Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_16.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:15 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 174 FP additions, 100 FP multiplications, | |
32 * (or, 104 additions, 30 multiplications, 70 fused multiply/add), | |
33 * 60 stack variables, 3 constants, and 64 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | |
45 E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N; | |
46 E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; | |
47 E T1W, T21; | |
48 { | |
49 E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; | |
50 T1 = ri[0]; | |
51 T3n = ii[0]; | |
52 T3 = ri[WS(rs, 8)]; | |
53 T6 = ii[WS(rs, 8)]; | |
54 T2 = W[14]; | |
55 T4 = T2 * T3; | |
56 T3l = T2 * T6; | |
57 T5 = W[15]; | |
58 T7 = FMA(T5, T6, T4); | |
59 T3m = FNMS(T5, T3, T3l); | |
60 T8 = T1 + T7; | |
61 T3z = T3n - T3m; | |
62 T1I = T1 - T7; | |
63 T3o = T3m + T3n; | |
64 } | |
65 { | |
66 E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m; | |
67 T1h = ri[WS(rs, 15)]; | |
68 T1k = ii[WS(rs, 15)]; | |
69 T1g = W[28]; | |
70 T1i = T1g * T1h; | |
71 T2k = T1g * T1k; | |
72 T1n = ri[WS(rs, 7)]; | |
73 T1q = ii[WS(rs, 7)]; | |
74 T1m = W[12]; | |
75 T1o = T1m * T1n; | |
76 T2m = T1m * T1q; | |
77 { | |
78 E T1l, T2l, T1r, T2n, T1j, T1p; | |
79 T1j = W[29]; | |
80 T1l = FMA(T1j, T1k, T1i); | |
81 T2l = FNMS(T1j, T1h, T2k); | |
82 T1p = W[13]; | |
83 T1r = FMA(T1p, T1q, T1o); | |
84 T2n = FNMS(T1p, T1n, T2m); | |
85 T1s = T1l + T1r; | |
86 T35 = T2l + T2n; | |
87 T2o = T2l - T2n; | |
88 T2r = T1l - T1r; | |
89 } | |
90 } | |
91 { | |
92 E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; | |
93 T1u = ri[WS(rs, 3)]; | |
94 T1x = ii[WS(rs, 3)]; | |
95 T1t = W[4]; | |
96 T1v = T1t * T1u; | |
97 T2s = T1t * T1x; | |
98 T1A = ri[WS(rs, 11)]; | |
99 T1D = ii[WS(rs, 11)]; | |
100 T1z = W[20]; | |
101 T1B = T1z * T1A; | |
102 T2u = T1z * T1D; | |
103 { | |
104 E T1y, T2t, T1E, T2v, T1w, T1C; | |
105 T1w = W[5]; | |
106 T1y = FMA(T1w, T1x, T1v); | |
107 T2t = FNMS(T1w, T1u, T2s); | |
108 T1C = W[21]; | |
109 T1E = FMA(T1C, T1D, T1B); | |
110 T2v = FNMS(T1C, T1A, T2u); | |
111 T1F = T1y + T1E; | |
112 T36 = T2t + T2v; | |
113 T2p = T1y - T1E; | |
114 T2w = T2t - T2v; | |
115 } | |
116 } | |
117 { | |
118 E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; | |
119 Ta = ri[WS(rs, 4)]; | |
120 Td = ii[WS(rs, 4)]; | |
121 T9 = W[6]; | |
122 Tb = T9 * Ta; | |
123 T1J = T9 * Td; | |
124 Tg = ri[WS(rs, 12)]; | |
125 Tj = ii[WS(rs, 12)]; | |
126 Tf = W[22]; | |
127 Th = Tf * Tg; | |
128 T1L = Tf * Tj; | |
129 { | |
130 E Te, T1K, Tk, T1M, Tc, Ti; | |
131 Tc = W[7]; | |
132 Te = FMA(Tc, Td, Tb); | |
133 T1K = FNMS(Tc, Ta, T1J); | |
134 Ti = W[23]; | |
135 Tk = FMA(Ti, Tj, Th); | |
136 T1M = FNMS(Ti, Tg, T1L); | |
137 Tl = Te + Tk; | |
138 T3A = Te - Tk; | |
139 T1N = T1K - T1M; | |
140 T3k = T1K + T1M; | |
141 } | |
142 } | |
143 { | |
144 E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; | |
145 To = ri[WS(rs, 2)]; | |
146 Tr = ii[WS(rs, 2)]; | |
147 Tn = W[2]; | |
148 Tp = Tn * To; | |
149 T1P = Tn * Tr; | |
150 Tu = ri[WS(rs, 10)]; | |
151 Tx = ii[WS(rs, 10)]; | |
152 Tt = W[18]; | |
153 Tv = Tt * Tu; | |
154 T1R = Tt * Tx; | |
155 { | |
156 E Ts, T1Q, Ty, T1S, Tq, Tw; | |
157 Tq = W[3]; | |
158 Ts = FMA(Tq, Tr, Tp); | |
159 T1Q = FNMS(Tq, To, T1P); | |
160 Tw = W[19]; | |
161 Ty = FMA(Tw, Tx, Tv); | |
162 T1S = FNMS(Tw, Tu, T1R); | |
163 Tz = Ts + Ty; | |
164 T2V = T1Q + T1S; | |
165 T1T = T1Q - T1S; | |
166 T1U = Ts - Ty; | |
167 } | |
168 } | |
169 { | |
170 E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; | |
171 TQ = ri[WS(rs, 1)]; | |
172 TT = ii[WS(rs, 1)]; | |
173 TP = W[0]; | |
174 TR = TP * TQ; | |
175 T25 = TP * TT; | |
176 TW = ri[WS(rs, 9)]; | |
177 TZ = ii[WS(rs, 9)]; | |
178 TV = W[16]; | |
179 TX = TV * TW; | |
180 T27 = TV * TZ; | |
181 { | |
182 E TU, T26, T10, T28, TS, TY; | |
183 TS = W[1]; | |
184 TU = FMA(TS, TT, TR); | |
185 T26 = FNMS(TS, TQ, T25); | |
186 TY = W[17]; | |
187 T10 = FMA(TY, TZ, TX); | |
188 T28 = FNMS(TY, TW, T27); | |
189 T11 = TU + T10; | |
190 T30 = T26 + T28; | |
191 T29 = T26 - T28; | |
192 T2c = TU - T10; | |
193 } | |
194 } | |
195 { | |
196 E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; | |
197 T13 = ri[WS(rs, 5)]; | |
198 T16 = ii[WS(rs, 5)]; | |
199 T12 = W[8]; | |
200 T14 = T12 * T13; | |
201 T2d = T12 * T16; | |
202 T19 = ri[WS(rs, 13)]; | |
203 T1c = ii[WS(rs, 13)]; | |
204 T18 = W[24]; | |
205 T1a = T18 * T19; | |
206 T2f = T18 * T1c; | |
207 { | |
208 E T17, T2e, T1d, T2g, T15, T1b; | |
209 T15 = W[9]; | |
210 T17 = FMA(T15, T16, T14); | |
211 T2e = FNMS(T15, T13, T2d); | |
212 T1b = W[25]; | |
213 T1d = FMA(T1b, T1c, T1a); | |
214 T2g = FNMS(T1b, T19, T2f); | |
215 T1e = T17 + T1d; | |
216 T31 = T2e + T2g; | |
217 T2a = T17 - T1d; | |
218 T2h = T2e - T2g; | |
219 } | |
220 } | |
221 { | |
222 E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; | |
223 TB = ri[WS(rs, 14)]; | |
224 TE = ii[WS(rs, 14)]; | |
225 TA = W[26]; | |
226 TC = TA * TB; | |
227 T1X = TA * TE; | |
228 TH = ri[WS(rs, 6)]; | |
229 TK = ii[WS(rs, 6)]; | |
230 TG = W[10]; | |
231 TI = TG * TH; | |
232 T1Z = TG * TK; | |
233 { | |
234 E TF, T1Y, TL, T20, TD, TJ; | |
235 TD = W[27]; | |
236 TF = FMA(TD, TE, TC); | |
237 T1Y = FNMS(TD, TB, T1X); | |
238 TJ = W[11]; | |
239 TL = FMA(TJ, TK, TI); | |
240 T20 = FNMS(TJ, TH, T1Z); | |
241 TM = TF + TL; | |
242 T2W = T1Y + T20; | |
243 T1W = TF - TL; | |
244 T21 = T1Y - T20; | |
245 } | |
246 } | |
247 { | |
248 E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; | |
249 { | |
250 E Tm, TN, T3j, T3p; | |
251 Tm = T8 + Tl; | |
252 TN = Tz + TM; | |
253 TO = Tm + TN; | |
254 T3e = Tm - TN; | |
255 T3j = T2V + T2W; | |
256 T3p = T3k + T3o; | |
257 T3q = T3j + T3p; | |
258 T3s = T3p - T3j; | |
259 } | |
260 { | |
261 E T1f, T1G, T3f, T3g; | |
262 T1f = T11 + T1e; | |
263 T1G = T1s + T1F; | |
264 T1H = T1f + T1G; | |
265 T3r = T1G - T1f; | |
266 T3f = T30 + T31; | |
267 T3g = T35 + T36; | |
268 T3h = T3f - T3g; | |
269 T3i = T3f + T3g; | |
270 } | |
271 ri[WS(rs, 8)] = TO - T1H; | |
272 ii[WS(rs, 8)] = T3q - T3i; | |
273 ri[0] = TO + T1H; | |
274 ii[0] = T3i + T3q; | |
275 ri[WS(rs, 12)] = T3e - T3h; | |
276 ii[WS(rs, 12)] = T3s - T3r; | |
277 ri[WS(rs, 4)] = T3e + T3h; | |
278 ii[WS(rs, 4)] = T3r + T3s; | |
279 } | |
280 { | |
281 E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; | |
282 { | |
283 E T2U, T2X, T3t, T3u; | |
284 T2U = T8 - Tl; | |
285 T2X = T2V - T2W; | |
286 T2Y = T2U + T2X; | |
287 T3a = T2U - T2X; | |
288 T3t = TM - Tz; | |
289 T3u = T3o - T3k; | |
290 T3v = T3t + T3u; | |
291 T3x = T3u - T3t; | |
292 } | |
293 { | |
294 E T2Z, T32, T34, T37; | |
295 T2Z = T11 - T1e; | |
296 T32 = T30 - T31; | |
297 T33 = T2Z + T32; | |
298 T3b = T32 - T2Z; | |
299 T34 = T1s - T1F; | |
300 T37 = T35 - T36; | |
301 T38 = T34 - T37; | |
302 T3c = T34 + T37; | |
303 } | |
304 { | |
305 E T39, T3w, T3d, T3y; | |
306 T39 = T33 + T38; | |
307 ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y); | |
308 ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); | |
309 T3w = T3b + T3c; | |
310 ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v); | |
311 ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v); | |
312 T3d = T3b - T3c; | |
313 ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a); | |
314 ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a); | |
315 T3y = T38 - T33; | |
316 ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x); | |
317 ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x); | |
318 } | |
319 } | |
320 { | |
321 E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; | |
322 E T2C; | |
323 { | |
324 E T1V, T22, T2b, T2i; | |
325 T1O = T1I - T1N; | |
326 T3B = T3z - T3A; | |
327 T3H = T3A + T3z; | |
328 T2E = T1I + T1N; | |
329 T1V = T1T - T1U; | |
330 T22 = T1W + T21; | |
331 T23 = T1V - T22; | |
332 T3C = T1V + T22; | |
333 { | |
334 E T2M, T2N, T2F, T2G; | |
335 T2M = T2r + T2w; | |
336 T2N = T2o - T2p; | |
337 T2O = FNMS(KP414213562, T2N, T2M); | |
338 T2S = FMA(KP414213562, T2M, T2N); | |
339 T2F = T1U + T1T; | |
340 T2G = T1W - T21; | |
341 T2H = T2F + T2G; | |
342 T3I = T2G - T2F; | |
343 } | |
344 T2b = T29 + T2a; | |
345 T2i = T2c - T2h; | |
346 T2j = FMA(KP414213562, T2i, T2b); | |
347 T2B = FNMS(KP414213562, T2b, T2i); | |
348 { | |
349 E T2J, T2K, T2q, T2x; | |
350 T2J = T2c + T2h; | |
351 T2K = T29 - T2a; | |
352 T2L = FMA(KP414213562, T2K, T2J); | |
353 T2R = FNMS(KP414213562, T2J, T2K); | |
354 T2q = T2o + T2p; | |
355 T2x = T2r - T2w; | |
356 T2y = FNMS(KP414213562, T2x, T2q); | |
357 T2C = FMA(KP414213562, T2q, T2x); | |
358 } | |
359 } | |
360 { | |
361 E T24, T2z, T3J, T3K; | |
362 T24 = FMA(KP707106781, T23, T1O); | |
363 T2z = T2j - T2y; | |
364 ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24); | |
365 ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24); | |
366 T3J = FMA(KP707106781, T3I, T3H); | |
367 T3K = T2C - T2B; | |
368 ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J); | |
369 ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J); | |
370 } | |
371 { | |
372 E T2A, T2D, T3L, T3M; | |
373 T2A = FNMS(KP707106781, T23, T1O); | |
374 T2D = T2B + T2C; | |
375 ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A); | |
376 ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A); | |
377 T3L = FNMS(KP707106781, T3I, T3H); | |
378 T3M = T2j + T2y; | |
379 ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L); | |
380 ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L); | |
381 } | |
382 { | |
383 E T2I, T2P, T3D, T3E; | |
384 T2I = FMA(KP707106781, T2H, T2E); | |
385 T2P = T2L + T2O; | |
386 ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I); | |
387 ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); | |
388 T3D = FMA(KP707106781, T3C, T3B); | |
389 T3E = T2R + T2S; | |
390 ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D); | |
391 ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D); | |
392 } | |
393 { | |
394 E T2Q, T2T, T3F, T3G; | |
395 T2Q = FNMS(KP707106781, T2H, T2E); | |
396 T2T = T2R - T2S; | |
397 ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q); | |
398 ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q); | |
399 T3F = FNMS(KP707106781, T3C, T3B); | |
400 T3G = T2O - T2L; | |
401 ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F); | |
402 ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F); | |
403 } | |
404 } | |
405 } | |
406 } | |
407 } | |
408 | |
409 static const tw_instr twinstr[] = { | |
410 {TW_FULL, 0, 16}, | |
411 {TW_NEXT, 1, 0} | |
412 }; | |
413 | |
414 static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {104, 30, 70, 0}, 0, 0, 0 }; | |
415 | |
416 void X(codelet_t1_16) (planner *p) { | |
417 X(kdft_dit_register) (p, t1_16, &desc); | |
418 } | |
419 #else | |
420 | |
421 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ | |
422 | |
423 /* | |
424 * This function contains 174 FP additions, 84 FP multiplications, | |
425 * (or, 136 additions, 46 multiplications, 38 fused multiply/add), | |
426 * 52 stack variables, 3 constants, and 64 memory accesses | |
427 */ | |
428 #include "dft/scalar/t.h" | |
429 | |
430 static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
431 { | |
432 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
433 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
434 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
435 { | |
436 INT m; | |
437 for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { | |
438 E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; | |
439 E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; | |
440 E T2y, T2z, T1O, T2g, T1T, T2h; | |
441 { | |
442 E T1, T2T, T6, T2S; | |
443 T1 = ri[0]; | |
444 T2T = ii[0]; | |
445 { | |
446 E T3, T5, T2, T4; | |
447 T3 = ri[WS(rs, 8)]; | |
448 T5 = ii[WS(rs, 8)]; | |
449 T2 = W[14]; | |
450 T4 = W[15]; | |
451 T6 = FMA(T2, T3, T4 * T5); | |
452 T2S = FNMS(T4, T3, T2 * T5); | |
453 } | |
454 T7 = T1 + T6; | |
455 T37 = T2T - T2S; | |
456 T1t = T1 - T6; | |
457 T2U = T2S + T2T; | |
458 } | |
459 { | |
460 E Tc, T1u, Th, T1v; | |
461 { | |
462 E T9, Tb, T8, Ta; | |
463 T9 = ri[WS(rs, 4)]; | |
464 Tb = ii[WS(rs, 4)]; | |
465 T8 = W[6]; | |
466 Ta = W[7]; | |
467 Tc = FMA(T8, T9, Ta * Tb); | |
468 T1u = FNMS(Ta, T9, T8 * Tb); | |
469 } | |
470 { | |
471 E Te, Tg, Td, Tf; | |
472 Te = ri[WS(rs, 12)]; | |
473 Tg = ii[WS(rs, 12)]; | |
474 Td = W[22]; | |
475 Tf = W[23]; | |
476 Th = FMA(Td, Te, Tf * Tg); | |
477 T1v = FNMS(Tf, Te, Td * Tg); | |
478 } | |
479 Ti = Tc + Th; | |
480 T38 = Tc - Th; | |
481 T1w = T1u - T1v; | |
482 T2R = T1u + T1v; | |
483 } | |
484 { | |
485 E To, T1y, Tt, T1z, T1A, T1B; | |
486 { | |
487 E Tl, Tn, Tk, Tm; | |
488 Tl = ri[WS(rs, 2)]; | |
489 Tn = ii[WS(rs, 2)]; | |
490 Tk = W[2]; | |
491 Tm = W[3]; | |
492 To = FMA(Tk, Tl, Tm * Tn); | |
493 T1y = FNMS(Tm, Tl, Tk * Tn); | |
494 } | |
495 { | |
496 E Tq, Ts, Tp, Tr; | |
497 Tq = ri[WS(rs, 10)]; | |
498 Ts = ii[WS(rs, 10)]; | |
499 Tp = W[18]; | |
500 Tr = W[19]; | |
501 Tt = FMA(Tp, Tq, Tr * Ts); | |
502 T1z = FNMS(Tr, Tq, Tp * Ts); | |
503 } | |
504 Tu = To + Tt; | |
505 T2s = T1y + T1z; | |
506 T1A = T1y - T1z; | |
507 T1B = To - Tt; | |
508 T1C = T1A - T1B; | |
509 T2c = T1B + T1A; | |
510 } | |
511 { | |
512 E Tz, T1E, TE, T1F, T1D, T1G; | |
513 { | |
514 E Tw, Ty, Tv, Tx; | |
515 Tw = ri[WS(rs, 14)]; | |
516 Ty = ii[WS(rs, 14)]; | |
517 Tv = W[26]; | |
518 Tx = W[27]; | |
519 Tz = FMA(Tv, Tw, Tx * Ty); | |
520 T1E = FNMS(Tx, Tw, Tv * Ty); | |
521 } | |
522 { | |
523 E TB, TD, TA, TC; | |
524 TB = ri[WS(rs, 6)]; | |
525 TD = ii[WS(rs, 6)]; | |
526 TA = W[10]; | |
527 TC = W[11]; | |
528 TE = FMA(TA, TB, TC * TD); | |
529 T1F = FNMS(TC, TB, TA * TD); | |
530 } | |
531 TF = Tz + TE; | |
532 T2t = T1E + T1F; | |
533 T1D = Tz - TE; | |
534 T1G = T1E - T1F; | |
535 T1H = T1D + T1G; | |
536 T2d = T1D - T1G; | |
537 } | |
538 { | |
539 E T19, T20, T1p, T1X, T1e, T21, T1k, T1W; | |
540 { | |
541 E T16, T18, T15, T17; | |
542 T16 = ri[WS(rs, 15)]; | |
543 T18 = ii[WS(rs, 15)]; | |
544 T15 = W[28]; | |
545 T17 = W[29]; | |
546 T19 = FMA(T15, T16, T17 * T18); | |
547 T20 = FNMS(T17, T16, T15 * T18); | |
548 } | |
549 { | |
550 E T1m, T1o, T1l, T1n; | |
551 T1m = ri[WS(rs, 11)]; | |
552 T1o = ii[WS(rs, 11)]; | |
553 T1l = W[20]; | |
554 T1n = W[21]; | |
555 T1p = FMA(T1l, T1m, T1n * T1o); | |
556 T1X = FNMS(T1n, T1m, T1l * T1o); | |
557 } | |
558 { | |
559 E T1b, T1d, T1a, T1c; | |
560 T1b = ri[WS(rs, 7)]; | |
561 T1d = ii[WS(rs, 7)]; | |
562 T1a = W[12]; | |
563 T1c = W[13]; | |
564 T1e = FMA(T1a, T1b, T1c * T1d); | |
565 T21 = FNMS(T1c, T1b, T1a * T1d); | |
566 } | |
567 { | |
568 E T1h, T1j, T1g, T1i; | |
569 T1h = ri[WS(rs, 3)]; | |
570 T1j = ii[WS(rs, 3)]; | |
571 T1g = W[4]; | |
572 T1i = W[5]; | |
573 T1k = FMA(T1g, T1h, T1i * T1j); | |
574 T1W = FNMS(T1i, T1h, T1g * T1j); | |
575 } | |
576 T1f = T19 + T1e; | |
577 T1q = T1k + T1p; | |
578 T2B = T1f - T1q; | |
579 T2C = T20 + T21; | |
580 T2D = T1W + T1X; | |
581 T2E = T2C - T2D; | |
582 { | |
583 E T1V, T1Y, T22, T23; | |
584 T1V = T19 - T1e; | |
585 T1Y = T1W - T1X; | |
586 T1Z = T1V - T1Y; | |
587 T2j = T1V + T1Y; | |
588 T22 = T20 - T21; | |
589 T23 = T1k - T1p; | |
590 T24 = T22 + T23; | |
591 T2k = T22 - T23; | |
592 } | |
593 } | |
594 { | |
595 E TM, T1K, T12, T1R, TR, T1L, TX, T1Q; | |
596 { | |
597 E TJ, TL, TI, TK; | |
598 TJ = ri[WS(rs, 1)]; | |
599 TL = ii[WS(rs, 1)]; | |
600 TI = W[0]; | |
601 TK = W[1]; | |
602 TM = FMA(TI, TJ, TK * TL); | |
603 T1K = FNMS(TK, TJ, TI * TL); | |
604 } | |
605 { | |
606 E TZ, T11, TY, T10; | |
607 TZ = ri[WS(rs, 13)]; | |
608 T11 = ii[WS(rs, 13)]; | |
609 TY = W[24]; | |
610 T10 = W[25]; | |
611 T12 = FMA(TY, TZ, T10 * T11); | |
612 T1R = FNMS(T10, TZ, TY * T11); | |
613 } | |
614 { | |
615 E TO, TQ, TN, TP; | |
616 TO = ri[WS(rs, 9)]; | |
617 TQ = ii[WS(rs, 9)]; | |
618 TN = W[16]; | |
619 TP = W[17]; | |
620 TR = FMA(TN, TO, TP * TQ); | |
621 T1L = FNMS(TP, TO, TN * TQ); | |
622 } | |
623 { | |
624 E TU, TW, TT, TV; | |
625 TU = ri[WS(rs, 5)]; | |
626 TW = ii[WS(rs, 5)]; | |
627 TT = W[8]; | |
628 TV = W[9]; | |
629 TX = FMA(TT, TU, TV * TW); | |
630 T1Q = FNMS(TV, TU, TT * TW); | |
631 } | |
632 TS = TM + TR; | |
633 T13 = TX + T12; | |
634 T2w = TS - T13; | |
635 T2x = T1K + T1L; | |
636 T2y = T1Q + T1R; | |
637 T2z = T2x - T2y; | |
638 { | |
639 E T1M, T1N, T1P, T1S; | |
640 T1M = T1K - T1L; | |
641 T1N = TX - T12; | |
642 T1O = T1M + T1N; | |
643 T2g = T1M - T1N; | |
644 T1P = TM - TR; | |
645 T1S = T1Q - T1R; | |
646 T1T = T1P - T1S; | |
647 T2h = T1P + T1S; | |
648 } | |
649 } | |
650 { | |
651 E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; | |
652 { | |
653 E T1x, T1I, T3e, T3f; | |
654 T1x = T1t - T1w; | |
655 T1I = KP707106781 * (T1C - T1H); | |
656 T1J = T1x + T1I; | |
657 T27 = T1x - T1I; | |
658 T3e = KP707106781 * (T2d - T2c); | |
659 T3f = T38 + T37; | |
660 T3g = T3e + T3f; | |
661 T3i = T3f - T3e; | |
662 } | |
663 { | |
664 E T1U, T25, T28, T29; | |
665 T1U = FMA(KP923879532, T1O, KP382683432 * T1T); | |
666 T25 = FNMS(KP923879532, T24, KP382683432 * T1Z); | |
667 T26 = T1U + T25; | |
668 T3h = T25 - T1U; | |
669 T28 = FNMS(KP923879532, T1T, KP382683432 * T1O); | |
670 T29 = FMA(KP382683432, T24, KP923879532 * T1Z); | |
671 T2a = T28 - T29; | |
672 T3d = T28 + T29; | |
673 } | |
674 ri[WS(rs, 11)] = T1J - T26; | |
675 ii[WS(rs, 11)] = T3g - T3d; | |
676 ri[WS(rs, 3)] = T1J + T26; | |
677 ii[WS(rs, 3)] = T3d + T3g; | |
678 ri[WS(rs, 15)] = T27 - T2a; | |
679 ii[WS(rs, 15)] = T3i - T3h; | |
680 ri[WS(rs, 7)] = T27 + T2a; | |
681 ii[WS(rs, 7)] = T3h + T3i; | |
682 } | |
683 { | |
684 E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; | |
685 { | |
686 E T2r, T2u, T30, T31; | |
687 T2r = T7 - Ti; | |
688 T2u = T2s - T2t; | |
689 T2v = T2r + T2u; | |
690 T2H = T2r - T2u; | |
691 T30 = TF - Tu; | |
692 T31 = T2U - T2R; | |
693 T32 = T30 + T31; | |
694 T34 = T31 - T30; | |
695 } | |
696 { | |
697 E T2A, T2F, T2I, T2J; | |
698 T2A = T2w + T2z; | |
699 T2F = T2B - T2E; | |
700 T2G = KP707106781 * (T2A + T2F); | |
701 T33 = KP707106781 * (T2F - T2A); | |
702 T2I = T2z - T2w; | |
703 T2J = T2B + T2E; | |
704 T2K = KP707106781 * (T2I - T2J); | |
705 T2Z = KP707106781 * (T2I + T2J); | |
706 } | |
707 ri[WS(rs, 10)] = T2v - T2G; | |
708 ii[WS(rs, 10)] = T32 - T2Z; | |
709 ri[WS(rs, 2)] = T2v + T2G; | |
710 ii[WS(rs, 2)] = T2Z + T32; | |
711 ri[WS(rs, 14)] = T2H - T2K; | |
712 ii[WS(rs, 14)] = T34 - T33; | |
713 ri[WS(rs, 6)] = T2H + T2K; | |
714 ii[WS(rs, 6)] = T33 + T34; | |
715 } | |
716 { | |
717 E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; | |
718 { | |
719 E T2b, T2e, T36, T39; | |
720 T2b = T1t + T1w; | |
721 T2e = KP707106781 * (T2c + T2d); | |
722 T2f = T2b + T2e; | |
723 T2n = T2b - T2e; | |
724 T36 = KP707106781 * (T1C + T1H); | |
725 T39 = T37 - T38; | |
726 T3a = T36 + T39; | |
727 T3c = T39 - T36; | |
728 } | |
729 { | |
730 E T2i, T2l, T2o, T2p; | |
731 T2i = FMA(KP382683432, T2g, KP923879532 * T2h); | |
732 T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); | |
733 T2m = T2i + T2l; | |
734 T3b = T2l - T2i; | |
735 T2o = FNMS(KP382683432, T2h, KP923879532 * T2g); | |
736 T2p = FMA(KP923879532, T2k, KP382683432 * T2j); | |
737 T2q = T2o - T2p; | |
738 T35 = T2o + T2p; | |
739 } | |
740 ri[WS(rs, 9)] = T2f - T2m; | |
741 ii[WS(rs, 9)] = T3a - T35; | |
742 ri[WS(rs, 1)] = T2f + T2m; | |
743 ii[WS(rs, 1)] = T35 + T3a; | |
744 ri[WS(rs, 13)] = T2n - T2q; | |
745 ii[WS(rs, 13)] = T3c - T3b; | |
746 ri[WS(rs, 5)] = T2n + T2q; | |
747 ii[WS(rs, 5)] = T3b + T3c; | |
748 } | |
749 { | |
750 E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; | |
751 { | |
752 E Tj, TG, T2Q, T2V; | |
753 Tj = T7 + Ti; | |
754 TG = Tu + TF; | |
755 TH = Tj + TG; | |
756 T2L = Tj - TG; | |
757 T2Q = T2s + T2t; | |
758 T2V = T2R + T2U; | |
759 T2W = T2Q + T2V; | |
760 T2Y = T2V - T2Q; | |
761 } | |
762 { | |
763 E T14, T1r, T2M, T2N; | |
764 T14 = TS + T13; | |
765 T1r = T1f + T1q; | |
766 T1s = T14 + T1r; | |
767 T2X = T1r - T14; | |
768 T2M = T2x + T2y; | |
769 T2N = T2C + T2D; | |
770 T2O = T2M - T2N; | |
771 T2P = T2M + T2N; | |
772 } | |
773 ri[WS(rs, 8)] = TH - T1s; | |
774 ii[WS(rs, 8)] = T2W - T2P; | |
775 ri[0] = TH + T1s; | |
776 ii[0] = T2P + T2W; | |
777 ri[WS(rs, 12)] = T2L - T2O; | |
778 ii[WS(rs, 12)] = T2Y - T2X; | |
779 ri[WS(rs, 4)] = T2L + T2O; | |
780 ii[WS(rs, 4)] = T2X + T2Y; | |
781 } | |
782 } | |
783 } | |
784 } | |
785 | |
786 static const tw_instr twinstr[] = { | |
787 {TW_FULL, 0, 16}, | |
788 {TW_NEXT, 1, 0} | |
789 }; | |
790 | |
791 static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {136, 46, 38, 0}, 0, 0, 0 }; | |
792 | |
793 void X(codelet_t1_16) (planner *p) { | |
794 X(kdft_dit_register) (p, t1_16, &desc); | |
795 } | |
796 #endif |