = T2a * T2b; | |
617 T89 = T2a * T2e; | |
618 T2d = W[19]; | |
619 T2f = FMA(T2d, T2e, T2c); | |
620 T8a = FNMS(T2d, T2b, T89); | |
621 } | |
622 { | |
623 E T2u, T2x, T2v, T8i, T2t, T2w; | |
624 T2u = ri[WS(rs, 26)]; | |
625 T2x = ii[WS(rs, 26)]; | |
626 T2t = W[50]; | |
627 T2v = T2t * T2u; | |
628 T8i = T2t * T2x; | |
629 T2w = W[51]; | |
630 T2y = FMA(T2w, T2x, T2v); | |
631 T8j = FNMS(T2w, T2u, T8i); | |
632 } | |
633 { | |
634 E T2h, T2k, T2i, T8b, T2g, T2j; | |
635 T2h = ri[WS(rs, 42)]; | |
636 T2k = ii[WS(rs, 42)]; | |
637 T2g = W[82]; | |
638 T2i = T2g * T2h; | |
639 T8b = T2g * T2k; | |
640 T2j = W[83]; | |
641 T2l = FMA(T2j, T2k, T2i); | |
642 T8c = FNMS(T2j, T2h, T8b); | |
643 } | |
644 { | |
645 E T2o, T2r, T2p, T8g, T2n, T2q; | |
646 T2o = ri[WS(rs, 58)]; | |
647 T2r = ii[WS(rs, 58)]; | |
648 T2n = W[114]; | |
649 T2p = T2n * T2o; | |
650 T8g = T2n * T2r; | |
651 T2q = W[115]; | |
652 T2s = FMA(T2q, T2r, T2p); | |
653 T8h = FNMS(T2q, T2o, T8g); | |
654 } | |
655 { | |
656 E T2m, T2z, Tf9, Tfa; | |
657 T2m = T2f + T2l; | |
658 T2z = T2s + T2y; | |
659 T2A = T2m + T2z; | |
660 Tf6 = T2z - T2m; | |
661 Tf9 = T8a + T8c; | |
662 Tfa = T8h + T8j; | |
663 Tfb = Tf9 - Tfa; | |
664 Thw = Tf9 + Tfa; | |
665 { | |
666 E T8e, T8w, T8l, T8v; | |
667 { | |
668 E T88, T8d, T8f, T8k; | |
669 T88 = T2f - T2l; | |
670 T8d = T8a - T8c; | |
671 T8e = T88 + T8d; | |
672 T8w = T8d - T88; | |
673 T8f = T2s - T2y; | |
674 T8k = T8h - T8j; | |
675 T8l = T8f - T8k; | |
676 T8v = T8f + T8k; | |
677 } | |
678 T8m = T8e - T8l; | |
679 TcR = T8e + T8l; | |
680 T8x = T8v - T8w; | |
681 TcO = T8w + T8v; | |
682 } | |
683 } | |
684 } | |
685 { | |
686 E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; | |
687 { | |
688 E T34, T37, T35, T8I, T33, T36; | |
689 T34 = ri[WS(rs, 6)]; | |
690 T37 = ii[WS(rs, 6)]; | |
691 T33 = W[10]; | |
692 T35 = T33 * T34; | |
693 T8I = T33 * T37; | |
694 T36 = W[11]; | |
695 T38 = FMA(T36, T37, T35); | |
696 T8J = FNMS(T36, T34, T8I); | |
697 } | |
698 { | |
699 E T3n, T3q, T3o, T8R, T3m, T3p; | |
700 T3n = ri[WS(rs, 22)]; | |
701 T3q = ii[WS(rs, 22)]; | |
702 T3m = W[42]; | |
703 T3o = T3m * T3n; | |
704 T8R = T3m * T3q; | |
705 T3p = W[43]; | |
706 T3r = FMA(T3p, T3q, T3o); | |
707 T8S = FNMS(T3p, T3n, T8R); | |
708 } | |
709 { | |
710 E T3a, T3d, T3b, T8K, T39, T3c; | |
711 T3a = ri[WS(rs, 38)]; | |
712 T3d = ii[WS(rs, 38)]; | |
713 T39 = W[74]; | |
714 T3b = T39 * T3a; | |
715 T8K = T39 * T3d; | |
716 T3c = W[75]; | |
717 T3e = FMA(T3c, T3d, T3b); | |
718 T8L = FNMS(T3c, T3a, T8K); | |
719 } | |
720 { | |
721 E T3h, T3k, T3i, T8P, T3g, T3j; | |
722 T3h = ri[WS(rs, 54)]; | |
723 T3k = ii[WS(rs, 54)]; | |
724 T3g = W[106]; | |
725 T3i = T3g * T3h; | |
726 T8P = T3g * T3k; | |
727 T3j = W[107]; | |
728 T3l = FMA(T3j, T3k, T3i); | |
729 T8Q = FNMS(T3j, T3h, T8P); | |
730 } | |
731 { | |
732 E T3f, T3s, Tfk, Tfl; | |
733 T3f = T38 + T3e; | |
734 T3s = T3l + T3r; | |
735 T3t = T3f + T3s; | |
736 Tfh = T3s - T3f; | |
737 Tfk = T8J + T8L; | |
738 Tfl = T8Q + T8S; | |
739 Tfm = Tfk - Tfl; | |
740 ThC = Tfk + Tfl; | |
741 { | |
742 E T8N, T95, T8U, T94; | |
743 { | |
744 E T8H, T8M, T8O, T8T; | |
745 T8H = T38 - T3e; | |
746 T8M = T8J - T8L; | |
747 T8N = T8H + T8M; | |
748 T95 = T8M - T8H; | |
749 T8O = T3l - T3r; | |
750 T8T = T8Q - T8S; | |
751 T8U = T8O - T8T; | |
752 T94 = T8O + T8T; | |
753 } | |
754 T8V = T8N - T8U; | |
755 TcY = T8N + T8U; | |
756 T96 = T94 - T95; | |
757 TcV = T95 + T94; | |
758 } | |
759 } | |
760 } | |
761 { | |
762 E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; | |
763 { | |
764 E T3Z, T42, T40, T9j, T3Y, T41; | |
765 T3Z = ri[WS(rs, 9)]; | |
766 T42 = ii[WS(rs, 9)]; | |
767 T3Y = W[16]; | |
768 T40 = T3Y * T3Z; | |
769 T9j = T3Y * T42; | |
770 T41 = W[17]; | |
771 T43 = FMA(T41, T42, T40); | |
772 T9k = FNMS(T41, T3Z, T9j); | |
773 } | |
774 { | |
775 E T4i, T4l, T4j, T9s, T4h, T4k; | |
776 T4i = ri[WS(rs, 25)]; | |
777 T4l = ii[WS(rs, 25)]; | |
778 T4h = W[48]; | |
779 T4j = T4h * T4i; | |
780 T9s = T4h * T4l; | |
781 T4k = W[49]; | |
782 T4m = FMA(T4k, T4l, T4j); | |
783 T9t = FNMS(T4k, T4i, T9s); | |
784 } | |
785 { | |
786 E T45, T48, T46, T9l, T44, T47; | |
787 T45 = ri[WS(rs, 41)]; | |
788 T48 = ii[WS(rs, 41)]; | |
789 T44 = W[80]; | |
790 T46 = T44 * T45; | |
791 T9l = T44 * T48; | |
792 T47 = W[81]; | |
793 T49 = FMA(T47, T48, T46); | |
794 T9m = FNMS(T47, T45, T9l); | |
795 } | |
796 { | |
797 E T4c, T4f, T4d, T9q, T4b, T4e; | |
798 T4c = ri[WS(rs, 57)]; | |
799 T4f = ii[WS(rs, 57)]; | |
800 T4b = W[112]; | |
801 T4d = T4b * T4c; | |
802 T9q = T4b * T4f; | |
803 T4e = W[113]; | |
804 T4g = FMA(T4e, T4f, T4d); | |
805 T9r = FNMS(T4e, T4c, T9q); | |
806 } | |
807 { | |
808 E T4a, T4n, TfJ, TfK; | |
809 T4a = T43 + T49; | |
810 T4n = T4g + T4m; | |
811 T4o = T4a + T4n; | |
812 Tfu = T4n - T4a; | |
813 TfJ = T9k + T9m; | |
814 TfK = T9r + T9t; | |
815 TfL = TfJ - TfK; | |
816 ThI = TfJ + TfK; | |
817 { | |
818 E T9o, Tac, T9v, Tab; | |
819 { | |
820 E T9i, T9n, T9p, T9u; | |
821 T9i = T43 - T49; | |
822 T9n = T9k - T9m; | |
823 T9o = T9i + T9n; | |
824 Tac = T9n - T9i; | |
825 T9p = T4g - T4m; | |
826 T9u = T9r - T9t; | |
827 T9v = T9p - T9u; | |
828 Tab = T9p + T9u; | |
829 } | |
830 T9w = T9o - T9v; | |
831 Tdf = T9o + T9v; | |
832 Tad = Tab - Tac; | |
833 Td4 = Tac + Tab; | |
834 } | |
835 } | |
836 } | |
837 { | |
838 E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; | |
839 { | |
840 E T5M, T5P, T5N, Tas, T5L, T5O; | |
841 T5M = ri[WS(rs, 7)]; | |
842 T5P = ii[WS(rs, 7)]; | |
843 T5L = W[12]; | |
844 T5N = T5L * T5M; | |
845 Tas = T5L * T5P; | |
846 T5O = W[13]; | |
847 T5Q = FMA(T5O, T5P, T5N); | |
848 Tat = FNMS(T5O, T5M, Tas); | |
849 } | |
850 { | |
851 E T65, T68, T66, TaB, T64, T67; | |
852 T65 = ri[WS(rs, 23)]; | |
853 T68 = ii[WS(rs, 23)]; | |
854 T64 = W[44]; | |
855 T66 = T64 * T65; | |
856 TaB = T64 * T68; | |
857 T67 = W[45]; | |
858 T69 = FMA(T67, T68, T66); | |
859 TaC = FNMS(T67, T65, TaB); | |
860 } | |
861 { | |
862 E T5S, T5V, T5T, Tau, T5R, T5U; | |
863 T5S = ri[WS(rs, 39)]; | |
864 T5V = ii[WS(rs, 39)]; | |
865 T5R = W[76]; | |
866 T5T = T5R * T5S; | |
867 Tau = T5R * T5V; | |
868 T5U = W[77]; | |
869 T5W = FMA(T5U, T5V, T5T); | |
870 Tav = FNMS(T5U, T5S, Tau); | |
871 } | |
872 { | |
873 E T5Z, T62, T60, Taz, T5Y, T61; | |
874 T5Z = ri[WS(rs, 55)]; | |
875 T62 = ii[WS(rs, 55)]; | |
876 T5Y = W[108]; | |
877 T60 = T5Y * T5Z; | |
878 Taz = T5Y * T62; | |
879 T61 = W[109]; | |
880 T63 = FMA(T61, T62, T60); | |
881 TaA = FNMS(T61, T5Z, Taz); | |
882 } | |
883 { | |
884 E T5X, T6a, Tga, Tgb; | |
885 T5X = T5Q + T5W; | |
886 T6a = T63 + T69; | |
887 T6b = T5X + T6a; | |
888 TfV = T6a - T5X; | |
889 Tga = Tat + Tav; | |
890 Tgb = TaA + TaC; | |
891 Tgc = Tga - Tgb; | |
892 ThT = Tga + Tgb; | |
893 { | |
894 E Tax, Tbl, TaE, Tbk; | |
895 { | |
896 E Tar, Taw, Tay, TaD; | |
897 Tar = T5Q - T5W; | |
898 Taw = Tat - Tav; | |
899 Tax = Tar + Taw; | |
900 Tbl = Taw - Tar; | |
901 Tay = T63 - T69; | |
902 TaD = TaA - TaC; | |
903 TaE = Tay - TaD; | |
904 Tbk = Tay + TaD; | |
905 } | |
906 TaF = Tax - TaE; | |
907 Tdy = Tax + TaE; | |
908 Tbm = Tbk - Tbl; | |
909 Tdn = Tbl + Tbk; | |
910 } | |
911 } | |
912 } | |
913 { | |
914 E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P; | |
915 { | |
916 E T4r, T4u, T4s, T9U, T4q, T4t; | |
917 T4r = ri[WS(rs, 5)]; | |
918 T4u = ii[WS(rs, 5)]; | |
919 T4q = W[8]; | |
920 T4s = T4q * T4r; | |
921 T9U = T4q * T4u; | |
922 T4t = W[9]; | |
923 T4v = FMA(T4t, T4u, T4s); | |
924 T9V = FNMS(T4t, T4r, T9U); | |
925 } | |
926 { | |
927 E T4K, T4N, T4L, T9Q, T4J, T4M; | |
928 T4K = ri[WS(rs, 53)]; | |
929 T4N = ii[WS(rs, 53)]; | |
930 T4J = W[104]; | |
931 T4L = T4J * T4K; | |
932 T9Q = T4J * T4N; | |
933 T4M = W[105]; | |
934 T4O = FMA(T4M, T4N, T4L); | |
935 T9R = FNMS(T4M, T4K, T9Q); | |
936 } | |
937 { | |
938 E T4x, T4A, T4y, T9W, T4w, T4z; | |
939 T4x = ri[WS(rs, 37)]; | |
940 T4A = ii[WS(rs, 37)]; | |
941 T4w = W[72]; | |
942 T4y = T4w * T4x; | |
943 T9W = T4w * T4A; | |
944 T4z = W[73]; | |
945 T4B = FMA(T4z, T4A, T4y); | |
946 T9X = FNMS(T4z, T4x, T9W); | |
947 } | |
948 { | |
949 E T4E, T4H, T4F, T9O, T4D, T4G; | |
950 T4E = ri[WS(rs, 21)]; | |
951 T4H = ii[WS(rs, 21)]; | |
952 T4D = W[40]; | |
953 T4F = T4D * T4E; | |
954 T9O = T4D * T4H; | |
955 T4G = W[41]; | |
956 T4I = FMA(T4G, T4H, T4F); | |
957 T9P = FNMS(T4G, T4E, T9O); | |
958 } | |
959 { | |
960 E T4C, T4P, Tfz, Tfw, Tfx, Tfy; | |
961 T4C = T4v + T4B; | |
962 T4P = T4I + T4O; | |
963 Tfz = T4C - T4P; | |
964 Tfw = T9V + T9X; | |
965 Tfx = T9P + T9R; | |
966 Tfy = Tfw - Tfx; | |
967 T4Q = T4C + T4P; | |
968 ThN = Tfw + Tfx; | |
969 TfA = Tfy - Tfz; | |
970 TfN = Tfz + Tfy; | |
971 } | |
972 { | |
973 E T9T, Td7, Ta0, Td6; | |
974 { | |
975 E T9N, T9S, T9Y, T9Z; | |
976 T9N = T4v - T4B; | |
977 T9S = T9P - T9R; | |
978 T9T = T9N - T9S; | |
979 Td7 = T9N + T9S; | |
980 T9Y = T9V - T9X; | |
981 T9Z = T4I - T4O; | |
982 Ta0 = T9Y + T9Z; | |
983 Td6 = T9Y - T9Z; | |
984 } | |
985 Ta1 = FNMS(KP414213562, Ta0, T9T); | |
986 Tdh = FMA(KP414213562, Td6, Td7); | |
987 Taf = FMA(KP414213562, T9T, Ta0); | |
988 Td8 = FNMS(KP414213562, Td7, Td6); | |
989 } | |
990 } | |
991 { | |
992 E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A; | |
993 { | |
994 E T4S, T4V, T4T, T9F, T4R, T4U; | |
995 T4S = ri[WS(rs, 61)]; | |
996 T4V = ii[WS(rs, 61)]; | |
997 T4R = W[120]; | |
998 T4T = T4R * T4S; | |
999 T9F = T4R * T4V; | |
1000 T4U = W[121]; | |
1001 T4W = FMA(T4U, T4V, T4T); | |
1002 T9G = FNMS(T4U, T4S, T9F); | |
1003 } | |
1004 { | |
1005 E T5b, T5e, T5c, T9B, T5a, T5d; | |
1006 T5b = ri[WS(rs, 45)]; | |
1007 T5e = ii[WS(rs, 45)]; | |
1008 T5a = W[88]; | |
1009 T5c = T5a * T5b; | |
1010 T9B = T5a * T5e; | |
1011 T5d = W[89]; | |
1012 T5f = FMA(T5d, T5e, T5c); | |
1013 T9C = FNMS(T5d, T5b, T9B); | |
1014 } | |
1015 { | |
1016 E T4Y, T51, T4Z, T9H, T4X, T50; | |
1017 T4Y = ri[WS(rs, 29)]; | |
1018 T51 = ii[WS(rs, 29)]; | |
1019 T4X = W[56]; | |
1020 T4Z = T4X * T4Y; | |
1021 T9H = T4X * T51; | |
1022 T50 = W[57]; | |
1023 T52 = FMA(T50, T51, T4Z); | |
1024 T9I = FNMS(T50, T4Y, T9H); | |
1025 } | |
1026 { | |
1027 E T55, T58, T56, T9z, T54, T57; | |
1028 T55 = ri[WS(rs, 13)]; | |
1029 T58 = ii[WS(rs, 13)]; | |
1030 T54 = W[24]; | |
1031 T56 = T54 * T55; | |
1032 T9z = T54 * T58; | |
1033 T57 = W[25]; | |
1034 T59 = FMA(T57, T58, T56); | |
1035 T9A = FNMS(T57, T55, T9z); | |
1036 } | |
1037 { | |
1038 E T53, T5g, TfB, TfC, TfD, TfE; | |
1039 T53 = T4W + T52; | |
1040 T5g = T59 + T5f; | |
1041 TfB = T53 - T5g; | |
1042 TfC = T9G + T9I; | |
1043 TfD = T9A + T9C; | |
1044 TfE = TfC - TfD; | |
1045 T5h = T53 + T5g; | |
1046 ThO = TfC + TfD; | |
1047 TfF = TfB + TfE; | |
1048 TfO = TfB - TfE; | |
1049 } | |
1050 { | |
1051 E T9E, Tda, T9L, Td9; | |
1052 { | |
1053 E T9y, T9D, T9J, T9K; | |
1054 T9y = T4W - T52; | |
1055 T9D = T9A - T9C; | |
1056 T9E = T9y - T9D; | |
1057 Tda = T9y + T9D; | |
1058 T9J = T9G - T9I; | |
1059 T9K = T59 - T5f; | |
1060 T9L = T9J + T9K; | |
1061 Td9 = T9J - T9K; | |
1062 } | |
1063 T9M = FMA(KP414213562, T9L, T9E); | |
1064 Tdi = FNMS(KP414213562, Td9, Tda); | |
1065 Tag = FNMS(KP414213562, T9E, T9L); | |
1066 Tdb = FMA(KP414213562, Tda, Td9); | |
1067 } | |
1068 } | |
1069 { | |
1070 E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY; | |
1071 { | |
1072 E T6e, T6h, T6f, Tb3, T6d, T6g; | |
1073 T6e = ri[WS(rs, 3)]; | |
1074 T6h = ii[WS(rs, 3)]; | |
1075 T6d = W[4]; | |
1076 T6f = T6d * T6e; | |
1077 Tb3 = T6d * T6h; | |
1078 T6g = W[5]; | |
1079 T6i = FMA(T6g, T6h, T6f); | |
1080 Tb4 = FNMS(T6g, T6e, Tb3); | |
1081 } | |
1082 { | |
1083 E T6x, T6A, T6y, TaZ, T6w, T6z; | |
1084 T6x = ri[WS(rs, 51)]; | |
1085 T6A = ii[WS(rs, 51)]; | |
1086 T6w = W[100]; | |
1087 T6y = T6w * T6x; | |
1088 TaZ = T6w * T6A; | |
1089 T6z = W[101]; | |
1090 T6B = FMA(T6z, T6A, T6y); | |
1091 Tb0 = FNMS(T6z, T6x, TaZ); | |
1092 } | |
1093 { | |
1094 E T6k, T6n, T6l, Tb5, T6j, T6m; | |
1095 T6k = ri[WS(rs, 35)]; | |
1096 T6n = ii[WS(rs, 35)]; | |
1097 T6j = W[68]; | |
1098 T6l = T6j * T6k; | |
1099 Tb5 = T6j * T6n; | |
1100 T6m = W[69]; | |
1101 T6o = FMA(T6m, T6n, T6l); | |
1102 Tb6 = FNMS(T6m, T6k, Tb5); | |
1103 } | |
1104 { | |
1105 E T6r, T6u, T6s, TaX, T6q, T6t; | |
1106 T6r = ri[WS(rs, 19)]; | |
1107 T6u = ii[WS(rs, 19)]; | |
1108 T6q = W[36]; | |
1109 T6s = T6q * T6r; | |
1110 TaX = T6q * T6u; | |
1111 T6t = W[37]; | |
1112 T6v = FMA(T6t, T6u, T6s); | |
1113 TaY = FNMS(T6t, T6r, TaX); | |
1114 } | |
1115 { | |
1116 E T6p, T6C, Tg0, TfX, TfY, TfZ; | |
1117 T6p = T6i + T6o; | |
1118 T6C = T6v + T6B; | |
1119 Tg0 = T6p - T6C; | |
1120 TfX = Tb4 + Tb6; | |
1121 TfY = TaY + Tb0; | |
1122 TfZ = TfX - TfY; | |
1123 T6D = T6p + T6C; | |
1124 ThY = TfX + TfY; | |
1125 Tg1 = TfZ - Tg0; | |
1126 Tge = Tg0 + TfZ; | |
1127 } | |
1128 { | |
1129 E Tb2, Tdq, Tb9, Tdp; | |
1130 { | |
1131 E TaW, Tb1, Tb7, Tb8; | |
1132 TaW = T6i - T6o; | |
1133 Tb1 = TaY - Tb0; | |
1134 Tb2 = TaW - Tb1; | |
1135 Tdq = TaW + Tb1; | |
1136 Tb7 = Tb4 - Tb6; | |
1137 Tb8 = T6v - T6B; | |
1138 Tb9 = Tb7 + Tb8; | |
1139 Tdp = Tb7 - Tb8; | |
1140 } | |
1141 Tba = FNMS(KP414213562, Tb9, Tb2); | |
1142 TdA = FMA(KP414213562, Tdp, Tdq); | |
1143 Tbo = FMA(KP414213562, Tb2, Tb9); | |
1144 Tdr = FNMS(KP414213562, Tdq, Tdp); | |
1145 } | |
1146 } | |
1147 { | |
1148 E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ; | |
1149 { | |
1150 E T6F, T6I, T6G, TaO, T6E, T6H; | |
1151 T6F = ri[WS(rs, 59)]; | |
1152 T6I = ii[WS(rs, 59)]; | |
1153 T6E = W[116]; | |
1154 T6G = T6E * T6F; | |
1155 TaO = T6E * T6I; | |
1156 T6H = W[117]; | |
1157 T6J = FMA(T6H, T6I, T6G); | |
1158 TaP = FNMS(T6H, T6F, TaO); | |
1159 } | |
1160 { | |
1161 E T6Y, T71, T6Z, TaK, T6X, T70; | |
1162 T6Y = ri[WS(rs, 43)]; | |
1163 T71 = ii[WS(rs, 43)]; | |
1164 T6X = W[84]; | |
1165 T6Z = T6X * T6Y; | |
1166 TaK = T6X * T71; | |
1167 T70 = W[85]; | |
1168 T72 = FMA(T70, T71, T6Z); | |
1169 TaL = FNMS(T70, T6Y, TaK); | |
1170 } | |
1171 { | |
1172 E T6L, T6O, T6M, TaQ, T6K, T6N; | |
1173 T6L = ri[WS(rs, 27)]; | |
1174 T6O = ii[WS(rs, 27)]; | |
1175 T6K = W[52]; | |
1176 T6M = T6K * T6L; | |
1177 TaQ = T6K * T6O; | |
1178 T6N = W[53]; | |
1179 T6P = FMA(T6N, T6O, T6M); | |
1180 TaR = FNMS(T6N, T6L, TaQ); | |
1181 } | |
1182 { | |
1183 E T6S, T6V, T6T, TaI, T6R, T6U; | |
1184 T6S = ri[WS(rs, 11)]; | |
1185 T6V = ii[WS(rs, 11)]; | |
1186 T6R = W[20]; | |
1187 T6T = T6R * T6S; | |
1188 TaI = T6R * T6V; | |
1189 T6U = W[21]; | |
1190 T6W = FMA(T6U, T6V, T6T); | |
1191 TaJ = FNMS(T6U, T6S, TaI); | |
1192 } | |
1193 { | |
1194 E T6Q, T73, Tg2, Tg3, Tg4, Tg5; | |
1195 T6Q = T6J + T6P; | |
1196 T73 = T6W + T72; | |
1197 Tg2 = T6Q - T73; | |
1198 Tg3 = TaP + TaR; | |
1199 Tg4 = TaJ + TaL; | |
1200 Tg5 = Tg3 - Tg4; | |
1201 T74 = T6Q + T73; | |
1202 ThZ = Tg3 + Tg4; | |
1203 Tg6 = Tg2 + Tg5; | |
1204 Tgf = Tg2 - Tg5; | |
1205 } | |
1206 { | |
1207 E TaN, Tdt, TaU, Tds; | |
1208 { | |
1209 E TaH, TaM, TaS, TaT; | |
1210 TaH = T6J - T6P; | |
1211 TaM = TaJ - TaL; | |
1212 TaN = TaH - TaM; | |
1213 Tdt = TaH + TaM; | |
1214 TaS = TaP - TaR; | |
1215 TaT = T6W - T72; | |
1216 TaU = TaS + TaT; | |
1217 Tds = TaS - TaT; | |
1218 } | |
1219 TaV = FMA(KP414213562, TaU, TaN); | |
1220 TdB = FNMS(KP414213562, Tds, Tdt); | |
1221 Tbp = FNMS(KP414213562, TaN, TaU); | |
1222 Tdu = FMA(KP414213562, Tdt, Tds); | |
1223 } | |
1224 } | |
1225 { | |
1226 E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix; | |
1227 E TiF; | |
1228 { | |
1229 E TO, T1H, Tip, Tiq; | |
1230 TO = Tm + TN; | |
1231 T1H = T1f + T1G; | |
1232 T1I = TO + T1H; | |
1233 Tio = TO - T1H; | |
1234 { | |
1235 E T2B, T3u, TiO, TiW; | |
1236 T2B = T29 + T2A; | |
1237 T3u = T32 + T3t; | |
1238 T3v = T2B + T3u; | |
1239 Tj1 = T3u - T2B; | |
1240 TiO = Thr + Ths; | |
1241 TiW = TiP + TiV; | |
1242 TiX = TiO + TiW; | |
1243 Tj2 = TiW - TiO; | |
1244 } | |
1245 Tip = Thv + Thw; | |
1246 Tiq = ThB + ThC; | |
1247 Tir = Tip - Tiq; | |
1248 TiN = Tip + Tiq; | |
1249 { | |
1250 E T6c, T75, Tiy, Tiz, TiA, TiB; | |
1251 T6c = T5K + T6b; | |
1252 T75 = T6D + T74; | |
1253 Tiy = T6c - T75; | |
1254 Tiz = ThS + ThT; | |
1255 TiA = ThY + ThZ; | |
1256 TiB = Tiz - TiA; | |
1257 T76 = T6c + T75; | |
1258 TiK = Tiz + TiA; | |
1259 TiC = Tiy - TiB; | |
1260 TiG = Tiy + TiB; | |
1261 } | |
1262 { | |
1263 E T4p, T5i, Tit, Tiu, Tiv, Tiw; | |
1264 T4p = T3X + T4o; | |
1265 T5i = T4Q + T5h; | |
1266 Tit = T4p - T5i; | |
1267 Tiu = ThH + ThI; | |
1268 Tiv = ThN + ThO; | |
1269 Tiw = Tiu - Tiv; | |
1270 T5j = T4p + T5i; | |
1271 TiJ = Tiu + Tiv; | |
1272 Tix = Tit + Tiw; | |
1273 TiF = Tiw - Tit; | |
1274 } | |
1275 } | |
1276 { | |
1277 E T3w, T77, TiM, TiY; | |
1278 T3w = T1I + T3v; | |
1279 T77 = T5j + T76; | |
1280 ri[WS(rs, 32)] = T3w - T77; | |
1281 ri[0] = T3w + T77; | |
1282 TiM = TiJ + TiK; | |
1283 TiY = TiN + TiX; | |
1284 ii[0] = TiM + TiY; | |
1285 ii[WS(rs, 32)] = TiY - TiM; | |
1286 } | |
1287 { | |
1288 E Tis, TiD, Tj3, Tj4; | |
1289 Tis = Tio + Tir; | |
1290 TiD = Tix + TiC; | |
1291 ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis); | |
1292 ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); | |
1293 Tj3 = Tj1 + Tj2; | |
1294 Tj4 = TiF + TiG; | |
1295 ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3); | |
1296 ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3); | |
1297 } | |
1298 { | |
1299 E TiE, TiH, Tj5, Tj6; | |
1300 TiE = Tio - Tir; | |
1301 TiH = TiF - TiG; | |
1302 ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE); | |
1303 ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE); | |
1304 Tj5 = Tj2 - Tj1; | |
1305 Tj6 = TiC - Tix; | |
1306 ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5); | |
1307 ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5); | |
1308 } | |
1309 { | |
1310 E TiI, TiL, TiZ, Tj0; | |
1311 TiI = T1I - T3v; | |
1312 TiL = TiJ - TiK; | |
1313 ri[WS(rs, 48)] = TiI - TiL; | |
1314 ri[WS(rs, 16)] = TiI + TiL; | |
1315 TiZ = T76 - T5j; | |
1316 Tj0 = TiX - TiN; | |
1317 ii[WS(rs, 16)] = TiZ + Tj0; | |
1318 ii[WS(rs, 48)] = Tj0 - TiZ; | |
1319 } | |
1320 } | |
1321 { | |
1322 E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6; | |
1323 E Tii; | |
1324 { | |
1325 E Thq, Tht, Tj7, Tj8; | |
1326 Thq = Tm - TN; | |
1327 Tht = Thr - Ths; | |
1328 Thu = Thq - Tht; | |
1329 Ti8 = Thq + Tht; | |
1330 Tj7 = T1G - T1f; | |
1331 Tj8 = TiV - TiP; | |
1332 Tj9 = Tj7 + Tj8; | |
1333 Tjf = Tj8 - Tj7; | |
1334 } | |
1335 { | |
1336 E Thz, Ti9, ThE, Tia; | |
1337 { | |
1338 E Thx, Thy, ThA, ThD; | |
1339 Thx = Thv - Thw; | |
1340 Thy = T29 - T2A; | |
1341 Thz = Thx - Thy; | |
1342 Ti9 = Thy + Thx; | |
1343 ThA = T32 - T3t; | |
1344 ThD = ThB - ThC; | |
1345 ThE = ThA + ThD; | |
1346 Tia = ThA - ThD; | |
1347 } | |
1348 ThF = Thz - ThE; | |
1349 Tjg = Tia - Ti9; | |
1350 Tib = Ti9 + Tia; | |
1351 Tja = Thz + ThE; | |
1352 } | |
1353 { | |
1354 E ThL, Tie, ThQ, Tid; | |
1355 { | |
1356 E ThJ, ThK, ThM, ThP; | |
1357 ThJ = ThH - ThI; | |
1358 ThK = T5h - T4Q; | |
1359 ThL = ThJ - ThK; | |
1360 Tie = ThJ + ThK; | |
1361 ThM = T3X - T4o; | |
1362 ThP = ThN - ThO; | |
1363 ThQ = ThM - ThP; | |
1364 Tid = ThM + ThP; | |
1365 } | |
1366 ThR = FMA(KP414213562, ThQ, ThL); | |
1367 Til = FNMS(KP414213562, Tid, Tie); | |
1368 Ti5 = FNMS(KP414213562, ThL, ThQ); | |
1369 Tif = FMA(KP414213562, Tie, Tid); | |
1370 } | |
1371 { | |
1372 E ThW, Tih, Ti1, Tig; | |
1373 { | |
1374 E ThU, ThV, ThX, Ti0; | |
1375 ThU = ThS - ThT; | |
1376 ThV = T74 - T6D; | |
1377 ThW = ThU - ThV; | |
1378 Tih = ThU + ThV; | |
1379 ThX = T5K - T6b; | |
1380 Ti0 = ThY - ThZ; | |
1381 Ti1 = ThX - Ti0; | |
1382 Tig = ThX + Ti0; | |
1383 } | |
1384 Ti2 = FNMS(KP414213562, Ti1, ThW); | |
1385 Tim = FMA(KP414213562, Tig, Tih); | |
1386 Ti6 = FMA(KP414213562, ThW, Ti1); | |
1387 Tii = FNMS(KP414213562, Tih, Tig); | |
1388 } | |
1389 { | |
1390 E ThG, Ti3, Tjh, Tji; | |
1391 ThG = FMA(KP707106781, ThF, Thu); | |
1392 Ti3 = ThR - Ti2; | |
1393 ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG); | |
1394 ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG); | |
1395 Tjh = FMA(KP707106781, Tjg, Tjf); | |
1396 Tji = Ti6 - Ti5; | |
1397 ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh); | |
1398 ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh); | |
1399 } | |
1400 { | |
1401 E Ti4, Ti7, Tjj, Tjk; | |
1402 Ti4 = FNMS(KP707106781, ThF, Thu); | |
1403 Ti7 = Ti5 + Ti6; | |
1404 ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4); | |
1405 ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4); | |
1406 Tjj = FNMS(KP707106781, Tjg, Tjf); | |
1407 Tjk = ThR + Ti2; | |
1408 ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj); | |
1409 ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj); | |
1410 } | |
1411 { | |
1412 E Tic, Tij, Tjb, Tjc; | |
1413 Tic = FMA(KP707106781, Tib, Ti8); | |
1414 Tij = Tif + Tii; | |
1415 ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic); | |
1416 ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic); | |
1417 Tjb = FMA(KP707106781, Tja, Tj9); | |
1418 Tjc = Til + Tim; | |
1419 ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb); | |
1420 ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb); | |
1421 } | |
1422 { | |
1423 E Tik, Tin, Tjd, Tje; | |
1424 Tik = FNMS(KP707106781, Tib, Ti8); | |
1425 Tin = Til - Tim; | |
1426 ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik); | |
1427 ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik); | |
1428 Tjd = FNMS(KP707106781, Tja, Tj9); | |
1429 Tje = Tii - Tif; | |
1430 ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd); | |
1431 ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd); | |
1432 } | |
1433 } | |
1434 { | |
1435 E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8; | |
1436 E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC; | |
1437 E Tgm, Tgy; | |
1438 { | |
1439 E TeQ, TjB, Tf1, TjC, TeV, Tf0; | |
1440 TeQ = TeM + TeP; | |
1441 TjB = Tjm - Tjl; | |
1442 TeV = TeR + TeU; | |
1443 Tf0 = TeW - TeZ; | |
1444 Tf1 = TeV + Tf0; | |
1445 TjC = Tf0 - TeV; | |
1446 Tf2 = FNMS(KP707106781, Tf1, TeQ); | |
1447 TjJ = FNMS(KP707106781, TjC, TjB); | |
1448 Tgo = FMA(KP707106781, Tf1, TeQ); | |
1449 TjD = FMA(KP707106781, TjC, TjB); | |
1450 } | |
1451 { | |
1452 E TgE, Tjn, TgH, Tjo, TgF, TgG; | |
1453 TgE = TeM - TeP; | |
1454 Tjn = Tjl + Tjm; | |
1455 TgF = TeU - TeR; | |
1456 TgG = TeW + TeZ; | |
1457 TgH = TgF - TgG; | |
1458 Tjo = TgF + TgG; | |
1459 TgI = FMA(KP707106781, TgH, TgE); | |
1460 Tjv = FNMS(KP707106781, Tjo, Tjn); | |
1461 Tha = FNMS(KP707106781, TgH, TgE); | |
1462 Tjp = FMA(KP707106781, Tjo, Tjn); | |
1463 } | |
1464 { | |
1465 E Tfd, Tgp, Tfo, Tgq; | |
1466 { | |
1467 E Tf7, Tfc, Tfi, Tfn; | |
1468 Tf7 = Tf5 + Tf6; | |
1469 Tfc = Tf8 + Tfb; | |
1470 Tfd = FNMS(KP414213562, Tfc, Tf7); | |
1471 Tgp = FMA(KP414213562, Tf7, Tfc); | |
1472 Tfi = Tfg + Tfh; | |
1473 Tfn = Tfj + Tfm; | |
1474 Tfo = FMA(KP414213562, Tfn, Tfi); | |
1475 Tgq = FNMS(KP414213562, Tfi, Tfn); | |
1476 } | |
1477 Tfp = Tfd - Tfo; | |
1478 Tjw = Tgq - Tgp; | |
1479 Tgr = Tgp + Tgq; | |
1480 Tjq = Tfd + Tfo; | |
1481 } | |
1482 { | |
1483 E Th0, Thj, Th3, Thi; | |
1484 { | |
1485 E TgY, TgZ, Th1, Th2; | |
1486 TgY = Tg9 - Tgc; | |
1487 TgZ = Tg6 - Tg1; | |
1488 Th0 = FNMS(KP707106781, TgZ, TgY); | |
1489 Thj = FMA(KP707106781, TgZ, TgY); | |
1490 Th1 = TfU - TfV; | |
1491 Th2 = Tge - Tgf; | |
1492 Th3 = FNMS(KP707106781, Th2, Th1); | |
1493 Thi = FMA(KP707106781, Th2, Th1); | |
1494 } | |
1495 Th4 = FNMS(KP668178637, Th3, Th0); | |
1496 Tho = FMA(KP198912367, Thi, Thj); | |
1497 Th8 = FMA(KP668178637, Th0, Th3); | |
1498 Thk = FNMS(KP198912367, Thj, Thi); | |
1499 } | |
1500 { | |
1501 E TfH, Tgu, TfQ, Tgt; | |
1502 { | |
1503 E Tfv, TfG, TfM, TfP; | |
1504 Tfv = Tft + Tfu; | |
1505 TfG = TfA + TfF; | |
1506 TfH = FNMS(KP707106781, TfG, Tfv); | |
1507 Tgu = FMA(KP707106781, TfG, Tfv); | |
1508 TfM = TfI + TfL; | |
1509 TfP = TfN + TfO; | |
1510 TfQ = FNMS(KP707106781, TfP, TfM); | |
1511 Tgt = FMA(KP707106781, TfP, TfM); | |
1512 } | |
1513 TfR = FMA(KP668178637, TfQ, TfH); | |
1514 TgB = FNMS(KP198912367, Tgt, Tgu); | |
1515 Tgl = FNMS(KP668178637, TfH, TfQ); | |
1516 Tgv = FMA(KP198912367, Tgu, Tgt); | |
1517 } | |
1518 { | |
1519 E TgL, Thb, TgO, Thc; | |
1520 { | |
1521 E TgJ, TgK, TgM, TgN; | |
1522 TgJ = Tf5 - Tf6; | |
1523 TgK = Tf8 - Tfb; | |
1524 TgL = FMA(KP414213562, TgK, TgJ); | |
1525 Thb = FNMS(KP414213562, TgJ, TgK); | |
1526 TgM = Tfg - Tfh; | |
1527 TgN = Tfj - Tfm; | |
1528 TgO = FNMS(KP414213562, TgN, TgM); | |
1529 Thc = FMA(KP414213562, TgM, TgN); | |
1530 } | |
1531 TgP = TgL - TgO; | |
1532 TjK = TgL + TgO; | |
1533 Thd = Thb + Thc; | |
1534 TjE = Thc - Thb; | |
1535 } | |
1536 { | |
1537 E TgT, Thg, TgW, Thf; | |
1538 { | |
1539 E TgR, TgS, TgU, TgV; | |
1540 TgR = TfI - TfL; | |
1541 TgS = TfF - TfA; | |
1542 TgT = FNMS(KP707106781, TgS, TgR); | |
1543 Thg = FMA(KP707106781, TgS, TgR); | |
1544 TgU = Tft - Tfu; | |
1545 TgV = TfN - TfO; | |
1546 TgW = FNMS(KP707106781, TgV, TgU); | |
1547 Thf = FMA(KP707106781, TgV, TgU); | |
1548 } | |
1549 TgX = FMA(KP668178637, TgW, TgT); | |
1550 Thn = FNMS(KP198912367, Thf, Thg); | |
1551 Th7 = FNMS(KP668178637, TgT, TgW); | |
1552 Thh = FMA(KP198912367, Thg, Thf); | |
1553 } | |
1554 { | |
1555 E Tg8, Tgx, Tgh, Tgw; | |
1556 { | |
1557 E TfW, Tg7, Tgd, Tgg; | |
1558 TfW = TfU + TfV; | |
1559 Tg7 = Tg1 + Tg6; | |
1560 Tg8 = FNMS(KP707106781, Tg7, TfW); | |
1561 Tgx = FMA(KP707106781, Tg7, TfW); | |
1562 Tgd = Tg9 + Tgc; | |
1563 Tgg = Tge + Tgf; | |
1564 Tgh = FNMS(KP707106781, Tgg, Tgd); | |
1565 Tgw = FMA(KP707106781, Tgg, Tgd); | |
1566 } | |
1567 Tgi = FNMS(KP668178637, Tgh, Tg8); | |
1568 TgC = FMA(KP198912367, Tgw, Tgx); | |
1569 Tgm = FMA(KP668178637, Tg8, Tgh); | |
1570 Tgy = FNMS(KP198912367, Tgx, Tgw); | |
1571 } | |
1572 { | |
1573 E Tfq, Tgj, Tjx, Tjy; | |
1574 Tfq = FMA(KP923879532, Tfp, Tf2); | |
1575 Tgj = TfR - Tgi; | |
1576 ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq); | |
1577 ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq); | |
1578 Tjx = FMA(KP923879532, Tjw, Tjv); | |
1579 Tjy = Tgm - Tgl; | |
1580 ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx); | |
1581 ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx); | |
1582 } | |
1583 { | |
1584 E Tgk, Tgn, Tjz, TjA; | |
1585 Tgk = FNMS(KP923879532, Tfp, Tf2); | |
1586 Tgn = Tgl + Tgm; | |
1587 ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk); | |
1588 ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk); | |
1589 Tjz = FNMS(KP923879532, Tjw, Tjv); | |
1590 TjA = TfR + Tgi; | |
1591 ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz); | |
1592 ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz); | |
1593 } | |
1594 { | |
1595 E Tgs, Tgz, Tjr, Tjs; | |
1596 Tgs = FMA(KP923879532, Tgr, Tgo); | |
1597 Tgz = Tgv + Tgy; | |
1598 ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs); | |
1599 ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs); | |
1600 Tjr = FMA(KP923879532, Tjq, Tjp); | |
1601 Tjs = TgB + TgC; | |
1602 ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr); | |
1603 ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr); | |
1604 } | |
1605 { | |
1606 E TgA, TgD, Tjt, Tju; | |
1607 TgA = FNMS(KP923879532, Tgr, Tgo); | |
1608 TgD = TgB - TgC; | |
1609 ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA); | |
1610 ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA); | |
1611 Tjt = FNMS(KP923879532, Tjq, Tjp); | |
1612 Tju = Tgy - Tgv; | |
1613 ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt); | |
1614 ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt); | |
1615 } | |
1616 { | |
1617 E TgQ, Th5, TjF, TjG; | |
1618 TgQ = FMA(KP923879532, TgP, TgI); | |
1619 Th5 = TgX + Th4; | |
1620 ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ); | |
1621 ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ); | |
1622 TjF = FMA(KP923879532, TjE, TjD); | |
1623 TjG = Th7 + Th8; | |
1624 ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF); | |
1625 ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF); | |
1626 } | |
1627 { | |
1628 E Th6, Th9, TjH, TjI; | |
1629 Th6 = FNMS(KP923879532, TgP, TgI); | |
1630 Th9 = Th7 - Th8; | |
1631 ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6); | |
1632 ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6); | |
1633 TjH = FNMS(KP923879532, TjE, TjD); | |
1634 TjI = Th4 - TgX; | |
1635 ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH); | |
1636 ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH); | |
1637 } | |
1638 { | |
1639 E The, Thl, TjL, TjM; | |
1640 The = FNMS(KP923879532, Thd, Tha); | |
1641 Thl = Thh - Thk; | |
1642 ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The); | |
1643 ri[WS(rs, 14)] = FMA(KP980785280, Thl, The); | |
1644 TjL = FNMS(KP923879532, TjK, TjJ); | |
1645 TjM = Tho - Thn; | |
1646 ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL); | |
1647 ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL); | |
1648 } | |
1649 { | |
1650 E Thm, Thp, TjN, TjO; | |
1651 Thm = FMA(KP923879532, Thd, Tha); | |
1652 Thp = Thn + Tho; | |
1653 ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm); | |
1654 ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm); | |
1655 TjN = FMA(KP923879532, TjK, TjJ); | |
1656 TjO = Thh + Thk; | |
1657 ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN); | |
1658 ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN); | |
1659 } | |
1660 } | |
1661 { | |
1662 E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; | |
1663 E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp; | |
1664 E Tkv, Tck; | |
1665 { | |
1666 E T8z, Tbz, T98, TbA; | |
1667 { | |
1668 E T8n, T8y, T8W, T97; | |
1669 T8n = FNMS(KP707106781, T8m, T87); | |
1670 T8y = FNMS(KP707106781, T8x, T8u); | |
1671 T8z = FNMS(KP668178637, T8y, T8n); | |
1672 Tbz = FMA(KP668178637, T8n, T8y); | |
1673 T8W = FNMS(KP707106781, T8V, T8G); | |
1674 T97 = FNMS(KP707106781, T96, T93); | |
1675 T98 = FMA(KP668178637, T97, T8W); | |
1676 TbA = FNMS(KP668178637, T8W, T97); | |
1677 } | |
1678 T99 = T8z - T98; | |
1679 Tkw = TbA - Tbz; | |
1680 TbB = Tbz + TbA; | |
1681 Tkq = T8z + T98; | |
1682 } | |
1683 { | |
1684 E Ta3, TbE, Tai, TbD; | |
1685 { | |
1686 E T9x, Ta2, Tae, Tah; | |
1687 T9x = FNMS(KP707106781, T9w, T9h); | |
1688 Ta2 = T9M - Ta1; | |
1689 Ta3 = FNMS(KP923879532, Ta2, T9x); | |
1690 TbE = FMA(KP923879532, Ta2, T9x); | |
1691 Tae = FNMS(KP707106781, Tad, Taa); | |
1692 Tah = Taf - Tag; | |
1693 Tai = FNMS(KP923879532, Tah, Tae); | |
1694 TbD = FMA(KP923879532, Tah, Tae); | |
1695 } | |
1696 Taj = FMA(KP534511135, Tai, Ta3); | |
1697 TbL = FNMS(KP303346683, TbD, TbE); | |
1698 Tbv = FNMS(KP534511135, Ta3, Tai); | |
1699 TbF = FMA(KP303346683, TbE, TbD); | |
1700 } | |
1701 { | |
1702 E Tca, Tct, Tcd, Tcs; | |
1703 { | |
1704 E Tc8, Tc9, Tcb, Tcc; | |
1705 Tc8 = FMA(KP707106781, Tbm, Tbj); | |
1706 Tc9 = Tba + TaV; | |
1707 Tca = FNMS(KP923879532, Tc9, Tc8); | |
1708 Tct = FMA(KP923879532, Tc9, Tc8); | |
1709 Tcb = FMA(KP707106781, TaF, Taq); | |
1710 Tcc = Tbo + Tbp; | |
1711 Tcd = FNMS(KP923879532, Tcc, Tcb); | |
1712 Tcs = FMA(KP923879532, Tcc, Tcb); | |
1713 } | |
1714 Tce = FNMS(KP820678790, Tcd, Tca); | |
1715 Tcy = FMA(KP098491403, Tcs, Tct); | |
1716 Tci = FMA(KP820678790, Tca, Tcd); | |
1717 Tcu = FNMS(KP098491403, Tct, Tcs); | |
1718 } | |
1719 { | |
1720 E Tc3, Tcq, Tc6, Tcp; | |
1721 { | |
1722 E Tc1, Tc2, Tc4, Tc5; | |
1723 Tc1 = FMA(KP707106781, Tad, Taa); | |
1724 Tc2 = Ta1 + T9M; | |
1725 Tc3 = FNMS(KP923879532, Tc2, Tc1); | |
1726 Tcq = FMA(KP923879532, Tc2, Tc1); | |
1727 Tc4 = FMA(KP707106781, T9w, T9h); | |
1728 Tc5 = Taf + Tag; | |
1729 Tc6 = FNMS(KP923879532, Tc5, Tc4); | |
1730 Tcp = FMA(KP923879532, Tc5, Tc4); | |
1731 } | |
1732 Tc7 = FMA(KP820678790, Tc6, Tc3); | |
1733 Tcx = FNMS(KP098491403, Tcp, Tcq); | |
1734 Tch = FNMS(KP820678790, Tc3, Tc6); | |
1735 Tcr = FMA(KP098491403, Tcq, Tcp); | |
1736 } | |
1737 { | |
1738 E TbV, Tcl, TbY, Tcm; | |
1739 { | |
1740 E TbT, TbU, TbW, TbX; | |
1741 TbT = FMA(KP707106781, T8m, T87); | |
1742 TbU = FMA(KP707106781, T8x, T8u); | |
1743 TbV = FMA(KP198912367, TbU, TbT); | |
1744 Tcl = FNMS(KP198912367, TbT, TbU); | |
1745 TbW = FMA(KP707106781, T8V, T8G); | |
1746 TbX = FMA(KP707106781, T96, T93); | |
1747 TbY = FNMS(KP198912367, TbX, TbW); | |
1748 Tcm = FMA(KP198912367, TbW, TbX); | |
1749 } | |
1750 TbZ = TbV - TbY; | |
1751 TkK = TbV + TbY; | |
1752 Tcn = Tcl + Tcm; | |
1753 TkE = Tcm - Tcl; | |
1754 } | |
1755 { | |
1756 E Tbc, TbH, Tbr, TbG; | |
1757 { | |
1758 E TaG, Tbb, Tbn, Tbq; | |
1759 TaG = FNMS(KP707106781, TaF, Taq); | |
1760 Tbb = TaV - Tba; | |
1761 Tbc = FNMS(KP923879532, Tbb, TaG); | |
1762 TbH = FMA(KP923879532, Tbb, TaG); | |
1763 Tbn = FNMS(KP707106781, Tbm, Tbj); | |
1764 Tbq = Tbo - Tbp; | |
1765 Tbr = FNMS(KP923879532, Tbq, Tbn); | |
1766 TbG = FMA(KP923879532, Tbq, Tbn); | |
1767 } | |
1768 Tbs = FNMS(KP534511135, Tbr, Tbc); | |
1769 TbM = FMA(KP303346683, TbG, TbH); | |
1770 Tbw = FMA(KP534511135, Tbc, Tbr); | |
1771 TbI = FNMS(KP303346683, TbH, TbG); | |
1772 } | |
1773 { | |
1774 E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm; | |
1775 T7t = T7l - T7s; | |
1776 T7u = FMA(KP707106781, T7t, T7e); | |
1777 TbO = FNMS(KP707106781, T7t, T7e); | |
1778 Tkm = TcC - TcB; | |
1779 Tkn = FMA(KP707106781, Tkm, Tkl); | |
1780 TkB = FNMS(KP707106781, Tkm, Tkl); | |
1781 { | |
1782 E T7J, T7Y, TbP, TbQ; | |
1783 T7J = FMA(KP414213562, T7I, T7B); | |
1784 T7Y = FNMS(KP414213562, T7X, T7Q); | |
1785 T7Z = T7J - T7Y; | |
1786 TkC = T7J + T7Y; | |
1787 TbP = FNMS(KP414213562, T7B, T7I); | |
1788 TbQ = FMA(KP414213562, T7Q, T7X); | |
1789 TbR = TbP + TbQ; | |
1790 Tko = TbQ - TbP; | |
1791 } | |
1792 T80 = FNMS(KP923879532, T7Z, T7u); | |
1793 TkD = FNMS(KP923879532, TkC, TkB); | |
1794 TkJ = FMA(KP923879532, TkC, TkB); | |
1795 Tby = FMA(KP923879532, T7Z, T7u); | |
1796 TbS = FNMS(KP923879532, TbR, TbO); | |
1797 Tkp = FMA(KP923879532, Tko, Tkn); | |
1798 Tkv = FNMS(KP923879532, Tko, Tkn); | |
1799 Tck = FMA(KP923879532, TbR, TbO); | |
1800 } | |
1801 { | |
1802 E T9a, Tbt, Tkx, Tky; | |
1803 T9a = FMA(KP831469612, T99, T80); | |
1804 Tbt = Taj - Tbs; | |
1805 ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a); | |
1806 ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a); | |
1807 Tkx = FMA(KP831469612, Tkw, Tkv); | |
1808 Tky = Tbw - Tbv; | |
1809 ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx); | |
1810 ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx); | |
1811 } | |
1812 { | |
1813 E Tbu, Tbx, Tkz, TkA; | |
1814 Tbu = FNMS(KP831469612, T99, T80); | |
1815 Tbx = Tbv + Tbw; | |
1816 ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu); | |
1817 ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu); | |
1818 Tkz = FNMS(KP831469612, Tkw, Tkv); | |
1819 TkA = Taj + Tbs; | |
1820 ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz); | |
1821 ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz); | |
1822 } | |
1823 { | |
1824 E TbC, TbJ, Tkr, Tks; | |
1825 TbC = FMA(KP831469612, TbB, Tby); | |
1826 TbJ = TbF + TbI; | |
1827 ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC); | |
1828 ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC); | |
1829 Tkr = FMA(KP831469612, Tkq, Tkp); | |
1830 Tks = TbL + TbM; | |
1831 ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr); | |
1832 ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr); | |
1833 } | |
1834 { | |
1835 E TbK, TbN, Tkt, Tku; | |
1836 TbK = FNMS(KP831469612, TbB, Tby); | |
1837 TbN = TbL - TbM; | |
1838 ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK); | |
1839 ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK); | |
1840 Tkt = FNMS(KP831469612, Tkq, Tkp); | |
1841 Tku = TbI - TbF; | |
1842 ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt); | |
1843 ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt); | |
1844 } | |
1845 { | |
1846 E Tc0, Tcf, TkF, TkG; | |
1847 Tc0 = FMA(KP980785280, TbZ, TbS); | |
1848 Tcf = Tc7 + Tce; | |
1849 ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0); | |
1850 ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0); | |
1851 TkF = FMA(KP980785280, TkE, TkD); | |
1852 TkG = Tch + Tci; | |
1853 ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF); | |
1854 ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF); | |
1855 } | |
1856 { | |
1857 E Tcg, Tcj, TkH, TkI; | |
1858 Tcg = FNMS(KP980785280, TbZ, TbS); | |
1859 Tcj = Tch - Tci; | |
1860 ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg); | |
1861 ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg); | |
1862 TkH = FNMS(KP980785280, TkE, TkD); | |
1863 TkI = Tce - Tc7; | |
1864 ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH); | |
1865 ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH); | |
1866 } | |
1867 { | |
1868 E Tco, Tcv, TkL, TkM; | |
1869 Tco = FNMS(KP980785280, Tcn, Tck); | |
1870 Tcv = Tcr - Tcu; | |
1871 ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco); | |
1872 ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco); | |
1873 TkL = FNMS(KP980785280, TkK, TkJ); | |
1874 TkM = Tcy - Tcx; | |
1875 ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL); | |
1876 ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL); | |
1877 } | |
1878 { | |
1879 E Tcw, Tcz, TkN, TkO; | |
1880 Tcw = FMA(KP980785280, Tcn, Tck); | |
1881 Tcz = Tcx + Tcy; | |
1882 ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw); | |
1883 ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw); | |
1884 TkN = FMA(KP980785280, TkK, TkJ); | |
1885 TkO = Tcr + Tcu; | |
1886 ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN); | |
1887 ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN); | |
1888 } | |
1889 } | |
1890 { | |
1891 E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet; | |
1892 E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV; | |
1893 E Tk1, Tew; | |
1894 { | |
1895 E TcT, TdL, Td0, TdM; | |
1896 { | |
1897 E TcP, TcS, TcW, TcZ; | |
1898 TcP = FMA(KP707106781, TcO, TcN); | |
1899 TcS = FMA(KP707106781, TcR, TcQ); | |
1900 TcT = FNMS(KP198912367, TcS, TcP); | |
1901 TdL = FMA(KP198912367, TcP, TcS); | |
1902 TcW = FMA(KP707106781, TcV, TcU); | |
1903 TcZ = FMA(KP707106781, TcY, TcX); | |
1904 Td0 = FMA(KP198912367, TcZ, TcW); | |
1905 TdM = FNMS(KP198912367, TcW, TcZ); | |
1906 } | |
1907 Td1 = TcT - Td0; | |
1908 Tk2 = TdM - TdL; | |
1909 TdN = TdL + TdM; | |
1910 TjW = TcT + Td0; | |
1911 } | |
1912 { | |
1913 E Tdd, TdQ, Tdk, TdP; | |
1914 { | |
1915 E Td5, Tdc, Tdg, Tdj; | |
1916 Td5 = FMA(KP707106781, Td4, Td3); | |
1917 Tdc = Td8 + Tdb; | |
1918 Tdd = FNMS(KP923879532, Tdc, Td5); | |
1919 TdQ = FMA(KP923879532, Tdc, Td5); | |
1920 Tdg = FMA(KP707106781, Tdf, Tde); | |
1921 Tdj = Tdh + Tdi; | |
1922 Tdk = FNMS(KP923879532, Tdj, Tdg); | |
1923 TdP = FMA(KP923879532, Tdj, Tdg); | |
1924 } | |
1925 Tdl = FMA(KP820678790, Tdk, Tdd); | |
1926 TdX = FNMS(KP098491403, TdP, TdQ); | |
1927 TdH = FNMS(KP820678790, Tdd, Tdk); | |
1928 TdR = FMA(KP098491403, TdQ, TdP); | |
1929 } | |
1930 { | |
1931 E Tem, TeF, Tep, TeE; | |
1932 { | |
1933 E Tek, Tel, Ten, Teo; | |
1934 Tek = FNMS(KP707106781, Tdy, Tdx); | |
1935 Tel = Tdu - Tdr; | |
1936 Tem = FNMS(KP923879532, Tel, Tek); | |
1937 TeF = FMA(KP923879532, Tel, Tek); | |
1938 Ten = FNMS(KP707106781, Tdn, Tdm); | |
1939 Teo = TdA - TdB; | |
1940 Tep = FNMS(KP923879532, Teo, Ten); | |
1941 TeE = FMA(KP923879532, Teo, Ten); | |
1942 } | |
1943 Teq = FNMS(KP534511135, Tep, Tem); | |
1944 TeK = FMA(KP303346683, TeE, TeF); | |
1945 Teu = FMA(KP534511135, Tem, Tep); | |
1946 TeG = FNMS(KP303346683, TeF, TeE); | |
1947 } | |
1948 { | |
1949 E Tef, TeC, Tei, TeB; | |
1950 { | |
1951 E Ted, Tee, Teg, Teh; | |
1952 Ted = FNMS(KP707106781, Tdf, Tde); | |
1953 Tee = Tdb - Td8; | |
1954 Tef = FNMS(KP923879532, Tee, Ted); | |
1955 TeC = FMA(KP923879532, Tee, Ted); | |
1956 Teg = FNMS(KP707106781, Td4, Td3); | |
1957 Teh = Tdh - Tdi; | |
1958 Tei = FNMS(KP923879532, Teh, Teg); | |
1959 TeB = FMA(KP923879532, Teh, Teg); | |
1960 } | |
1961 Tej = FMA(KP534511135, Tei, Tef); | |
1962 TeJ = FNMS(KP303346683, TeB, TeC); | |
1963 Tet = FNMS(KP534511135, Tef, Tei); | |
1964 TeD = FMA(KP303346683, TeC, TeB); | |
1965 } | |
1966 { | |
1967 E Te7, Tex, Tea, Tey; | |
1968 { | |
1969 E Te5, Te6, Te8, Te9; | |
1970 Te5 = FNMS(KP707106781, TcO, TcN); | |
1971 Te6 = FNMS(KP707106781, TcR, TcQ); | |
1972 Te7 = FMA(KP668178637, Te6, Te5); | |
1973 Tex = FNMS(KP668178637, Te5, Te6); | |
1974 Te8 = FNMS(KP707106781, TcV, TcU); | |
1975 Te9 = FNMS(KP707106781, TcY, TcX); | |
1976 Tea = FNMS(KP668178637, Te9, Te8); | |
1977 Tey = FMA(KP668178637, Te8, Te9); | |
1978 } | |
1979 Teb = Te7 - Tea; | |
1980 Tkg = Te7 + Tea; | |
1981 Tez = Tex + Tey; | |
1982 Tka = Tey - Tex; | |
1983 } | |
1984 { | |
1985 E Tdw, TdT, TdD, TdS; | |
1986 { | |
1987 E Tdo, Tdv, Tdz, TdC; | |
1988 Tdo = FMA(KP707106781, Tdn, Tdm); | |
1989 Tdv = Tdr + Tdu; | |
1990 Tdw = FNMS(KP923879532, Tdv, Tdo); | |
1991 TdT = FMA(KP923879532, Tdv, Tdo); | |
1992 Tdz = FMA(KP707106781, Tdy, Tdx); | |
1993 TdC = TdA + TdB; | |
1994 TdD = FNMS(KP923879532, TdC, Tdz); | |
1995 TdS = FMA(KP923879532, TdC, Tdz); | |
1996 } | |
1997 TdE = FNMS(KP820678790, TdD, Tdw); | |
1998 TdY = FMA(KP098491403, TdS, TdT); | |
1999 TdI = FMA(KP820678790, Tdw, TdD); | |
2000 TdU = FNMS(KP098491403, TdT, TdS); | |
2001 } | |
2002 { | |
2003 E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS; | |
2004 TcD = TcB + TcC; | |
2005 TcE = FMA(KP707106781, TcD, TcA); | |
2006 Te0 = FNMS(KP707106781, TcD, TcA); | |
2007 TjS = T7l + T7s; | |
2008 TjT = FMA(KP707106781, TjS, TjR); | |
2009 Tk7 = FNMS(KP707106781, TjS, TjR); | |
2010 { | |
2011 E TcH, TcK, Te1, Te2; | |
2012 TcH = FMA(KP414213562, TcG, TcF); | |
2013 TcK = FNMS(KP414213562, TcJ, TcI); | |
2014 TcL = TcH + TcK; | |
2015 Tk8 = TcK - TcH; | |
2016 Te1 = FNMS(KP414213562, TcF, TcG); | |
2017 Te2 = FMA(KP414213562, TcI, TcJ); | |
2018 Te3 = Te1 - Te2; | |
2019 TjU = Te1 + Te2; | |
2020 } | |
2021 TcM = FNMS(KP923879532, TcL, TcE); | |
2022 Tk9 = FMA(KP923879532, Tk8, Tk7); | |
2023 Tkf = FNMS(KP923879532, Tk8, Tk7); | |
2024 TdK = FMA(KP923879532, TcL, TcE); | |
2025 Te4 = FMA(KP923879532, Te3, Te0); | |
2026 TjV = FMA(KP923879532, TjU, TjT); | |
2027 Tk1 = FNMS(KP923879532, TjU, TjT); | |
2028 Tew = FNMS(KP923879532, Te3, Te0); | |
2029 } | |
2030 { | |
2031 E Td2, TdF, Tk3, Tk4; | |
2032 Td2 = FMA(KP980785280, Td1, TcM); | |
2033 TdF = Tdl - TdE; | |
2034 ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2); | |
2035 ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2); | |
2036 Tk3 = FMA(KP980785280, Tk2, Tk1); | |
2037 Tk4 = TdI - TdH; | |
2038 ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3); | |
2039 ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3); | |
2040 } | |
2041 { | |
2042 E TdG, TdJ, Tk5, Tk6; | |
2043 TdG = FNMS(KP980785280, Td1, TcM); | |
2044 TdJ = TdH + TdI; | |
2045 ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG); | |
2046 ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG); | |
2047 Tk5 = FNMS(KP980785280, Tk2, Tk1); | |
2048 Tk6 = Tdl + TdE; | |
2049 ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5); | |
2050 ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5); | |
2051 } | |
2052 { | |
2053 E TdO, TdV, TjX, TjY; | |
2054 TdO = FMA(KP980785280, TdN, TdK); | |
2055 TdV = TdR + TdU; | |
2056 ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO); | |
2057 ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO); | |
2058 TjX = FMA(KP980785280, TjW, TjV); | |
2059 TjY = TdX + TdY; | |
2060 ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX); | |
2061 ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX); | |
2062 } | |
2063 { | |
2064 E TdW, TdZ, TjZ, Tk0; | |
2065 TdW = FNMS(KP980785280, TdN, TdK); | |
2066 TdZ = TdX - TdY; | |
2067 ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW); | |
2068 ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW); | |
2069 TjZ = FNMS(KP980785280, TjW, TjV); | |
2070 Tk0 = TdU - TdR; | |
2071 ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ); | |
2072 ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ); | |
2073 } | |
2074 { | |
2075 E Tec, Ter, Tkb, Tkc; | |
2076 Tec = FMA(KP831469612, Teb, Te4); | |
2077 Ter = Tej + Teq; | |
2078 ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec); | |
2079 ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); | |
2080 Tkb = FMA(KP831469612, Tka, Tk9); | |
2081 Tkc = Tet + Teu; | |
2082 ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb); | |
2083 ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb); | |
2084 } | |
2085 { | |
2086 E Tes, Tev, Tkd, Tke; | |
2087 Tes = FNMS(KP831469612, Teb, Te4); | |
2088 Tev = Tet - Teu; | |
2089 ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes); | |
2090 ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes); | |
2091 Tkd = FNMS(KP831469612, Tka, Tk9); | |
2092 Tke = Teq - Tej; | |
2093 ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd); | |
2094 ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd); | |
2095 } | |
2096 { | |
2097 E TeA, TeH, Tkh, Tki; | |
2098 TeA = FNMS(KP831469612, Tez, Tew); | |
2099 TeH = TeD - TeG; | |
2100 ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA); | |
2101 ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA); | |
2102 Tkh = FNMS(KP831469612, Tkg, Tkf); | |
2103 Tki = TeK - TeJ; | |
2104 ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh); | |
2105 ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh); | |
2106 } | |
2107 { | |
2108 E TeI, TeL, Tkj, Tkk; | |
2109 TeI = FMA(KP831469612, Tez, Tew); | |
2110 TeL = TeJ + TeK; | |
2111 ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI); | |
2112 ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI); | |
2113 Tkj = FMA(KP831469612, Tkg, Tkf); | |
2114 Tkk = TeD + TeG; | |
2115 ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj); | |
2116 ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj); | |
2117 } | |
2118 } | |
2119 } | |
2120 } | |
2121 } | |
2122 | |
2123 static const tw_instr twinstr[] = { | |
2124 {TW_FULL, 0, 64}, | |
2125 {TW_NEXT, 1, 0} | |
2126 }; | |
2127 | |
2128 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 }; | |
2129 | |
2130 void X(codelet_t1_64) (planner *p) { | |
2131 X(kdft_dit_register) (p, t1_64, &desc); | |
2132 } | |
2133 #else | |
2134 | |
2135 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */ | |
2136 | |
2137 /* | |
2138 * This function contains 1038 FP additions, 500 FP multiplications, | |
2139 * (or, 808 additions, 270 multiplications, 230 fused multiply/add), | |
2140 * 176 stack variables, 15 constants, and 256 memory accesses | |
2141 */ | |
2142 #include "dft/scalar/t.h" | |
2143 | |
2144 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
2145 { | |
2146 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
2147 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
2148 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
2149 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
2150 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
2151 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
2152 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
2153 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
2154 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
2155 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
2156 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
2157 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
2158 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
2159 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
2160 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
2161 { | |
2162 INT m; | |
2163 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
2164 E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; | |
2165 E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; | |
2166 E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; | |
2167 E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; | |
2168 E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; | |
2169 E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; | |
2170 E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; | |
2171 E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; | |
2172 E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; | |
2173 { | |
2174 E T1, TgR, T6, TgQ, Tc, T68, Th, T69; | |
2175 T1 = ri[0]; | |
2176 TgR = ii[0]; | |
2177 { | |
2178 E T3, T5, T2, T4; | |
2179 T3 = ri[WS(rs, 32)]; | |
2180 T5 = ii[WS(rs, 32)]; | |
2181 T2 = W[62]; | |
2182 T4 = W[63]; | |
2183 T6 = FMA(T2, T3, T4 * T5); | |
2184 TgQ = FNMS(T4, T3, T2 * T5); | |
2185 } | |
2186 { | |
2187 E T9, Tb, T8, Ta; | |
2188 T9 = ri[WS(rs, 16)]; | |
2189 Tb = ii[WS(rs, 16)]; | |
2190 T8 = W[30]; | |
2191 Ta = W[31]; | |
2192 Tc = FMA(T8, T9, Ta * Tb); | |
2193 T68 = FNMS(Ta, T9, T8 * Tb); | |
2194 } | |
2195 { | |
2196 E Te, Tg, Td, Tf; | |
2197 Te = ri[WS(rs, 48)]; | |
2198 Tg = ii[WS(rs, 48)]; | |
2199 Td = W[94]; | |
2200 Tf = W[95]; | |
2201 Th = FMA(Td, Te, Tf * Tg); | |
2202 T69 = FNMS(Tf, Te, Td * Tg); | |
2203 } | |
2204 { | |
2205 E T7, Ti, ThR, ThS; | |
2206 T7 = T1 + T6; | |
2207 Ti = Tc + Th; | |
2208 Tj = T7 + Ti; | |
2209 TcL = T7 - Ti; | |
2210 ThR = TgR - TgQ; | |
2211 ThS = Tc - Th; | |
2212 ThT = ThR - ThS; | |
2213 Tin = ThS + ThR; | |
2214 } | |
2215 { | |
2216 E T67, T6a, TgP, TgS; | |
2217 T67 = T1 - T6; | |
2218 T6a = T68 - T69; | |
2219 T6b = T67 - T6a; | |
2220 Taz = T67 + T6a; | |
2221 TgP = T68 + T69; | |
2222 TgS = TgQ + TgR; | |
2223 TgT = TgP + TgS; | |
2224 Thn = TgS - TgP; | |
2225 } | |
2226 } | |
2227 { | |
2228 E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; | |
2229 { | |
2230 E Tl, Tn, Tk, Tm; | |
2231 Tl = ri[WS(rs, 8)]; | |
2232 Tn = ii[WS(rs, 8)]; | |
2233 Tk = W[14]; | |
2234 Tm = W[15]; | |
2235 To = FMA(Tk, Tl, Tm * Tn); | |
2236 T6c = FNMS(Tm, Tl, Tk * Tn); | |
2237 } | |
2238 { | |
2239 E Tq, Ts, Tp, Tr; | |
2240 Tq = ri[WS(rs, 40)]; | |
2241 Ts = ii[WS(rs, 40)]; | |
2242 Tp = W[78]; | |
2243 Tr = W[79]; | |
2244 Tt = FMA(Tp, Tq, Tr * Ts); | |
2245 T6d = FNMS(Tr, Tq, Tp * Ts); | |
2246 } | |
2247 T6e = T6c - T6d; | |
2248 T6f = To - Tt; | |
2249 { | |
2250 E Tw, Ty, Tv, Tx; | |
2251 Tw = ri[WS(rs, 56)]; | |
2252 Ty = ii[WS(rs, 56)]; | |
2253 Tv = W[110]; | |
2254 Tx = W[111]; | |
2255 Tz = FMA(Tv, Tw, Tx * Ty); | |
2256 T6i = FNMS(Tx, Tw, Tv * Ty); | |
2257 } | |
2258 { | |
2259 E TB, TD, TA, TC; | |
2260 TB = ri[WS(rs, 24)]; | |
2261 TD = ii[WS(rs, 24)]; | |
2262 TA = W[46]; | |
2263 TC = W[47]; | |
2264 TE = FMA(TA, TB, TC * TD); | |
2265 T6j = FNMS(TC, TB, TA * TD); | |
2266 } | |
2267 T6h = Tz - TE; | |
2268 T6k = T6i - T6j; | |
2269 { | |
2270 E Tu, TF, TcM, TcN; | |
2271 Tu = To + Tt; | |
2272 TF = Tz + TE; | |
2273 TG = Tu + TF; | |
2274 Thm = TF - Tu; | |
2275 TcM = T6c + T6d; | |
2276 TcN = T6i + T6j; | |
2277 TcO = TcM - TcN; | |
2278 TgO = TcM + TcN; | |
2279 } | |
2280 { | |
2281 E T6g, T6l, TaA, TaB; | |
2282 T6g = T6e - T6f; | |
2283 T6l = T6h + T6k; | |
2284 T6m = KP707106781 * (T6g - T6l); | |
2285 ThQ = KP707106781 * (T6g + T6l); | |
2286 TaA = T6f + T6e; | |
2287 TaB = T6h - T6k; | |
2288 TaC = KP707106781 * (TaA + TaB); | |
2289 Tim = KP707106781 * (TaB - TaA); | |
2290 } | |
2291 } | |
2292 { | |
2293 E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; | |
2294 { | |
2295 E TM, T6o, TR, T6p; | |
2296 { | |
2297 E TJ, TL, TI, TK; | |
2298 TJ = ri[WS(rs, 4)]; | |
2299 TL = ii[WS(rs, 4)]; | |
2300 TI = W[6]; | |
2301 TK = W[7]; | |
2302 TM = FMA(TI, TJ, TK * TL); | |
2303 T6o = FNMS(TK, TJ, TI * TL); | |
2304 } | |
2305 { | |
2306 E TO, TQ, TN, TP; | |
2307 TO = ri[WS(rs, 36)]; | |
2308 TQ = ii[WS(rs, 36)]; | |
2309 TN = W[70]; | |
2310 TP = W[71]; | |
2311 TR = FMA(TN, TO, TP * TQ); | |
2312 T6p = FNMS(TP, TO, TN * TQ); | |
2313 } | |
2314 TS = TM + TR; | |
2315 TcQ = T6o + T6p; | |
2316 T6q = T6o - T6p; | |
2317 T6t = TM - TR; | |
2318 } | |
2319 { | |
2320 E TX, T6u, T12, T6v; | |
2321 { | |
2322 E TU, TW, TT, TV; | |
2323 TU = ri[WS(rs, 20)]; | |
2324 TW = ii[WS(rs, 20)]; | |
2325 TT = W[38]; | |
2326 TV = W[39]; | |
2327 TX = FMA(TT, TU, TV * TW); | |
2328 T6u = FNMS(TV, TU, TT * TW); | |
2329 } | |
2330 { | |
2331 E TZ, T11, TY, T10; | |
2332 TZ = ri[WS(rs, 52)]; | |
2333 T11 = ii[WS(rs, 52)]; | |
2334 TY = W[102]; | |
2335 T10 = W[103]; | |
2336 T12 = FMA(TY, TZ, T10 * T11); | |
2337 T6v = FNMS(T10, TZ, TY * T11); | |
2338 } | |
2339 T13 = TX + T12; | |
2340 TcR = T6u + T6v; | |
2341 T6r = TX - T12; | |
2342 T6w = T6u - T6v; | |
2343 } | |
2344 T14 = TS + T13; | |
2345 Tfq = TcQ + TcR; | |
2346 T6s = T6q + T6r; | |
2347 T6x = T6t - T6w; | |
2348 T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); | |
2349 T9O = FMA(KP923879532, T6s, KP382683432 * T6x); | |
2350 { | |
2351 E TaE, TaF, TcS, TcT; | |
2352 TaE = T6q - T6r; | |
2353 TaF = T6t + T6w; | |
2354 TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); | |
2355 Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); | |
2356 TcS = TcQ - TcR; | |
2357 TcT = TS - T13; | |
2358 TcU = TcS - TcT; | |
2359 TeE = TcT + TcS; | |
2360 } | |
2361 } | |
2362 { | |
2363 E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; | |
2364 { | |
2365 E T19, T6z, T1e, T6A; | |
2366 { | |
2367 E T16, T18, T15, T17; | |
2368 T16 = ri[WS(rs, 60)]; | |
2369 T18 = ii[WS(rs, 60)]; | |
2370 T15 = W[118]; | |
2371 T17 = W[119]; | |
2372 T19 = FMA(T15, T16, T17 * T18); | |
2373 T6z = FNMS(T17, T16, T15 * T18); | |
2374 } | |
2375 { | |
2376 E T1b, T1d, T1a, T1c; | |
2377 T1b = ri[WS(rs, 28)]; | |
2378 T1d = ii[WS(rs, 28)]; | |
2379 T1a = W[54]; | |
2380 T1c = W[55]; | |
2381 T1e = FMA(T1a, T1b, T1c * T1d); | |
2382 T6A = FNMS(T1c, T1b, T1a * T1d); | |
2383 } | |
2384 T1f = T19 + T1e; | |
2385 TcW = T6z + T6A; | |
2386 T6B = T6z - T6A; | |
2387 T6E = T19 - T1e; | |
2388 } | |
2389 { | |
2390 E T1k, T6F, T1p, T6G; | |
2391 { | |
2392 E T1h, T1j, T1g, T1i; | |
2393 T1h = ri[WS(rs, 12)]; | |
2394 T1j = ii[WS(rs, 12)]; | |
2395 T1g = W[22]; | |
2396 T1i = W[23]; | |
2397 T1k = FMA(T1g, T1h, T1i * T1j); | |
2398 T6F = FNMS(T1i, T1h, T1g * T1j); | |
2399 } | |
2400 { | |
2401 E T1m, T1o, T1l, T1n; | |
2402 T1m = ri[WS(rs, 44)]; | |
2403 T1o = ii[WS(rs, 44)]; | |
2404 T1l = W[86]; | |
2405 T1n = W[87]; | |
2406 T1p = FMA(T1l, T1m, T1n * T1o); | |
2407 T6G = FNMS(T1n, T1m, T1l * T1o); | |
2408 } | |
2409 T1q = T1k + T1p; | |
2410 TcX = T6F + T6G; | |
2411 T6C = T1k - T1p; | |
2412 T6H = T6F - T6G; | |
2413 } | |
2414 T1r = T1f + T1q; | |
2415 Tfr = TcW + TcX; | |
2416 T6D = T6B + T6C; | |
2417 T6I = T6E - T6H; | |
2418 T6J = FMA(KP382683432, T6D, KP923879532 * T6I); | |
2419 T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); | |
2420 { | |
2421 E TaH, TaI, TcV, TcY; | |
2422 TaH = T6B - T6C; | |
2423 TaI = T6E + T6H; | |
2424 TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); | |
2425 Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); | |
2426 TcV = T1f - T1q; | |
2427 TcY = TcW - TcX; | |
2428 TcZ = TcV + TcY; | |
2429 TeF = TcV - TcY; | |
2430 } | |
2431 } | |
2432 { | |
2433 E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; | |
2434 E T6Z, T2c, Td9, T6R, T6U; | |
2435 { | |
2436 E T1v, T1x, T1u, T1w; | |
2437 T1v = ri[WS(rs, 2)]; | |
2438 T1x = ii[WS(rs, 2)]; | |
2439 T1u = W[2]; | |
2440 T1w = W[3]; | |
2441 T1y = FMA(T1u, T1v, T1w * T1x); | |
2442 T6M = FNMS(T1w, T1v, T1u * T1x); | |
2443 } | |
2444 { | |
2445 E T1A, T1C, T1z, T1B; | |
2446 T1A = ri[WS(rs, 34)]; | |
2447 T1C = ii[WS(rs, 34)]; | |
2448 T1z = W[66]; | |
2449 T1B = W[67]; | |
2450 T1D = FMA(T1z, T1A, T1B * T1C); | |
2451 T6N = FNMS(T1B, T1A, T1z * T1C); | |
2452 } | |
2453 T1E = T1y + T1D; | |
2454 Td2 = T6M + T6N; | |
2455 { | |
2456 E T1G, T1I, T1F, T1H; | |
2457 T1G = ri[WS(rs, 18)]; | |
2458 T1I = ii[WS(rs, 18)]; | |
2459 T1F = W[34]; | |
2460 T1H = W[35]; | |
2461 T1J = FMA(T1F, T1G, T1H * T1I); | |
2462 T74 = FNMS(T1H, T1G, T1F * T1I); | |
2463 } | |
2464 { | |
2465 E T1L, T1N, T1K, T1M; | |
2466 T1L = ri[WS(rs, 50)]; | |
2467 T1N = ii[WS(rs, 50)]; | |
2468 T1K = W[98]; | |
2469 T1M = W[99]; | |
2470 T1O = FMA(T1K, T1L, T1M * T1N); | |
2471 T75 = FNMS(T1M, T1L, T1K * T1N); | |
2472 } | |
2473 T1P = T1J + T1O; | |
2474 Td3 = T74 + T75; | |
2475 { | |
2476 E T1V, T6X, T20, T6Y; | |
2477 { | |
2478 E T1S, T1U, T1R, T1T; | |
2479 T1S = ri[WS(rs, 10)]; | |
2480 T1U = ii[WS(rs, 10)]; | |
2481 T1R = W[18]; | |
2482 T1T = W[19]; | |
2483 T1V = FMA(T1R, T1S, T1T * T1U); | |
2484 T6X = FNMS(T1T, T1S, T1R * T1U); | |
2485 } | |
2486 { | |
2487 E T1X, T1Z, T1W, T1Y; | |
2488 T1X = ri[WS(rs, 42)]; | |
2489 T1Z = ii[WS(rs, 42)]; | |
2490 T1W = W[82]; | |
2491 T1Y = W[83]; | |
2492 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
2493 T6Y = FNMS(T1Y, T1X, T1W * T1Z); | |
2494 } | |
2495 T21 = T1V + T20; | |
2496 Td8 = T6X + T6Y; | |
2497 T6W = T1V - T20; | |
2498 T6Z = T6X - T6Y; | |
2499 } | |
2500 { | |
2501 E T26, T6S, T2b, T6T; | |
2502 { | |
2503 E T23, T25, T22, T24; | |
2504 T23 = ri[WS(rs, 58)]; | |
2505 T25 = ii[WS(rs, 58)]; | |
2506 T22 = W[114]; | |
2507 T24 = W[115]; | |
2508 T26 = FMA(T22, T23, T24 * T25); | |
2509 T6S = FNMS(T24, T23, T22 * T25); | |
2510 } | |
2511 { | |
2512 E T28, T2a, T27, T29; | |
2513 T28 = ri[WS(rs, 26)]; | |
2514 T2a = ii[WS(rs, 26)]; | |
2515 T27 = W[50]; | |
2516 T29 = W[51]; | |
2517 T2b = FMA(T27, T28, T29 * T2a); | |
2518 T6T = FNMS(T29, T28, T27 * T2a); | |
2519 } | |
2520 T2c = T26 + T2b; | |
2521 Td9 = T6S + T6T; | |
2522 T6R = T26 - T2b; | |
2523 T6U = T6S - T6T; | |
2524 } | |
2525 T1Q = T1E + T1P; | |
2526 T2d = T21 + T2c; | |
2527 Tfx = T1Q - T2d; | |
2528 Tfu = Td2 + Td3; | |
2529 Tfv = Td8 + Td9; | |
2530 Tfw = Tfu - Tfv; | |
2531 { | |
2532 E T6O, T6P, Td7, Tda; | |
2533 T6O = T6M - T6N; | |
2534 T6P = T1J - T1O; | |
2535 T6Q = T6O + T6P; | |
2536 TaM = T6O - T6P; | |
2537 Td7 = T1E - T1P; | |
2538 Tda = Td8 - Td9; | |
2539 Tdb = Td7 - Tda; | |
2540 TeJ = Td7 + Tda; | |
2541 } | |
2542 { | |
2543 E T6V, T70, T78, T79; | |
2544 T6V = T6R - T6U; | |
2545 T70 = T6W + T6Z; | |
2546 T71 = KP707106781 * (T6V - T70); | |
2547 TaQ = KP707106781 * (T70 + T6V); | |
2548 T78 = T6Z - T6W; | |
2549 T79 = T6R + T6U; | |
2550 T7a = KP707106781 * (T78 - T79); | |
2551 TaN = KP707106781 * (T78 + T79); | |
2552 } | |
2553 { | |
2554 E Td4, Td5, T73, T76; | |
2555 Td4 = Td2 - Td3; | |
2556 Td5 = T2c - T21; | |
2557 Td6 = Td4 - Td5; | |
2558 TeI = Td4 + Td5; | |
2559 T73 = T1y - T1D; | |
2560 T76 = T74 - T75; | |
2561 T77 = T73 - T76; | |
2562 TaP = T73 + T76; | |
2563 } | |
2564 } | |
2565 { | |
2566 E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; | |
2567 E T7q, T2X, Tdk, T7i, T7l; | |
2568 { | |
2569 E T2g, T2i, T2f, T2h; | |
2570 T2g = ri[WS(rs, 62)]; | |
2571 T2i = ii[WS(rs, 62)]; | |
2572 T2f = W[122]; | |
2573 T2h = W[123]; | |
2574 T2j = FMA(T2f, T2g, T2h * T2i); | |
2575 T7d = FNMS(T2h, T2g, T2f * T2i); | |
2576 } | |
2577 { | |
2578 E T2l, T2n, T2k, T2m; | |
2579 T2l = ri[WS(rs, 30)]; | |
2580 T2n = ii[WS(rs, 30)]; | |
2581 T2k = W[58]; | |
2582 T2m = W[59]; | |
2583 T2o = FMA(T2k, T2l, T2m * T2n); | |
2584 T7e = FNMS(T2m, T2l, T2k * T2n); | |
2585 } | |
2586 T2p = T2j + T2o; | |
2587 Tdd = T7d + T7e; | |
2588 { | |
2589 E T2r, T2t, T2q, T2s; | |
2590 T2r = ri[WS(rs, 14)]; | |
2591 T2t = ii[WS(rs, 14)]; | |
2592 T2q = W[26]; | |
2593 T2s = W[27]; | |
2594 T2u = FMA(T2q, T2r, T2s * T2t); | |
2595 T7v = FNMS(T2s, T2r, T2q * T2t); | |
2596 } | |
2597 { | |
2598 E T2w, T2y, T2v, T2x; | |
2599 T2w = ri[WS(rs, 46)]; | |
2600 T2y = ii[WS(rs, 46)]; | |
2601 T2v = W[90]; | |
2602 T2x = W[91]; | |
2603 T2z = FMA(T2v, T2w, T2x * T2y); | |
2604 T7w = FNMS(T2x, T2w, T2v * T2y); | |
2605 } | |
2606 T2A = T2u + T2z; | |
2607 Tde = T7v + T7w; | |
2608 { | |
2609 E T2G, T7o, T2L, T7p; | |
2610 { | |
2611 E T2D, T2F, T2C, T2E; | |
2612 T2D = ri[WS(rs, 6)]; | |
2613 T2F = ii[WS(rs, 6)]; | |
2614 T2C = W[10]; | |
2615 T2E = W[11]; | |
2616 T2G = FMA(T2C, T2D, T2E * T2F); | |
2617 T7o = FNMS(T2E, T2D, T2C * T2F); | |
2618 } | |
2619 { | |
2620 E T2I, T2K, T2H, T2J; | |
2621 T2I = ri[WS(rs, 38)]; | |
2622 T2K = ii[WS(rs, 38)]; | |
2623 T2H = W[74]; | |
2624 T2J = W[75]; | |
2625 T2L = FMA(T2H, T2I, T2J * T2K); | |
2626 T7p = FNMS(T2J, T2I, T2H * T2K); | |
2627 } | |
2628 T2M = T2G + T2L; | |
2629 Tdj = T7o + T7p; | |
2630 T7n = T2G - T2L; | |
2631 T7q = T7o - T7p; | |
2632 } | |
2633 { | |
2634 E T2R, T7j, T2W, T7k; | |
2635 { | |
2636 E T2O, T2Q, T2N, T2P; | |
2637 T2O = ri[WS(rs, 54)]; | |
2638 T2Q = ii[WS(rs, 54)]; | |
2639 T2N = W[106]; | |
2640 T2P = W[107]; | |
2641 T2R = FMA(T2N, T2O, T2P * T2Q); | |
2642 T7j = FNMS(T2P, T2O, T2N * T2Q); | |
2643 } | |
2644 { | |
2645 E T2T, T2V, T2S, T2U; | |
2646 T2T = ri[WS(rs, 22)]; | |
2647 T2V = ii[WS(rs, 22)]; | |
2648 T2S = W[42]; | |
2649 T2U = W[43]; | |
2650 T2W = FMA(T2S, T2T, T2U * T2V); | |
2651 T7k = FNMS(T2U, T2T, T2S * T2V); | |
2652 } | |
2653 T2X = T2R + T2W; | |
2654 Tdk = T7j + T7k; | |
2655 T7i = T2R - T2W; | |
2656 T7l = T7j - T7k; | |
2657 } | |
2658 T2B = T2p + T2A; | |
2659 T2Y = T2M + T2X; | |
2660 Tfz = T2B - T2Y; | |
2661 TfA = Tdd + Tde; | |
2662 TfB = Tdj + Tdk; | |
2663 TfC = TfA - TfB; | |
2664 { | |
2665 E T7f, T7g, Tdi, Tdl; | |
2666 T7f = T7d - T7e; | |
2667 T7g = T2u - T2z; | |
2668 T7h = T7f + T7g; | |
2669 TaW = T7f - T7g; | |
2670 Tdi = T2p - T2A; | |
2671 Tdl = Tdj - Tdk; | |
2672 Tdm = Tdi - Tdl; | |
2673 TeM = Tdi + Tdl; | |
2674 } | |
2675 { | |
2676 E T7m, T7r, T7z, T7A; | |
2677 T7m = T7i - T7l; | |
2678 T7r = T7n + T7q; | |
2679 T7s = KP707106781 * (T7m - T7r); | |
2680 TaU = KP707106781 * (T7r + T7m); | |
2681 T7z = T7q - T7n; | |
2682 T7A = T7i + T7l; | |
2683 T7B = KP707106781 * (T7z - T7A); | |
2684 TaX = KP707106781 * (T7z + T7A); | |
2685 } | |
2686 { | |
2687 E Tdf, Tdg, T7u, T7x; | |
2688 Tdf = Tdd - Tde; | |
2689 Tdg = T2X - T2M; | |
2690 Tdh = Tdf - Tdg; | |
2691 TeL = Tdf + Tdg; | |
2692 T7u = T2j - T2o; | |
2693 T7x = T7v - T7w; | |
2694 T7y = T7u - T7x; | |
2695 TaT = T7u + T7x; | |
2696 } | |
2697 } | |
2698 { | |
2699 E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; | |
2700 E T8H, T5h, TdT, T8J, T8M; | |
2701 { | |
2702 E T4A, T4C, T4z, T4B; | |
2703 T4A = ri[WS(rs, 63)]; | |
2704 T4C = ii[WS(rs, 63)]; | |
2705 T4z = W[124]; | |
2706 T4B = W[125]; | |
2707 T4D = FMA(T4z, T4A, T4B * T4C); | |
2708 T9e = FNMS(T4B, T4A, T4z * T4C); | |
2709 } | |
2710 { | |
2711 E T4F, T4H, T4E, T4G; | |
2712 T4F = ri[WS(rs, 31)]; | |
2713 T4H = ii[WS(rs, 31)]; | |
2714 T4E = W[60]; | |
2715 T4G = W[61]; | |
2716 T4I = FMA(T4E, T4F, T4G * T4H); | |
2717 T9f = FNMS(T4G, T4F, T4E * T4H); | |
2718 } | |
2719 T4J = T4D + T4I; | |
2720 Te8 = T9e + T9f; | |
2721 { | |
2722 E T4L, T4N, T4K, T4M; | |
2723 T4L = ri[WS(rs, 15)]; | |
2724 T4N = ii[WS(rs, 15)]; | |
2725 T4K = W[28]; | |
2726 T4M = W[29]; | |
2727 T4O = FMA(T4K, T4L, T4M * T4N); | |
2728 T8A = FNMS(T4M, T4L, T4K * T4N); | |
2729 } | |
2730 { | |
2731 E T4Q, T4S, T4P, T4R; | |
2732 T4Q = ri[WS(rs, 47)]; | |
2733 T4S = ii[WS(rs, 47)]; | |
2734 T4P = W[92]; | |
2735 T4R = W[93]; | |
2736 T4T = FMA(T4P, T4Q, T4R * T4S); | |
2737 T8B = FNMS(T4R, T4Q, T4P * T4S); | |
2738 } | |
2739 T4U = T4O + T4T; | |
2740 Te9 = T8A + T8B; | |
2741 { | |
2742 E T50, T8E, T55, T8F; | |
2743 { | |
2744 E T4X, T4Z, T4W, T4Y; | |
2745 T4X = ri[WS(rs, 7)]; | |
2746 T4Z = ii[WS(rs, 7)]; | |
2747 T4W = W[12]; | |
2748 T4Y = W[13]; | |
2749 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
2750 T8E = FNMS(T4Y, T4X, T4W * T4Z); | |
2751 } | |
2752 { | |
2753 E T52, T54, T51, T53; | |
2754 T52 = ri[WS(rs, 39)]; | |
2755 T54 = ii[WS(rs, 39)]; | |
2756 T51 = W[76]; | |
2757 T53 = W[77]; | |
2758 T55 = FMA(T51, T52, T53 * T54); | |
2759 T8F = FNMS(T53, T52, T51 * T54); | |
2760 } | |
2761 T56 = T50 + T55; | |
2762 TdS = T8E + T8F; | |
2763 T8G = T8E - T8F; | |
2764 T8H = T50 - T55; | |
2765 } | |
2766 { | |
2767 E T5b, T8K, T5g, T8L; | |
2768 { | |
2769 E T58, T5a, T57, T59; | |
2770 T58 = ri[WS(rs, 55)]; | |
2771 T5a = ii[WS(rs, 55)]; | |
2772 T57 = W[108]; | |
2773 T59 = W[109]; | |
2774 T5b = FMA(T57, T58, T59 * T5a); | |
2775 T8K = FNMS(T59, T58, T57 * T5a); | |
2776 } | |
2777 { | |
2778 E T5d, T5f, T5c, T5e; | |
2779 T5d = ri[WS(rs, 23)]; | |
2780 T5f = ii[WS(rs, 23)]; | |
2781 T5c = W[44]; | |
2782 T5e = W[45]; | |
2783 T5g = FMA(T5c, T5d, T5e * T5f); | |
2784 T8L = FNMS(T5e, T5d, T5c * T5f); | |
2785 } | |
2786 T5h = T5b + T5g; | |
2787 TdT = T8K + T8L; | |
2788 T8J = T5b - T5g; | |
2789 T8M = T8K - T8L; | |
2790 } | |
2791 { | |
2792 E T4V, T5i, Tea, Teb; | |
2793 T4V = T4J + T4U; | |
2794 T5i = T56 + T5h; | |
2795 T5j = T4V + T5i; | |
2796 TfR = T4V - T5i; | |
2797 Tea = Te8 - Te9; | |
2798 Teb = T5h - T56; | |
2799 Tec = Tea - Teb; | |
2800 Tf0 = Tea + Teb; | |
2801 } | |
2802 { | |
2803 E TfW, TfX, T8z, T8C; | |
2804 TfW = Te8 + Te9; | |
2805 TfX = TdS + TdT; | |
2806 TfY = TfW - TfX; | |
2807 Tgy = TfW + TfX; | |
2808 T8z = T4D - T4I; | |
2809 T8C = T8A - T8B; | |
2810 T8D = T8z - T8C; | |
2811 Tbl = T8z + T8C; | |
2812 } | |
2813 { | |
2814 E T8I, T8N, T9j, T9k; | |
2815 T8I = T8G - T8H; | |
2816 T8N = T8J + T8M; | |
2817 T8O = KP707106781 * (T8I - T8N); | |
2818 Tbx = KP707106781 * (T8I + T8N); | |
2819 T9j = T8J - T8M; | |
2820 T9k = T8H + T8G; | |
2821 T9l = KP707106781 * (T9j - T9k); | |
2822 Tbm = KP707106781 * (T9k + T9j); | |
2823 } | |
2824 { | |
2825 E TdR, TdU, T9g, T9h; | |
2826 TdR = T4J - T4U; | |
2827 TdU = TdS - TdT; | |
2828 TdV = TdR - TdU; | |
2829 TeX = TdR + TdU; | |
2830 T9g = T9e - T9f; | |
2831 T9h = T4O - T4T; | |
2832 T9i = T9g + T9h; | |
2833 Tbw = T9g - T9h; | |
2834 } | |
2835 } | |
2836 { | |
2837 E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; | |
2838 E T7T, T3K, TdJ, T7L, T7O; | |
2839 { | |
2840 E T33, T35, T32, T34; | |
2841 T33 = ri[WS(rs, 1)]; | |
2842 T35 = ii[WS(rs, 1)]; | |
2843 T32 = W[0]; | |
2844 T34 = W[1]; | |
2845 T36 = FMA(T32, T33, T34 * T35); | |
2846 T7G = FNMS(T34, T33, T32 * T35); | |
2847 } | |
2848 { | |
2849 E T38, T3a, T37, T39; | |
2850 T38 = ri[WS(rs, 33)]; | |
2851 T3a = ii[WS(rs, 33)]; | |
2852 T37 = W[64]; | |
2853 T39 = W[65]; | |
2854 T3b = FMA(T37, T38, T39 * T3a); | |
2855 T7H = FNMS(T39, T38, T37 * T3a); | |
2856 } | |
2857 T3c = T36 + T3b; | |
2858 Tdq = T7G + T7H; | |
2859 { | |
2860 E T3e, T3g, T3d, T3f; | |
2861 T3e = ri[WS(rs, 17)]; | |
2862 T3g = ii[WS(rs, 17)]; | |
2863 T3d = W[32]; | |
2864 T3f = W[33]; | |
2865 T3h = FMA(T3d, T3e, T3f * T3g); | |
2866 T8m = FNMS(T3f, T3e, T3d * T3g); | |
2867 } | |
2868 { | |
2869 E T3j, T3l, T3i, T3k; | |
2870 T3j = ri[WS(rs, 49)]; | |
2871 T3l = ii[WS(rs, 49)]; | |
2872 T3i = W[96]; | |
2873 T3k = W[97]; | |
2874 T3m = FMA(T3i, T3j, T3k * T3l); | |
2875 T8n = FNMS(T3k, T3j, T3i * T3l); | |
2876 } | |
2877 T3n = T3h + T3m; | |
2878 Tdr = T8m + T8n; | |
2879 { | |
2880 E T3t, T7R, T3y, T7S; | |
2881 { | |
2882 E T3q, T3s, T3p, T3r; | |
2883 T3q = ri[WS(rs, 9)]; | |
2884 T3s = ii[WS(rs, 9)]; | |
2885 T3p = W[16]; | |
2886 T3r = W[17]; | |
2887 T3t = FMA(T3p, T3q, T3r * T3s); | |
2888 T7R = FNMS(T3r, T3q, T3p * T3s); | |
2889 } | |
2890 { | |
2891 E T3v, T3x, T3u, T3w; | |
2892 T3v = ri[WS(rs, 41)]; | |
2893 T3x = ii[WS(rs, 41)]; | |
2894 T3u = W[80]; | |
2895 T3w = W[81]; | |
2896 T3y = FMA(T3u, T3v, T3w * T3x); | |
2897 T7S = FNMS(T3w, T3v, T3u * T3x); | |
2898 } | |
2899 T3z = T3t + T3y; | |
2900 TdI = T7R + T7S; | |
2901 T7Q = T3t - T3y; | |
2902 T7T = T7R - T7S; | |
2903 } | |
2904 { | |
2905 E T3E, T7M, T3J, T7N; | |
2906 { | |
2907 E T3B, T3D, T3A, T3C; | |
2908 T3B = ri[WS(rs, 57)]; | |
2909 T3D = ii[WS(rs, 57)]; | |
2910 T3A = W[112]; | |
2911 T3C = W[113]; | |
2912 T3E = FMA(T3A, T3B, T3C * T3D); | |
2913 T7M = FNMS(T3C, T3B, T3A * T3D); | |
2914 } | |
2915 { | |
2916 E T3G, T3I, T3F, T3H; | |
2917 T3G = ri[WS(rs, 25)]; | |
2918 T3I = ii[WS(rs, 25)]; | |
2919 T3F = W[48]; | |
2920 T3H = W[49]; | |
2921 T3J = FMA(T3F, T3G, T3H * T3I); | |
2922 T7N = FNMS(T3H, T3G, T3F * T3I); | |
2923 } | |
2924 T3K = T3E + T3J; | |
2925 TdJ = T7M + T7N; | |
2926 T7L = T3E - T3J; | |
2927 T7O = T7M - T7N; | |
2928 } | |
2929 { | |
2930 E T3o, T3L, TdH, TdK; | |
2931 T3o = T3c + T3n; | |
2932 T3L = T3z + T3K; | |
2933 T3M = T3o + T3L; | |
2934 TfL = T3o - T3L; | |
2935 TdH = T3c - T3n; | |
2936 TdK = TdI - TdJ; | |
2937 TdL = TdH - TdK; | |
2938 TeQ = TdH + TdK; | |
2939 } | |
2940 { | |
2941 E TfG, TfH, T7I, T7J; | |
2942 TfG = Tdq + Tdr; | |
2943 TfH = TdI + TdJ; | |
2944 TfI = TfG - TfH; | |
2945 Tgt = TfG + TfH; | |
2946 T7I = T7G - T7H; | |
2947 T7J = T3h - T3m; | |
2948 T7K = T7I + T7J; | |
2949 Tb2 = T7I - T7J; | |
2950 } | |
2951 { | |
2952 E T7P, T7U, T8q, T8r; | |
2953 T7P = T7L - T7O; | |
2954 T7U = T7Q + T7T; | |
2955 T7V = KP707106781 * (T7P - T7U); | |
2956 Tbe = KP707106781 * (T7U + T7P); | |
2957 T8q = T7T - T7Q; | |
2958 T8r = T7L + T7O; | |
2959 T8s = KP707106781 * (T8q - T8r); | |
2960 Tb3 = KP707106781 * (T8q + T8r); | |
2961 } | |
2962 { | |
2963 E Tds, Tdt, T8l, T8o; | |
2964 Tds = Tdq - Tdr; | |
2965 Tdt = T3K - T3z; | |
2966 Tdu = Tds - Tdt; | |
2967 TeT = Tds + Tdt; | |
2968 T8l = T36 - T3b; | |
2969 T8o = T8m - T8n; | |
2970 T8p = T8l - T8o; | |
2971 Tbd = T8l + T8o; | |
2972 } | |
2973 } | |
2974 { | |
2975 E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; | |
2976 E T84; | |
2977 { | |
2978 E T3R, T88, T3W, T89; | |
2979 { | |
2980 E T3O, T3Q, T3N, T3P; | |
2981 T3O = ri[WS(rs, 5)]; | |
2982 T3Q = ii[WS(rs, 5)]; | |
2983 T3N = W[8]; | |
2984 T3P = W[9]; | |
2985 T3R = FMA(T3N, T3O, T3P * T3Q); | |
2986 T88 = FNMS(T3P, T3O, T3N * T3Q); | |
2987 } | |
2988 { | |
2989 E T3T, T3V, T3S, T3U; | |
2990 T3T = ri[WS(rs, 37)]; | |
2991 T3V = ii[WS(rs, 37)]; | |
2992 T3S = W[72]; | |
2993 T3U = W[73]; | |
2994 T3W = FMA(T3S, T3T, T3U * T3V); | |
2995 T89 = FNMS(T3U, T3T, T3S * T3V); | |
2996 } | |
2997 T3X = T3R + T3W; | |
2998 TdB = T88 + T89; | |
2999 T8a = T88 - T89; | |
3000 T8d = T3R - T3W; | |
3001 } | |
3002 { | |
3003 E T4p, T7Y, T4u, T7Z; | |
3004 { | |
3005 E T4m, T4o, T4l, T4n; | |
3006 T4m = ri[WS(rs, 13)]; | |
3007 T4o = ii[WS(rs, 13)]; | |
3008 T4l = W[24]; | |
3009 T4n = W[25]; | |
3010 T4p = FMA(T4l, T4m, T4n * T4o); | |
3011 T7Y = FNMS(T4n, T4m, T4l * T4o); | |
3012 } | |
3013 { | |
3014 E T4r, T4t, T4q, T4s; | |
3015 T4r = ri[WS(rs, 45)]; | |
3016 T4t = ii[WS(rs, 45)]; | |
3017 T4q = W[88]; | |
3018 T4s = W[89]; | |
3019 T4u = FMA(T4q, T4r, T4s * T4t); | |
3020 T7Z = FNMS(T4s, T4r, T4q * T4t); | |
3021 } | |
3022 T4v = T4p + T4u; | |
3023 Tdx = T7Y + T7Z; | |
3024 T80 = T7Y - T7Z; | |
3025 T85 = T4p - T4u; | |
3026 } | |
3027 { | |
3028 E T42, T8e, T47, T8f; | |
3029 { | |
3030 E T3Z, T41, T3Y, T40; | |
3031 T3Z = ri[WS(rs, 21)]; | |
3032 T41 = ii[WS(rs, 21)]; | |
3033 T3Y = W[40]; | |
3034 T40 = W[41]; | |
3035 T42 = FMA(T3Y, T3Z, T40 * T41); | |
3036 T8e = FNMS(T40, T3Z, T3Y * T41); | |
3037 } | |
3038 { | |
3039 E T44, T46, T43, T45; | |
3040 T44 = ri[WS(rs, 53)]; | |
3041 T46 = ii[WS(rs, 53)]; | |
3042 T43 = W[104]; | |
3043 T45 = W[105]; | |
3044 T47 = FMA(T43, T44, T45 * T46); | |
3045 T8f = FNMS(T45, T44, T43 * T46); | |
3046 } | |
3047 T48 = T42 + T47; | |
3048 TdC = T8e + T8f; | |
3049 T8b = T42 - T47; | |
3050 T8g = T8e - T8f; | |
3051 } | |
3052 { | |
3053 E T4e, T82, T4j, T83; | |
3054 { | |
3055 E T4b, T4d, T4a, T4c; | |
3056 T4b = ri[WS(rs, 61)]; | |
3057 T4d = ii[WS(rs, 61)]; | |
3058 T4a = W[120]; | |
3059 T4c = W[121]; | |
3060 T4e = FMA(T4a, T4b, T4c * T4d); | |
3061 T82 = FNMS(T4c, T4b, T4a * T4d); | |
3062 } | |
3063 { | |
3064 E T4g, T4i, T4f, T4h; | |
3065 T4g = ri[WS(rs, 29)]; | |
3066 T4i = ii[WS(rs, 29)]; | |
3067 T4f = W[56]; | |
3068 T4h = W[57]; | |
3069 T4j = FMA(T4f, T4g, T4h * T4i); | |
3070 T83 = FNMS(T4h, T4g, T4f * T4i); | |
3071 } | |
3072 T4k = T4e + T4j; | |
3073 Tdw = T82 + T83; | |
3074 T7X = T4e - T4j; | |
3075 T84 = T82 - T83; | |
3076 } | |
3077 { | |
3078 E T49, T4w, TdA, TdD; | |
3079 T49 = T3X + T48; | |
3080 T4w = T4k + T4v; | |
3081 T4x = T49 + T4w; | |
3082 TfJ = T4w - T49; | |
3083 TdA = T3X - T48; | |
3084 TdD = TdB - TdC; | |
3085 TdE = TdA + TdD; | |
3086 TdM = TdD - TdA; | |
3087 } | |
3088 { | |
3089 E TfM, TfN, T81, T86; | |
3090 TfM = TdB + TdC; | |
3091 TfN = Tdw + Tdx; | |
3092 TfO = TfM - TfN; | |
3093 Tgu = TfM + TfN; | |
3094 T81 = T7X - T80; | |
3095 T86 = T84 + T85; | |
3096 T87 = FNMS(KP923879532, T86, KP382683432 * T81); | |
3097 T8v = FMA(KP382683432, T86, KP923879532 * T81); | |
3098 } | |
3099 { | |
3100 E T8c, T8h, Tb8, Tb9; | |
3101 T8c = T8a + T8b; | |
3102 T8h = T8d - T8g; | |
3103 T8i = FMA(KP923879532, T8c, KP382683432 * T8h); | |
3104 T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); | |
3105 Tb8 = T8a - T8b; | |
3106 Tb9 = T8d + T8g; | |
3107 Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); | |
3108 Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); | |
3109 } | |
3110 { | |
3111 E Tdv, Tdy, Tb5, Tb6; | |
3112 Tdv = T4k - T4v; | |
3113 Tdy = Tdw - Tdx; | |
3114 Tdz = Tdv - Tdy; | |
3115 TdN = Tdv + Tdy; | |
3116 Tb5 = T7X + T80; | |
3117 Tb6 = T84 - T85; | |
3118 Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); | |
3119 Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); | |
3120 } | |
3121 } | |
3122 { | |
3123 E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; | |
3124 E T96; | |
3125 { | |
3126 E T5o, T8Q, T5t, T8R; | |
3127 { | |
3128 E T5l, T5n, T5k, T5m; | |
3129 T5l = ri[WS(rs, 3)]; | |
3130 T5n = ii[WS(rs, 3)]; | |
3131 T5k = W[4]; | |
3132 T5m = W[5]; | |
3133 T5o = FMA(T5k, T5l, T5m * T5n); | |
3134 T8Q = FNMS(T5m, T5l, T5k * T5n); | |
3135 } | |
3136 { | |
3137 E T5q, T5s, T5p, T5r; | |
3138 T5q = ri[WS(rs, 35)]; | |
3139 T5s = ii[WS(rs, 35)]; | |
3140 T5p = W[68]; | |
3141 T5r = W[69]; | |
3142 T5t = FMA(T5p, T5q, T5r * T5s); | |
3143 T8R = FNMS(T5r, T5q, T5p * T5s); | |
3144 } | |
3145 T5u = T5o + T5t; | |
3146 TdW = T8Q + T8R; | |
3147 T8S = T8Q - T8R; | |
3148 T8V = T5o - T5t; | |
3149 } | |
3150 { | |
3151 E T5W, T97, T61, T98; | |
3152 { | |
3153 E T5T, T5V, T5S, T5U; | |
3154 T5T = ri[WS(rs, 11)]; | |
3155 T5V = ii[WS(rs, 11)]; | |
3156 T5S = W[20]; | |
3157 T5U = W[21]; | |
3158 T5W = FMA(T5S, T5T, T5U * T5V); | |
3159 T97 = FNMS(T5U, T5T, T5S * T5V); | |
3160 } | |
3161 { | |
3162 E T5Y, T60, T5X, T5Z; | |
3163 T5Y = ri[WS(rs, 43)]; | |
3164 T60 = ii[WS(rs, 43)]; | |
3165 T5X = W[84]; | |
3166 T5Z = W[85]; | |
3167 T61 = FMA(T5X, T5Y, T5Z * T60); | |
3168 T98 = FNMS(T5Z, T5Y, T5X * T60); | |
3169 } | |
3170 T62 = T5W + T61; | |
3171 Te3 = T97 + T98; | |
3172 T94 = T5W - T61; | |
3173 T99 = T97 - T98; | |
3174 } | |
3175 { | |
3176 E T5z, T8W, T5E, T8X; | |
3177 { | |
3178 E T5w, T5y, T5v, T5x; | |
3179 T5w = ri[WS(rs, 19)]; | |
3180 T5y = ii[WS(rs, 19)]; | |
3181 T5v = W[36]; | |
3182 T5x = W[37]; | |
3183 T5z = FMA(T5v, T5w, T5x * T5y); | |
3184 T8W = FNMS(T5x, T5w, T5v * T5y); | |
3185 } | |
3186 { | |
3187 E T5B, T5D, T5A, T5C; | |
3188 T5B = ri[WS(rs, 51)]; | |
3189 T5D = ii[WS(rs, 51)]; | |
3190 T5A = W[100]; | |
3191 T5C = W[101]; | |
3192 T5E = FMA(T5A, T5B, T5C * T5D); | |
3193 T8X = FNMS(T5C, T5B, T5A * T5D); | |
3194 } | |
3195 T5F = T5z + T5E; | |
3196 TdX = T8W + T8X; | |
3197 T8T = T5z - T5E; | |
3198 T8Y = T8W - T8X; | |
3199 } | |
3200 { | |
3201 E T5L, T91, T5Q, T92; | |
3202 { | |
3203 E T5I, T5K, T5H, T5J; | |
3204 T5I = ri[WS(rs, 59)]; | |
3205 T5K = ii[WS(rs, 59)]; | |
3206 T5H = W[116]; | |
3207 T5J = W[117]; | |
3208 T5L = FMA(T5H, T5I, T5J * T5K); | |
3209 T91 = FNMS(T5J, T5I, T5H * T5K); | |
3210 } | |
3211 { | |
3212 E T5N, T5P, T5M, T5O; | |
3213 T5N = ri[WS(rs, 27)]; | |
3214 T5P = ii[WS(rs, 27)]; | |
3215 T5M = W[52]; | |
3216 T5O = W[53]; | |
3217 T5Q = FMA(T5M, T5N, T5O * T5P); | |
3218 T92 = FNMS(T5O, T5N, T5M * T5P); | |
3219 } | |
3220 T5R = T5L + T5Q; | |
3221 Te2 = T91 + T92; | |
3222 T93 = T91 - T92; | |
3223 T96 = T5L - T5Q; | |
3224 } | |
3225 { | |
3226 E T5G, T63, Te1, Te4; | |
3227 T5G = T5u + T5F; | |
3228 T63 = T5R + T62; | |
3229 T64 = T5G + T63; | |
3230 TfZ = T63 - T5G; | |
3231 Te1 = T5R - T62; | |
3232 Te4 = Te2 - Te3; | |
3233 Te5 = Te1 + Te4; | |
3234 Ted = Te1 - Te4; | |
3235 } | |
3236 { | |
3237 E TfS, TfT, T8U, T8Z; | |
3238 TfS = TdW + TdX; | |
3239 TfT = Te2 + Te3; | |
3240 TfU = TfS - TfT; | |
3241 Tgz = TfS + TfT; | |
3242 T8U = T8S + T8T; | |
3243 T8Z = T8V - T8Y; | |
3244 T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); | |
3245 T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); | |
3246 } | |
3247 { | |
3248 E T95, T9a, Tbr, Tbs; | |
3249 T95 = T93 + T94; | |
3250 T9a = T96 - T99; | |
3251 T9b = FMA(KP382683432, T95, KP923879532 * T9a); | |
3252 T9n = FNMS(KP923879532, T95, KP382683432 * T9a); | |
3253 Tbr = T93 - T94; | |
3254 Tbs = T96 + T99; | |
3255 Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); | |
3256 Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); | |
3257 } | |
3258 { | |
3259 E TdY, TdZ, Tbo, Tbp; | |
3260 TdY = TdW - TdX; | |
3261 TdZ = T5u - T5F; | |
3262 Te0 = TdY - TdZ; | |
3263 Tee = TdZ + TdY; | |
3264 Tbo = T8S - T8T; | |
3265 Tbp = T8V + T8Y; | |
3266 Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); | |
3267 TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); | |
3268 } | |
3269 } | |
3270 { | |
3271 E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; | |
3272 E TgM; | |
3273 { | |
3274 E TH, T1s, TgI, TgJ; | |
3275 TH = Tj + TG; | |
3276 T1s = T14 + T1r; | |
3277 T1t = TH + T1s; | |
3278 Tgn = TH - T1s; | |
3279 TgI = Tgt + Tgu; | |
3280 TgJ = Tgy + Tgz; | |
3281 TgK = TgI - TgJ; | |
3282 TgL = TgI + TgJ; | |
3283 } | |
3284 { | |
3285 E TgN, TgU, T2e, T2Z; | |
3286 TgN = Tfq + Tfr; | |
3287 TgU = TgO + TgT; | |
3288 TgV = TgN + TgU; | |
3289 Th1 = TgU - TgN; | |
3290 T2e = T1Q + T2d; | |
3291 T2Z = T2B + T2Y; | |
3292 T30 = T2e + T2Z; | |
3293 Th0 = T2Z - T2e; | |
3294 } | |
3295 { | |
3296 E T4y, T65, Tgs, Tgv; | |
3297 T4y = T3M + T4x; | |
3298 T65 = T5j + T64; | |
3299 T66 = T4y + T65; | |
3300 TgX = T65 - T4y; | |
3301 Tgs = T3M - T4x; | |
3302 Tgv = Tgt - Tgu; | |
3303 Tgw = Tgs + Tgv; | |
3304 TgE = Tgv - Tgs; | |
3305 } | |
3306 { | |
3307 E Tgx, TgA, Tgo, Tgp; | |
3308 Tgx = T5j - T64; | |
3309 TgA = Tgy - Tgz; | |
3310 TgB = Tgx - TgA; | |
3311 TgF = Tgx + TgA; | |
3312 Tgo = Tfu + Tfv; | |
3313 Tgp = TfA + TfB; | |
3314 Tgq = Tgo - Tgp; | |
3315 TgM = Tgo + Tgp; | |
3316 } | |
3317 { | |
3318 E T31, TgW, TgH, TgY; | |
3319 T31 = T1t + T30; | |
3320 ri[WS(rs, 32)] = T31 - T66; | |
3321 ri[0] = T31 + T66; | |
3322 TgW = TgM + TgV; | |
3323 ii[0] = TgL + TgW; | |
3324 ii[WS(rs, 32)] = TgW - TgL; | |
3325 TgH = T1t - T30; | |
3326 ri[WS(rs, 48)] = TgH - TgK; | |
3327 ri[WS(rs, 16)] = TgH + TgK; | |
3328 TgY = TgV - TgM; | |
3329 ii[WS(rs, 16)] = TgX + TgY; | |
3330 ii[WS(rs, 48)] = TgY - TgX; | |
3331 } | |
3332 { | |
3333 E Tgr, TgC, TgZ, Th2; | |
3334 Tgr = Tgn + Tgq; | |
3335 TgC = KP707106781 * (Tgw + TgB); | |
3336 ri[WS(rs, 40)] = Tgr - TgC; | |
3337 ri[WS(rs, 8)] = Tgr + TgC; | |
3338 TgZ = KP707106781 * (TgE + TgF); | |
3339 Th2 = Th0 + Th1; | |
3340 ii[WS(rs, 8)] = TgZ + Th2; | |
3341 ii[WS(rs, 40)] = Th2 - TgZ; | |
3342 } | |
3343 { | |
3344 E TgD, TgG, Th3, Th4; | |
3345 TgD = Tgn - Tgq; | |
3346 TgG = KP707106781 * (TgE - TgF); | |
3347 ri[WS(rs, 56)] = TgD - TgG; | |
3348 ri[WS(rs, 24)] = TgD + TgG; | |
3349 Th3 = KP707106781 * (TgB - Tgw); | |
3350 Th4 = Th1 - Th0; | |
3351 ii[WS(rs, 24)] = Th3 + Th4; | |
3352 ii[WS(rs, 56)] = Th4 - Th3; | |
3353 } | |
3354 } | |
3355 { | |
3356 E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; | |
3357 E Tg5; | |
3358 { | |
3359 E Tfp, Tfs, Tgf, Tgg; | |
3360 Tfp = Tj - TG; | |
3361 Tfs = Tfq - Tfr; | |
3362 Tft = Tfp - Tfs; | |
3363 Tg7 = Tfp + Tfs; | |
3364 Tgf = TfR + TfU; | |
3365 Tgg = TfY + TfZ; | |
3366 Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); | |
3367 Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); | |
3368 } | |
3369 { | |
3370 E Th7, Th8, Tfy, TfD; | |
3371 Th7 = T1r - T14; | |
3372 Th8 = TgT - TgO; | |
3373 Th9 = Th7 + Th8; | |
3374 Thf = Th8 - Th7; | |
3375 Tfy = Tfw - Tfx; | |
3376 TfD = Tfz + TfC; | |
3377 TfE = KP707106781 * (Tfy - TfD); | |
3378 Th6 = KP707106781 * (Tfy + TfD); | |
3379 } | |
3380 { | |
3381 E TfK, TfP, Tg8, Tg9; | |
3382 TfK = TfI - TfJ; | |
3383 TfP = TfL - TfO; | |
3384 TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); | |
3385 Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); | |
3386 Tg8 = Tfx + Tfw; | |
3387 Tg9 = Tfz - TfC; | |
3388 Tga = KP707106781 * (Tg8 + Tg9); | |
3389 The = KP707106781 * (Tg9 - Tg8); | |
3390 } | |
3391 { | |
3392 E Tgc, Tgd, TfV, Tg0; | |
3393 Tgc = TfI + TfJ; | |
3394 Tgd = TfL + TfO; | |
3395 Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); | |
3396 Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); | |
3397 TfV = TfR - TfU; | |
3398 Tg0 = TfY - TfZ; | |
3399 Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); | |
3400 Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); | |
3401 } | |
3402 { | |
3403 E TfF, Tg2, Thd, Thg; | |
3404 TfF = Tft + TfE; | |
3405 Tg2 = TfQ + Tg1; | |
3406 ri[WS(rs, 44)] = TfF - Tg2; | |
3407 ri[WS(rs, 12)] = TfF + Tg2; | |
3408 Thd = Tg4 + Tg5; | |
3409 Thg = The + Thf; | |
3410 ii[WS(rs, 12)] = Thd + Thg; | |
3411 ii[WS(rs, 44)] = Thg - Thd; | |
3412 } | |
3413 { | |
3414 E Tg3, Tg6, Thh, Thi; | |
3415 Tg3 = Tft - TfE; | |
3416 Tg6 = Tg4 - Tg5; | |
3417 ri[WS(rs, 60)] = Tg3 - Tg6; | |
3418 ri[WS(rs, 28)] = Tg3 + Tg6; | |
3419 Thh = Tg1 - TfQ; | |
3420 Thi = Thf - The; | |
3421 ii[WS(rs, 28)] = Thh + Thi; | |
3422 ii[WS(rs, 60)] = Thi - Thh; | |
3423 } | |
3424 { | |
3425 E Tgb, Tgi, Th5, Tha; | |
3426 Tgb = Tg7 + Tga; | |
3427 Tgi = Tge + Tgh; | |
3428 ri[WS(rs, 36)] = Tgb - Tgi; | |
3429 ri[WS(rs, 4)] = Tgb + Tgi; | |
3430 Th5 = Tgk + Tgl; | |
3431 Tha = Th6 + Th9; | |
3432 ii[WS(rs, 4)] = Th5 + Tha; | |
3433 ii[WS(rs, 36)] = Tha - Th5; | |
3434 } | |
3435 { | |
3436 E Tgj, Tgm, Thb, Thc; | |
3437 Tgj = Tg7 - Tga; | |
3438 Tgm = Tgk - Tgl; | |
3439 ri[WS(rs, 52)] = Tgj - Tgm; | |
3440 ri[WS(rs, 20)] = Tgj + Tgm; | |
3441 Thb = Tgh - Tge; | |
3442 Thc = Th9 - Th6; | |
3443 ii[WS(rs, 20)] = Thb + Thc; | |
3444 ii[WS(rs, 52)] = Thc - Thb; | |
3445 } | |
3446 } | |
3447 { | |
3448 E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; | |
3449 E Teu; | |
3450 { | |
3451 E TcP, Td0, Teo, Tep; | |
3452 TcP = TcL - TcO; | |
3453 Td0 = KP707106781 * (TcU - TcZ); | |
3454 Td1 = TcP - Td0; | |
3455 Ten = TcP + Td0; | |
3456 { | |
3457 E Tdc, Tdn, ThB, ThC; | |
3458 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); | |
3459 Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); | |
3460 Tdo = Tdc - Tdn; | |
3461 ThA = Tdc + Tdn; | |
3462 ThB = KP707106781 * (TeF - TeE); | |
3463 ThC = Thn - Thm; | |
3464 ThD = ThB + ThC; | |
3465 ThJ = ThC - ThB; | |
3466 } | |
3467 Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); | |
3468 Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); | |
3469 Teq = Teo + Tep; | |
3470 ThI = Tep - Teo; | |
3471 { | |
3472 E Te7, Tev, Teg, Tew, Te6, Tef; | |
3473 Te6 = KP707106781 * (Te0 - Te5); | |
3474 Te7 = TdV - Te6; | |
3475 Tev = TdV + Te6; | |
3476 Tef = KP707106781 * (Ted - Tee); | |
3477 Teg = Tec - Tef; | |
3478 Tew = Tec + Tef; | |
3479 Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); | |
3480 TeB = FMA(KP831469612, Tew, KP555570233 * Tev); | |
3481 Tel = FMA(KP195090322, Teg, KP980785280 * Te7); | |
3482 Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); | |
3483 } | |
3484 { | |
3485 E TdG, Tes, TdP, Tet, TdF, TdO; | |
3486 TdF = KP707106781 * (Tdz - TdE); | |
3487 TdG = Tdu - TdF; | |
3488 Tes = Tdu + TdF; | |
3489 TdO = KP707106781 * (TdM - TdN); | |
3490 TdP = TdL - TdO; | |
3491 Tet = TdL + TdO; | |
3492 TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); | |
3493 TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); | |
3494 Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); | |
3495 Teu = FMA(KP555570233, Tes, KP831469612 * Tet); | |
3496 } | |
3497 } | |
3498 { | |
3499 E Tdp, Tei, ThH, ThK; | |
3500 Tdp = Td1 + Tdo; | |
3501 Tei = TdQ + Teh; | |
3502 ri[WS(rs, 46)] = Tdp - Tei; | |
3503 ri[WS(rs, 14)] = Tdp + Tei; | |
3504 ThH = Tek + Tel; | |
3505 ThK = ThI + ThJ; | |
3506 ii[WS(rs, 14)] = ThH + ThK; | |
3507 ii[WS(rs, 46)] = ThK - ThH; | |
3508 } | |
3509 { | |
3510 E Tej, Tem, ThL, ThM; | |
3511 Tej = Td1 - Tdo; | |
3512 Tem = Tek - Tel; | |
3513 ri[WS(rs, 62)] = Tej - Tem; | |
3514 ri[WS(rs, 30)] = Tej + Tem; | |
3515 ThL = Teh - TdQ; | |
3516 ThM = ThJ - ThI; | |
3517 ii[WS(rs, 30)] = ThL + ThM; | |
3518 ii[WS(rs, 62)] = ThM - ThL; | |
3519 } | |
3520 { | |
3521 E Ter, Tey, Thz, ThE; | |
3522 Ter = Ten + Teq; | |
3523 Tey = Teu + Tex; | |
3524 ri[WS(rs, 38)] = Ter - Tey; | |
3525 ri[WS(rs, 6)] = Ter + Tey; | |
3526 Thz = TeA + TeB; | |
3527 ThE = ThA + ThD; | |
3528 ii[WS(rs, 6)] = Thz + ThE; | |
3529 ii[WS(rs, 38)] = ThE - Thz; | |
3530 } | |
3531 { | |
3532 E Tez, TeC, ThF, ThG; | |
3533 Tez = Ten - Teq; | |
3534 TeC = TeA - TeB; | |
3535 ri[WS(rs, 54)] = Tez - TeC; | |
3536 ri[WS(rs, 22)] = Tez + TeC; | |
3537 ThF = Tex - Teu; | |
3538 ThG = ThD - ThA; | |
3539 ii[WS(rs, 22)] = ThF + ThG; | |
3540 ii[WS(rs, 54)] = ThG - ThF; | |
3541 } | |
3542 } | |
3543 { | |
3544 E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; | |
3545 E Tfg; | |
3546 { | |
3547 E TeD, TeG, Tfa, Tfb; | |
3548 TeD = TcL + TcO; | |
3549 TeG = KP707106781 * (TeE + TeF); | |
3550 TeH = TeD - TeG; | |
3551 Tf9 = TeD + TeG; | |
3552 { | |
3553 E TeK, TeN, Thl, Tho; | |
3554 TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); | |
3555 TeN = FMA(KP923879532, TeL, KP382683432 * TeM); | |
3556 TeO = TeK - TeN; | |
3557 Thk = TeK + TeN; | |
3558 Thl = KP707106781 * (TcU + TcZ); | |
3559 Tho = Thm + Thn; | |
3560 Thp = Thl + Tho; | |
3561 Thv = Tho - Thl; | |
3562 } | |
3563 Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); | |
3564 Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); | |
3565 Tfc = Tfa + Tfb; | |
3566 Thu = Tfb - Tfa; | |
3567 { | |
3568 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; | |
3569 TeY = KP707106781 * (Tee + Ted); | |
3570 TeZ = TeX - TeY; | |
3571 Tfh = TeX + TeY; | |
3572 Tf1 = KP707106781 * (Te0 + Te5); | |
3573 Tf2 = Tf0 - Tf1; | |
3574 Tfi = Tf0 + Tf1; | |
3575 Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); | |
3576 Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); | |
3577 Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); | |
3578 Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); | |
3579 } | |
3580 { | |
3581 E TeS, Tfe, TeV, Tff, TeR, TeU; | |
3582 TeR = KP707106781 * (TdE + Tdz); | |
3583 TeS = TeQ - TeR; | |
3584 Tfe = TeQ + TeR; | |
3585 TeU = KP707106781 * (TdM + TdN); | |
3586 TeV = TeT - TeU; | |
3587 Tff = TeT + TeU; | |
3588 TeW = FMA(KP555570233, TeS, KP831469612 * TeV); | |
3589 Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); | |
3590 Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); | |
3591 Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); | |
3592 } | |
3593 } | |
3594 { | |
3595 E TeP, Tf4, Tht, Thw; | |
3596 TeP = TeH + TeO; | |
3597 Tf4 = TeW + Tf3; | |
3598 ri[WS(rs, 42)] = TeP - Tf4; | |
3599 ri[WS(rs, 10)] = TeP + Tf4; | |
3600 Tht = Tf6 + Tf7; | |
3601 Thw = Thu + Thv; | |
3602 ii[WS(rs, 10)] = Tht + Thw; | |
3603 ii[WS(rs, 42)] = Thw - Tht; | |
3604 } | |
3605 { | |
3606 E Tf5, Tf8, Thx, Thy; | |
3607 Tf5 = TeH - TeO; | |
3608 Tf8 = Tf6 - Tf7; | |
3609 ri[WS(rs, 58)] = Tf5 - Tf8; | |
3610 ri[WS(rs, 26)] = Tf5 + Tf8; | |
3611 Thx = Tf3 - TeW; | |
3612 Thy = Thv - Thu; | |
3613 ii[WS(rs, 26)] = Thx + Thy; | |
3614 ii[WS(rs, 58)] = Thy - Thx; | |
3615 } | |
3616 { | |
3617 E Tfd, Tfk, Thj, Thq; | |
3618 Tfd = Tf9 + Tfc; | |
3619 Tfk = Tfg + Tfj; | |
3620 ri[WS(rs, 34)] = Tfd - Tfk; | |
3621 ri[WS(rs, 2)] = Tfd + Tfk; | |
3622 Thj = Tfm + Tfn; | |
3623 Thq = Thk + Thp; | |
3624 ii[WS(rs, 2)] = Thj + Thq; | |
3625 ii[WS(rs, 34)] = Thq - Thj; | |
3626 } | |
3627 { | |
3628 E Tfl, Tfo, Thr, Ths; | |
3629 Tfl = Tf9 - Tfc; | |
3630 Tfo = Tfm - Tfn; | |
3631 ri[WS(rs, 50)] = Tfl - Tfo; | |
3632 ri[WS(rs, 18)] = Tfl + Tfo; | |
3633 Thr = Tfj - Tfg; | |
3634 Ths = Thp - Thk; | |
3635 ii[WS(rs, 18)] = Thr + Ths; | |
3636 ii[WS(rs, 50)] = Ths - Thr; | |
3637 } | |
3638 } | |
3639 { | |
3640 E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; | |
3641 E T9H; | |
3642 { | |
3643 E T6n, T6K, TiB, TiC; | |
3644 T6n = T6b - T6m; | |
3645 T6K = T6y - T6J; | |
3646 T6L = T6n - T6K; | |
3647 T9x = T6n + T6K; | |
3648 TiB = T9P - T9O; | |
3649 TiC = Tin - Tim; | |
3650 TiD = TiB + TiC; | |
3651 TiJ = TiC - TiB; | |
3652 } | |
3653 { | |
3654 E T7c, T9y, T7D, T9z; | |
3655 { | |
3656 E T72, T7b, T7t, T7C; | |
3657 T72 = T6Q - T71; | |
3658 T7b = T77 - T7a; | |
3659 T7c = FNMS(KP980785280, T7b, KP195090322 * T72); | |
3660 T9y = FMA(KP980785280, T72, KP195090322 * T7b); | |
3661 T7t = T7h - T7s; | |
3662 T7C = T7y - T7B; | |
3663 T7D = FMA(KP195090322, T7t, KP980785280 * T7C); | |
3664 T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); | |
3665 } | |
3666 T7E = T7c - T7D; | |
3667 TiI = T9z - T9y; | |
3668 T9A = T9y + T9z; | |
3669 TiA = T7c + T7D; | |
3670 } | |
3671 { | |
3672 E T8k, T9C, T8x, T9D; | |
3673 { | |
3674 E T7W, T8j, T8t, T8w; | |
3675 T7W = T7K - T7V; | |
3676 T8j = T87 - T8i; | |
3677 T8k = T7W - T8j; | |
3678 T9C = T7W + T8j; | |
3679 T8t = T8p - T8s; | |
3680 T8w = T8u - T8v; | |
3681 T8x = T8t - T8w; | |
3682 T9D = T8t + T8w; | |
3683 } | |
3684 T8y = FMA(KP995184726, T8k, KP098017140 * T8x); | |
3685 T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); | |
3686 T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); | |
3687 T9E = FMA(KP634393284, T9C, KP773010453 * T9D); | |
3688 } | |
3689 { | |
3690 E T9d, T9F, T9q, T9G; | |
3691 { | |
3692 E T8P, T9c, T9m, T9p; | |
3693 T8P = T8D - T8O; | |
3694 T9c = T90 - T9b; | |
3695 T9d = T8P - T9c; | |
3696 T9F = T8P + T9c; | |
3697 T9m = T9i - T9l; | |
3698 T9p = T9n - T9o; | |
3699 T9q = T9m - T9p; | |
3700 T9G = T9m + T9p; | |
3701 } | |
3702 T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); | |
3703 T9L = FMA(KP773010453, T9G, KP634393284 * T9F); | |
3704 T9v = FMA(KP098017140, T9q, KP995184726 * T9d); | |
3705 T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); | |
3706 } | |
3707 { | |
3708 E T7F, T9s, TiH, TiK; | |
3709 T7F = T6L + T7E; | |
3710 T9s = T8y + T9r; | |
3711 ri[WS(rs, 47)] = T7F - T9s; | |
3712 ri[WS(rs, 15)] = T7F + T9s; | |
3713 TiH = T9u + T9v; | |
3714 TiK = TiI + TiJ; | |
3715 ii[WS(rs, 15)] = TiH + TiK; | |
3716 ii[WS(rs, 47)] = TiK - TiH; | |
3717 } | |
3718 { | |
3719 E T9t, T9w, TiL, TiM; | |
3720 T9t = T6L - T7E; | |
3721 T9w = T9u - T9v; | |
3722 ri[WS(rs, 63)] = T9t - T9w; | |
3723 ri[WS(rs, 31)] = T9t + T9w; | |
3724 TiL = T9r - T8y; | |
3725 TiM = TiJ - TiI; | |
3726 ii[WS(rs, 31)] = TiL + TiM; | |
3727 ii[WS(rs, 63)] = TiM - TiL; | |
3728 } | |
3729 { | |
3730 E T9B, T9I, Tiz, TiE; | |
3731 T9B = T9x + T9A; | |
3732 T9I = T9E + T9H; | |
3733 ri[WS(rs, 39)] = T9B - T9I; | |
3734 ri[WS(rs, 7)] = T9B + T9I; | |
3735 Tiz = T9K + T9L; | |
3736 TiE = TiA + TiD; | |
3737 ii[WS(rs, 7)] = Tiz + TiE; | |
3738 ii[WS(rs, 39)] = TiE - Tiz; | |
3739 } | |
3740 { | |
3741 E T9J, T9M, TiF, TiG; | |
3742 T9J = T9x - T9A; | |
3743 T9M = T9K - T9L; | |
3744 ri[WS(rs, 55)] = T9J - T9M; | |
3745 ri[WS(rs, 23)] = T9J + T9M; | |
3746 TiF = T9H - T9E; | |
3747 TiG = TiD - TiA; | |
3748 ii[WS(rs, 23)] = TiF + TiG; | |
3749 ii[WS(rs, 55)] = TiG - TiF; | |
3750 } | |
3751 } | |
3752 { | |
3753 E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; | |
3754 E TbT; | |
3755 { | |
3756 E TaD, TaK, Ti7, Ti8; | |
3757 TaD = Taz - TaC; | |
3758 TaK = TaG - TaJ; | |
3759 TaL = TaD - TaK; | |
3760 TbJ = TaD + TaK; | |
3761 Ti7 = Tc1 - Tc0; | |
3762 Ti8 = ThT - ThQ; | |
3763 Ti9 = Ti7 + Ti8; | |
3764 Tif = Ti8 - Ti7; | |
3765 } | |
3766 { | |
3767 E TaS, TbK, TaZ, TbL; | |
3768 { | |
3769 E TaO, TaR, TaV, TaY; | |
3770 TaO = TaM - TaN; | |
3771 TaR = TaP - TaQ; | |
3772 TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); | |
3773 TbK = FMA(KP555570233, TaR, KP831469612 * TaO); | |
3774 TaV = TaT - TaU; | |
3775 TaY = TaW - TaX; | |
3776 TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); | |
3777 TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); | |
3778 } | |
3779 Tb0 = TaS - TaZ; | |
3780 Tie = TbL - TbK; | |
3781 TbM = TbK + TbL; | |
3782 Ti6 = TaS + TaZ; | |
3783 } | |
3784 { | |
3785 E Tbc, TbO, Tbj, TbP; | |
3786 { | |
3787 E Tb4, Tbb, Tbf, Tbi; | |
3788 Tb4 = Tb2 - Tb3; | |
3789 Tbb = Tb7 - Tba; | |
3790 Tbc = Tb4 - Tbb; | |
3791 TbO = Tb4 + Tbb; | |
3792 Tbf = Tbd - Tbe; | |
3793 Tbi = Tbg - Tbh; | |
3794 Tbj = Tbf - Tbi; | |
3795 TbP = Tbf + Tbi; | |
3796 } | |
3797 Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); | |
3798 TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); | |
3799 TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); | |
3800 TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); | |
3801 } | |
3802 { | |
3803 E Tbv, TbR, TbC, TbS; | |
3804 { | |
3805 E Tbn, Tbu, Tby, TbB; | |
3806 Tbn = Tbl - Tbm; | |
3807 Tbu = Tbq - Tbt; | |
3808 Tbv = Tbn - Tbu; | |
3809 TbR = Tbn + Tbu; | |
3810 Tby = Tbw - Tbx; | |
3811 TbB = Tbz - TbA; | |
3812 TbC = Tby - TbB; | |
3813 TbS = Tby + TbB; | |
3814 } | |
3815 TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); | |
3816 TbX = FMA(KP881921264, TbS, KP471396736 * TbR); | |
3817 TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); | |
3818 TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); | |
3819 } | |
3820 { | |
3821 E Tb1, TbE, Tid, Tig; | |
3822 Tb1 = TaL + Tb0; | |
3823 TbE = Tbk + TbD; | |
3824 ri[WS(rs, 45)] = Tb1 - TbE; | |
3825 ri[WS(rs, 13)] = Tb1 + TbE; | |
3826 Tid = TbG + TbH; | |
3827 Tig = Tie + Tif; | |
3828 ii[WS(rs, 13)] = Tid + Tig; | |
3829 ii[WS(rs, 45)] = Tig - Tid; | |
3830 } | |
3831 { | |
3832 E TbF, TbI, Tih, Tii; | |
3833 TbF = TaL - Tb0; | |
3834 TbI = TbG - TbH; | |
3835 ri[WS(rs, 61)] = TbF - TbI; | |
3836 ri[WS(rs, 29)] = TbF + TbI; | |
3837 Tih = TbD - Tbk; | |
3838 Tii = Tif - Tie; | |
3839 ii[WS(rs, 29)] = Tih + Tii; | |
3840 ii[WS(rs, 61)] = Tii - Tih; | |
3841 } | |
3842 { | |
3843 E TbN, TbU, Ti5, Tia; | |
3844 TbN = TbJ + TbM; | |
3845 TbU = TbQ + TbT; | |
3846 ri[WS(rs, 37)] = TbN - TbU; | |
3847 ri[WS(rs, 5)] = TbN + TbU; | |
3848 Ti5 = TbW + TbX; | |
3849 Tia = Ti6 + Ti9; | |
3850 ii[WS(rs, 5)] = Ti5 + Tia; | |
3851 ii[WS(rs, 37)] = Tia - Ti5; | |
3852 } | |
3853 { | |
3854 E TbV, TbY, Tib, Tic; | |
3855 TbV = TbJ - TbM; | |
3856 TbY = TbW - TbX; | |
3857 ri[WS(rs, 53)] = TbV - TbY; | |
3858 ri[WS(rs, 21)] = TbV + TbY; | |
3859 Tib = TbT - TbQ; | |
3860 Tic = Ti9 - Ti6; | |
3861 ii[WS(rs, 21)] = Tib + Tic; | |
3862 ii[WS(rs, 53)] = Tic - Tib; | |
3863 } | |
3864 } | |
3865 { | |
3866 E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; | |
3867 E TcF; | |
3868 { | |
3869 E TbZ, Tc2, ThP, ThU; | |
3870 TbZ = Taz + TaC; | |
3871 Tc2 = Tc0 + Tc1; | |
3872 Tc3 = TbZ - Tc2; | |
3873 Tcv = TbZ + Tc2; | |
3874 ThP = TaG + TaJ; | |
3875 ThU = ThQ + ThT; | |
3876 ThV = ThP + ThU; | |
3877 Ti1 = ThU - ThP; | |
3878 } | |
3879 { | |
3880 E Tc6, Tcw, Tc9, Tcx; | |
3881 { | |
3882 E Tc4, Tc5, Tc7, Tc8; | |
3883 Tc4 = TaM + TaN; | |
3884 Tc5 = TaP + TaQ; | |
3885 Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); | |
3886 Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); | |
3887 Tc7 = TaT + TaU; | |
3888 Tc8 = TaW + TaX; | |
3889 Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); | |
3890 Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); | |
3891 } | |
3892 Tca = Tc6 - Tc9; | |
3893 Ti0 = Tcx - Tcw; | |
3894 Tcy = Tcw + Tcx; | |
3895 ThO = Tc6 + Tc9; | |
3896 } | |
3897 { | |
3898 E Tce, TcA, Tch, TcB; | |
3899 { | |
3900 E Tcc, Tcd, Tcf, Tcg; | |
3901 Tcc = Tbd + Tbe; | |
3902 Tcd = Tba + Tb7; | |
3903 Tce = Tcc - Tcd; | |
3904 TcA = Tcc + Tcd; | |
3905 Tcf = Tb2 + Tb3; | |
3906 Tcg = Tbg + Tbh; | |
3907 Tch = Tcf - Tcg; | |
3908 TcB = Tcf + Tcg; | |
3909 } | |
3910 Tci = FMA(KP634393284, Tce, KP773010453 * Tch); | |
3911 TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); | |
3912 Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); | |
3913 TcC = FMA(KP995184726, TcA, KP098017140 * TcB); | |
3914 } | |
3915 { | |
3916 E Tcl, TcD, Tco, TcE; | |
3917 { | |
3918 E Tcj, Tck, Tcm, Tcn; | |
3919 Tcj = Tbl + Tbm; | |
3920 Tck = TbA + Tbz; | |
3921 Tcl = Tcj - Tck; | |
3922 TcD = Tcj + Tck; | |
3923 Tcm = Tbw + Tbx; | |
3924 Tcn = Tbq + Tbt; | |
3925 Tco = Tcm - Tcn; | |
3926 TcE = Tcm + Tcn; | |
3927 } | |
3928 Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); | |
3929 TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); | |
3930 Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); | |
3931 TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); | |
3932 } | |
3933 { | |
3934 E Tcb, Tcq, ThZ, Ti2; | |
3935 Tcb = Tc3 + Tca; | |
3936 Tcq = Tci + Tcp; | |
3937 ri[WS(rs, 41)] = Tcb - Tcq; | |
3938 ri[WS(rs, 9)] = Tcb + Tcq; | |
3939 ThZ = Tcs + Tct; | |
3940 Ti2 = Ti0 + Ti1; | |
3941 ii[WS(rs, 9)] = ThZ + Ti2; | |
3942 ii[WS(rs, 41)] = Ti2 - ThZ; | |
3943 } | |
3944 { | |
3945 E Tcr, Tcu, Ti3, Ti4; | |
3946 Tcr = Tc3 - Tca; | |
3947 Tcu = Tcs - Tct; | |
3948 ri[WS(rs, 57)] = Tcr - Tcu; | |
3949 ri[WS(rs, 25)] = Tcr + Tcu; | |
3950 Ti3 = Tcp - Tci; | |
3951 Ti4 = Ti1 - Ti0; | |
3952 ii[WS(rs, 25)] = Ti3 + Ti4; | |
3953 ii[WS(rs, 57)] = Ti4 - Ti3; | |
3954 } | |
3955 { | |
3956 E Tcz, TcG, ThN, ThW; | |
3957 Tcz = Tcv + Tcy; | |
3958 TcG = TcC + TcF; | |
3959 ri[WS(rs, 33)] = Tcz - TcG; | |
3960 ri[WS(rs, 1)] = Tcz + TcG; | |
3961 ThN = TcI + TcJ; | |
3962 ThW = ThO + ThV; | |
3963 ii[WS(rs, 1)] = ThN + ThW; | |
3964 ii[WS(rs, 33)] = ThW - ThN; | |
3965 } | |
3966 { | |
3967 E TcH, TcK, ThX, ThY; | |
3968 TcH = Tcv - Tcy; | |
3969 TcK = TcI - TcJ; | |
3970 ri[WS(rs, 49)] = TcH - TcK; | |
3971 ri[WS(rs, 17)] = TcH + TcK; | |
3972 ThX = TcF - TcC; | |
3973 ThY = ThV - ThO; | |
3974 ii[WS(rs, 17)] = ThX + ThY; | |
3975 ii[WS(rs, 49)] = ThY - ThX; | |
3976 } | |
3977 } | |
3978 { | |
3979 E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; | |
3980 E Tat; | |
3981 { | |
3982 E T9N, T9Q, Til, Tio; | |
3983 T9N = T6b + T6m; | |
3984 T9Q = T9O + T9P; | |
3985 T9R = T9N - T9Q; | |
3986 Taj = T9N + T9Q; | |
3987 Til = T6y + T6J; | |
3988 Tio = Tim + Tin; | |
3989 Tip = Til + Tio; | |
3990 Tiv = Tio - Til; | |
3991 } | |
3992 { | |
3993 E T9U, Tak, T9X, Tal; | |
3994 { | |
3995 E T9S, T9T, T9V, T9W; | |
3996 T9S = T6Q + T71; | |
3997 T9T = T77 + T7a; | |
3998 T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); | |
3999 Tak = FMA(KP555570233, T9S, KP831469612 * T9T); | |
4000 T9V = T7h + T7s; | |
4001 T9W = T7y + T7B; | |
4002 T9X = FMA(KP831469612, T9V, KP555570233 * T9W); | |
4003 Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); | |
4004 } | |
4005 T9Y = T9U - T9X; | |
4006 Tiu = Tal - Tak; | |
4007 Tam = Tak + Tal; | |
4008 Tik = T9U + T9X; | |
4009 } | |
4010 { | |
4011 E Ta2, Tao, Ta5, Tap; | |
4012 { | |
4013 E Ta0, Ta1, Ta3, Ta4; | |
4014 Ta0 = T8p + T8s; | |
4015 Ta1 = T8i + T87; | |
4016 Ta2 = Ta0 - Ta1; | |
4017 Tao = Ta0 + Ta1; | |
4018 Ta3 = T7K + T7V; | |
4019 Ta4 = T8u + T8v; | |
4020 Ta5 = Ta3 - Ta4; | |
4021 Tap = Ta3 + Ta4; | |
4022 } | |
4023 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); | |
4024 Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); | |
4025 Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); | |
4026 Taq = FMA(KP956940335, Tao, KP290284677 * Tap); | |
4027 } | |
4028 { | |
4029 E Ta9, Tar, Tac, Tas; | |
4030 { | |
4031 E Ta7, Ta8, Taa, Tab; | |
4032 Ta7 = T8D + T8O; | |
4033 Ta8 = T9o + T9n; | |
4034 Ta9 = Ta7 - Ta8; | |
4035 Tar = Ta7 + Ta8; | |
4036 Taa = T9i + T9l; | |
4037 Tab = T90 + T9b; | |
4038 Tac = Taa - Tab; | |
4039 Tas = Taa + Tab; | |
4040 } | |
4041 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); | |
4042 Tax = FMA(KP290284677, Tar, KP956940335 * Tas); | |
4043 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); | |
4044 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); | |
4045 } | |
4046 { | |
4047 E T9Z, Tae, Tit, Tiw; | |
4048 T9Z = T9R + T9Y; | |
4049 Tae = Ta6 + Tad; | |
4050 ri[WS(rs, 43)] = T9Z - Tae; | |
4051 ri[WS(rs, 11)] = T9Z + Tae; | |
4052 Tit = Tag + Tah; | |
4053 Tiw = Tiu + Tiv; | |
4054 ii[WS(rs, 11)] = Tit + Tiw; | |
4055 ii[WS(rs, 43)] = Tiw - Tit; | |
4056 } | |
4057 { | |
4058 E Taf, Tai, Tix, Tiy; | |
4059 Taf = T9R - T9Y; | |
4060 Tai = Tag - Tah; | |
4061 ri[WS(rs, 59)] = Taf - Tai; | |
4062 ri[WS(rs, 27)] = Taf + Tai; | |
4063 Tix = Tad - Ta6; | |
4064 Tiy = Tiv - Tiu; | |
4065 ii[WS(rs, 27)] = Tix + Tiy; | |
4066 ii[WS(rs, 59)] = Tiy - Tix; | |
4067 } | |
4068 { | |
4069 E Tan, Tau, Tij, Tiq; | |
4070 Tan = Taj + Tam; | |
4071 Tau = Taq + Tat; | |
4072 ri[WS(rs, 35)] = Tan - Tau; | |
4073 ri[WS(rs, 3)] = Tan + Tau; | |
4074 Tij = Taw + Tax; | |
4075 Tiq = Tik + Tip; | |
4076 ii[WS(rs, 3)] = Tij + Tiq; | |
4077 ii[WS(rs, 35)] = Tiq - Tij; | |
4078 } | |
4079 { | |
4080 E Tav, Tay, Tir, Tis; | |
4081 Tav = Taj - Tam; | |
4082 Tay = Taw - Tax; | |
4083 ri[WS(rs, 51)] = Tav - Tay; | |
4084 ri[WS(rs, 19)] = Tav + Tay; | |
4085 Tir = Tat - Taq; | |
4086 Tis = Tip - Tik; | |
4087 ii[WS(rs, 19)] = Tir + Tis; | |
4088 ii[WS(rs, 51)] = Tis - Tir; | |
4089 } | |
4090 } | |
4091 } | |
4092 } | |
4093 } | |
4094 | |
4095 static const tw_instr twinstr[] = { | |
4096 {TW_FULL, 0, 64}, | |
4097 {TW_NEXT, 1, 0} | |
4098 }; | |
4099 | |
4100 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 }; | |
4101 | |
4102 void X(codelet_t1_64) (planner *p) { | |
4103 X(kdft_dit_register) (p, t1_64, &desc); | |
4104 } | |
4105 #endif |