Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/t1_12.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:14 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */ | |
29 | |
30 /* | |
31 * This function contains 118 FP additions, 68 FP multiplications, | |
32 * (or, 72 additions, 22 multiplications, 46 fused multiply/add), | |
33 * 47 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "dft/scalar/t.h" | |
36 | |
37 static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2r, T1s, T2f, T1d, T21, T1H; | |
45 E T1Z, Te, T2o, T1l, T2h, TT, T1V, T1A, T1T; | |
46 T1 = ri[0]; | |
47 T2i = ii[0]; | |
48 { | |
49 E Th, Tk, Ti, T2d, Tg, Tj; | |
50 Th = ri[WS(rs, 6)]; | |
51 Tk = ii[WS(rs, 6)]; | |
52 Tg = W[10]; | |
53 Ti = Tg * Th; | |
54 T2d = Tg * Tk; | |
55 Tj = W[11]; | |
56 Tl = FMA(Tj, Tk, Ti); | |
57 T2e = FNMS(Tj, Th, T2d); | |
58 } | |
59 { | |
60 E TW, TZ, TX, T1X, TV, TY; | |
61 TW = ri[WS(rs, 9)]; | |
62 TZ = ii[WS(rs, 9)]; | |
63 TV = W[16]; | |
64 TX = TV * TW; | |
65 T1X = TV * TZ; | |
66 TY = W[17]; | |
67 T10 = FMA(TY, TZ, TX); | |
68 T1Y = FNMS(TY, TW, T1X); | |
69 } | |
70 { | |
71 E TC, TF, TD, T1R, TB, TE; | |
72 TC = ri[WS(rs, 3)]; | |
73 TF = ii[WS(rs, 3)]; | |
74 TB = W[4]; | |
75 TD = TB * TC; | |
76 T1R = TB * TF; | |
77 TE = W[5]; | |
78 TG = FMA(TE, TF, TD); | |
79 T1S = FNMS(TE, TC, T1R); | |
80 } | |
81 { | |
82 E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts; | |
83 Tn = ri[WS(rs, 10)]; | |
84 Tq = ii[WS(rs, 10)]; | |
85 Tm = W[18]; | |
86 To = Tm * Tn; | |
87 T1o = Tm * Tq; | |
88 Tt = ri[WS(rs, 2)]; | |
89 Tw = ii[WS(rs, 2)]; | |
90 Ts = W[2]; | |
91 Tu = Ts * Tt; | |
92 T1q = Ts * Tw; | |
93 { | |
94 E Tr, T1p, Tx, T1r, Tp, Tv; | |
95 Tp = W[19]; | |
96 Tr = FMA(Tp, Tq, To); | |
97 T1p = FNMS(Tp, Tn, T1o); | |
98 Tv = W[3]; | |
99 Tx = FMA(Tv, Tw, Tu); | |
100 T1r = FNMS(Tv, Tt, T1q); | |
101 Ty = Tr + Tx; | |
102 T2r = Tx - Tr; | |
103 T1s = T1p - T1r; | |
104 T2f = T1p + T1r; | |
105 } | |
106 } | |
107 { | |
108 E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17; | |
109 T12 = ri[WS(rs, 1)]; | |
110 T15 = ii[WS(rs, 1)]; | |
111 T11 = W[0]; | |
112 T13 = T11 * T12; | |
113 T1D = T11 * T15; | |
114 T18 = ri[WS(rs, 5)]; | |
115 T1b = ii[WS(rs, 5)]; | |
116 T17 = W[8]; | |
117 T19 = T17 * T18; | |
118 T1F = T17 * T1b; | |
119 { | |
120 E T16, T1E, T1c, T1G, T14, T1a; | |
121 T14 = W[1]; | |
122 T16 = FMA(T14, T15, T13); | |
123 T1E = FNMS(T14, T12, T1D); | |
124 T1a = W[9]; | |
125 T1c = FMA(T1a, T1b, T19); | |
126 T1G = FNMS(T1a, T18, T1F); | |
127 T1d = T16 + T1c; | |
128 T21 = T1c - T16; | |
129 T1H = T1E - T1G; | |
130 T1Z = T1E + T1G; | |
131 } | |
132 } | |
133 { | |
134 E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8; | |
135 T3 = ri[WS(rs, 4)]; | |
136 T6 = ii[WS(rs, 4)]; | |
137 T2 = W[6]; | |
138 T4 = T2 * T3; | |
139 T1h = T2 * T6; | |
140 T9 = ri[WS(rs, 8)]; | |
141 Tc = ii[WS(rs, 8)]; | |
142 T8 = W[14]; | |
143 Ta = T8 * T9; | |
144 T1j = T8 * Tc; | |
145 { | |
146 E T7, T1i, Td, T1k, T5, Tb; | |
147 T5 = W[7]; | |
148 T7 = FMA(T5, T6, T4); | |
149 T1i = FNMS(T5, T3, T1h); | |
150 Tb = W[15]; | |
151 Td = FMA(Tb, Tc, Ta); | |
152 T1k = FNMS(Tb, T9, T1j); | |
153 Te = T7 + Td; | |
154 T2o = Td - T7; | |
155 T1l = T1i - T1k; | |
156 T2h = T1i + T1k; | |
157 } | |
158 } | |
159 { | |
160 E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN; | |
161 TI = ri[WS(rs, 7)]; | |
162 TL = ii[WS(rs, 7)]; | |
163 TH = W[12]; | |
164 TJ = TH * TI; | |
165 T1w = TH * TL; | |
166 TO = ri[WS(rs, 11)]; | |
167 TR = ii[WS(rs, 11)]; | |
168 TN = W[20]; | |
169 TP = TN * TO; | |
170 T1y = TN * TR; | |
171 { | |
172 E TM, T1x, TS, T1z, TK, TQ; | |
173 TK = W[13]; | |
174 TM = FMA(TK, TL, TJ); | |
175 T1x = FNMS(TK, TI, T1w); | |
176 TQ = W[21]; | |
177 TS = FMA(TQ, TR, TP); | |
178 T1z = FNMS(TQ, TO, T1y); | |
179 TT = TM + TS; | |
180 T1V = TS - TM; | |
181 T1A = T1x - T1z; | |
182 T1T = T1x + T1z; | |
183 } | |
184 } | |
185 { | |
186 E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c; | |
187 { | |
188 E Tf, Tz, T2g, T2j; | |
189 Tf = T1 + Te; | |
190 Tz = Tl + Ty; | |
191 TA = Tf + Tz; | |
192 T28 = Tf - Tz; | |
193 T2g = T2e + T2f; | |
194 T2j = T2h + T2i; | |
195 T2k = T2g + T2j; | |
196 T2m = T2j - T2g; | |
197 } | |
198 { | |
199 E TU, T1e, T29, T2a; | |
200 TU = TG + TT; | |
201 T1e = T10 + T1d; | |
202 T1f = TU + T1e; | |
203 T2l = TU - T1e; | |
204 T29 = T1S + T1T; | |
205 T2a = T1Y + T1Z; | |
206 T2b = T29 - T2a; | |
207 T2c = T29 + T2a; | |
208 } | |
209 ri[WS(rs, 6)] = TA - T1f; | |
210 ii[WS(rs, 6)] = T2k - T2c; | |
211 ri[0] = TA + T1f; | |
212 ii[0] = T2c + T2k; | |
213 ri[WS(rs, 3)] = T28 - T2b; | |
214 ii[WS(rs, 3)] = T2l + T2m; | |
215 ri[WS(rs, 9)] = T28 + T2b; | |
216 ii[WS(rs, 9)] = T2m - T2l; | |
217 } | |
218 { | |
219 E T1m, T1K, T2p, T2y, T2s, T2x, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I; | |
220 E T1O; | |
221 { | |
222 E T1g, T2n, T2q, T1n; | |
223 T1g = FNMS(KP500000000, Te, T1); | |
224 T1m = FNMS(KP866025403, T1l, T1g); | |
225 T1K = FMA(KP866025403, T1l, T1g); | |
226 T2n = FNMS(KP500000000, T2h, T2i); | |
227 T2p = FMA(KP866025403, T2o, T2n); | |
228 T2y = FNMS(KP866025403, T2o, T2n); | |
229 T2q = FNMS(KP500000000, T2f, T2e); | |
230 T2s = FMA(KP866025403, T2r, T2q); | |
231 T2x = FNMS(KP866025403, T2r, T2q); | |
232 T1n = FNMS(KP500000000, Ty, Tl); | |
233 T1t = FNMS(KP866025403, T1s, T1n); | |
234 T1L = FMA(KP866025403, T1s, T1n); | |
235 } | |
236 { | |
237 E T1v, T1U, T20, T1C; | |
238 T1v = FNMS(KP500000000, TT, TG); | |
239 T1B = FNMS(KP866025403, T1A, T1v); | |
240 T1N = FMA(KP866025403, T1A, T1v); | |
241 T1U = FNMS(KP500000000, T1T, T1S); | |
242 T1W = FMA(KP866025403, T1V, T1U); | |
243 T25 = FNMS(KP866025403, T1V, T1U); | |
244 T20 = FNMS(KP500000000, T1Z, T1Y); | |
245 T22 = FMA(KP866025403, T21, T20); | |
246 T26 = FNMS(KP866025403, T21, T20); | |
247 T1C = FNMS(KP500000000, T1d, T10); | |
248 T1I = FNMS(KP866025403, T1H, T1C); | |
249 T1O = FMA(KP866025403, T1H, T1C); | |
250 } | |
251 { | |
252 E T1u, T1J, T2z, T2A; | |
253 T1u = T1m + T1t; | |
254 T1J = T1B + T1I; | |
255 ri[WS(rs, 2)] = T1u - T1J; | |
256 ri[WS(rs, 8)] = T1u + T1J; | |
257 T2z = T2x + T2y; | |
258 T2A = T25 + T26; | |
259 ii[WS(rs, 2)] = T2z - T2A; | |
260 ii[WS(rs, 8)] = T2A + T2z; | |
261 } | |
262 { | |
263 E T1M, T1P, T2v, T2w; | |
264 T1M = T1K + T1L; | |
265 T1P = T1N + T1O; | |
266 ri[WS(rs, 10)] = T1M - T1P; | |
267 ri[WS(rs, 4)] = T1M + T1P; | |
268 T2v = T1W + T22; | |
269 T2w = T2s + T2p; | |
270 ii[WS(rs, 4)] = T2v + T2w; | |
271 ii[WS(rs, 10)] = T2w - T2v; | |
272 } | |
273 { | |
274 E T1Q, T23, T2t, T2u; | |
275 T1Q = T1K - T1L; | |
276 T23 = T1W - T22; | |
277 ri[WS(rs, 7)] = T1Q - T23; | |
278 ri[WS(rs, 1)] = T1Q + T23; | |
279 T2t = T2p - T2s; | |
280 T2u = T1N - T1O; | |
281 ii[WS(rs, 1)] = T2t - T2u; | |
282 ii[WS(rs, 7)] = T2u + T2t; | |
283 } | |
284 { | |
285 E T24, T27, T2B, T2C; | |
286 T24 = T1m - T1t; | |
287 T27 = T25 - T26; | |
288 ri[WS(rs, 11)] = T24 - T27; | |
289 ri[WS(rs, 5)] = T24 + T27; | |
290 T2B = T2y - T2x; | |
291 T2C = T1B - T1I; | |
292 ii[WS(rs, 5)] = T2B - T2C; | |
293 ii[WS(rs, 11)] = T2C + T2B; | |
294 } | |
295 } | |
296 } | |
297 } | |
298 } | |
299 | |
300 static const tw_instr twinstr[] = { | |
301 {TW_FULL, 0, 12}, | |
302 {TW_NEXT, 1, 0} | |
303 }; | |
304 | |
305 static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {72, 22, 46, 0}, 0, 0, 0 }; | |
306 | |
307 void X(codelet_t1_12) (planner *p) { | |
308 X(kdft_dit_register) (p, t1_12, &desc); | |
309 } | |
310 #else | |
311 | |
312 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */ | |
313 | |
314 /* | |
315 * This function contains 118 FP additions, 60 FP multiplications, | |
316 * (or, 88 additions, 30 multiplications, 30 fused multiply/add), | |
317 * 47 stack variables, 2 constants, and 48 memory accesses | |
318 */ | |
319 #include "dft/scalar/t.h" | |
320 | |
321 static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
322 { | |
323 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
324 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
325 { | |
326 INT m; | |
327 for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
328 E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F; | |
329 E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g; | |
330 E T1A, T1B; | |
331 { | |
332 E T6, T16, Tb, T17; | |
333 T1 = ri[0]; | |
334 T1W = ii[0]; | |
335 { | |
336 E T3, T5, T2, T4; | |
337 T3 = ri[WS(rs, 4)]; | |
338 T5 = ii[WS(rs, 4)]; | |
339 T2 = W[6]; | |
340 T4 = W[7]; | |
341 T6 = FMA(T2, T3, T4 * T5); | |
342 T16 = FNMS(T4, T3, T2 * T5); | |
343 } | |
344 { | |
345 E T8, Ta, T7, T9; | |
346 T8 = ri[WS(rs, 8)]; | |
347 Ta = ii[WS(rs, 8)]; | |
348 T7 = W[14]; | |
349 T9 = W[15]; | |
350 Tb = FMA(T7, T8, T9 * Ta); | |
351 T17 = FNMS(T9, T8, T7 * Ta); | |
352 } | |
353 T18 = KP866025403 * (T16 - T17); | |
354 T21 = KP866025403 * (Tb - T6); | |
355 Tc = T6 + Tb; | |
356 T15 = FNMS(KP500000000, Tc, T1); | |
357 T1V = T16 + T17; | |
358 T22 = FNMS(KP500000000, T1V, T1W); | |
359 } | |
360 { | |
361 E T11, T1n, TW, T1m; | |
362 { | |
363 E TO, TQ, TN, TP; | |
364 TO = ri[WS(rs, 9)]; | |
365 TQ = ii[WS(rs, 9)]; | |
366 TN = W[16]; | |
367 TP = W[17]; | |
368 TR = FMA(TN, TO, TP * TQ); | |
369 T1E = FNMS(TP, TO, TN * TQ); | |
370 } | |
371 { | |
372 E TY, T10, TX, TZ; | |
373 TY = ri[WS(rs, 5)]; | |
374 T10 = ii[WS(rs, 5)]; | |
375 TX = W[8]; | |
376 TZ = W[9]; | |
377 T11 = FMA(TX, TY, TZ * T10); | |
378 T1n = FNMS(TZ, TY, TX * T10); | |
379 } | |
380 { | |
381 E TT, TV, TS, TU; | |
382 TT = ri[WS(rs, 1)]; | |
383 TV = ii[WS(rs, 1)]; | |
384 TS = W[0]; | |
385 TU = W[1]; | |
386 TW = FMA(TS, TT, TU * TV); | |
387 T1m = FNMS(TU, TT, TS * TV); | |
388 } | |
389 T1o = KP866025403 * (T1m - T1n); | |
390 T1D = KP866025403 * (T11 - TW); | |
391 T12 = TW + T11; | |
392 T1l = FNMS(KP500000000, T12, TR); | |
393 T1F = T1m + T1n; | |
394 T1G = FNMS(KP500000000, T1F, T1E); | |
395 } | |
396 { | |
397 E Ts, T1c, Tn, T1b; | |
398 { | |
399 E Tf, Th, Te, Tg; | |
400 Tf = ri[WS(rs, 6)]; | |
401 Th = ii[WS(rs, 6)]; | |
402 Te = W[10]; | |
403 Tg = W[11]; | |
404 Ti = FMA(Te, Tf, Tg * Th); | |
405 T1S = FNMS(Tg, Tf, Te * Th); | |
406 } | |
407 { | |
408 E Tp, Tr, To, Tq; | |
409 Tp = ri[WS(rs, 2)]; | |
410 Tr = ii[WS(rs, 2)]; | |
411 To = W[2]; | |
412 Tq = W[3]; | |
413 Ts = FMA(To, Tp, Tq * Tr); | |
414 T1c = FNMS(Tq, Tp, To * Tr); | |
415 } | |
416 { | |
417 E Tk, Tm, Tj, Tl; | |
418 Tk = ri[WS(rs, 10)]; | |
419 Tm = ii[WS(rs, 10)]; | |
420 Tj = W[18]; | |
421 Tl = W[19]; | |
422 Tn = FMA(Tj, Tk, Tl * Tm); | |
423 T1b = FNMS(Tl, Tk, Tj * Tm); | |
424 } | |
425 T1d = KP866025403 * (T1b - T1c); | |
426 T24 = KP866025403 * (Ts - Tn); | |
427 Tt = Tn + Ts; | |
428 T1a = FNMS(KP500000000, Tt, Ti); | |
429 T1T = T1b + T1c; | |
430 T25 = FNMS(KP500000000, T1T, T1S); | |
431 } | |
432 { | |
433 E TK, T1i, TF, T1h; | |
434 { | |
435 E Tx, Tz, Tw, Ty; | |
436 Tx = ri[WS(rs, 3)]; | |
437 Tz = ii[WS(rs, 3)]; | |
438 Tw = W[4]; | |
439 Ty = W[5]; | |
440 TA = FMA(Tw, Tx, Ty * Tz); | |
441 T1z = FNMS(Ty, Tx, Tw * Tz); | |
442 } | |
443 { | |
444 E TH, TJ, TG, TI; | |
445 TH = ri[WS(rs, 11)]; | |
446 TJ = ii[WS(rs, 11)]; | |
447 TG = W[20]; | |
448 TI = W[21]; | |
449 TK = FMA(TG, TH, TI * TJ); | |
450 T1i = FNMS(TI, TH, TG * TJ); | |
451 } | |
452 { | |
453 E TC, TE, TB, TD; | |
454 TC = ri[WS(rs, 7)]; | |
455 TE = ii[WS(rs, 7)]; | |
456 TB = W[12]; | |
457 TD = W[13]; | |
458 TF = FMA(TB, TC, TD * TE); | |
459 T1h = FNMS(TD, TC, TB * TE); | |
460 } | |
461 T1j = KP866025403 * (T1h - T1i); | |
462 T1y = KP866025403 * (TK - TF); | |
463 TL = TF + TK; | |
464 T1g = FNMS(KP500000000, TL, TA); | |
465 T1A = T1h + T1i; | |
466 T1B = FNMS(KP500000000, T1A, T1z); | |
467 } | |
468 { | |
469 E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R; | |
470 { | |
471 E Td, Tu, T1U, T1X; | |
472 Td = T1 + Tc; | |
473 Tu = Ti + Tt; | |
474 Tv = Td + Tu; | |
475 T1N = Td - Tu; | |
476 T1U = T1S + T1T; | |
477 T1X = T1V + T1W; | |
478 T1Y = T1U + T1X; | |
479 T20 = T1X - T1U; | |
480 } | |
481 { | |
482 E TM, T13, T1O, T1P; | |
483 TM = TA + TL; | |
484 T13 = TR + T12; | |
485 T14 = TM + T13; | |
486 T1Z = TM - T13; | |
487 T1O = T1z + T1A; | |
488 T1P = T1E + T1F; | |
489 T1Q = T1O - T1P; | |
490 T1R = T1O + T1P; | |
491 } | |
492 ri[WS(rs, 6)] = Tv - T14; | |
493 ii[WS(rs, 6)] = T1Y - T1R; | |
494 ri[0] = Tv + T14; | |
495 ii[0] = T1R + T1Y; | |
496 ri[WS(rs, 3)] = T1N - T1Q; | |
497 ii[WS(rs, 3)] = T1Z + T20; | |
498 ri[WS(rs, 9)] = T1N + T1Q; | |
499 ii[WS(rs, 9)] = T20 - T1Z; | |
500 } | |
501 { | |
502 E T1t, T1x, T27, T2a, T1w, T28, T1I, T29; | |
503 { | |
504 E T1r, T1s, T23, T26; | |
505 T1r = T15 + T18; | |
506 T1s = T1a + T1d; | |
507 T1t = T1r + T1s; | |
508 T1x = T1r - T1s; | |
509 T23 = T21 + T22; | |
510 T26 = T24 + T25; | |
511 T27 = T23 - T26; | |
512 T2a = T26 + T23; | |
513 } | |
514 { | |
515 E T1u, T1v, T1C, T1H; | |
516 T1u = T1g + T1j; | |
517 T1v = T1l + T1o; | |
518 T1w = T1u + T1v; | |
519 T28 = T1u - T1v; | |
520 T1C = T1y + T1B; | |
521 T1H = T1D + T1G; | |
522 T1I = T1C - T1H; | |
523 T29 = T1C + T1H; | |
524 } | |
525 ri[WS(rs, 10)] = T1t - T1w; | |
526 ii[WS(rs, 10)] = T2a - T29; | |
527 ri[WS(rs, 4)] = T1t + T1w; | |
528 ii[WS(rs, 4)] = T29 + T2a; | |
529 ri[WS(rs, 7)] = T1x - T1I; | |
530 ii[WS(rs, 7)] = T28 + T27; | |
531 ri[WS(rs, 1)] = T1x + T1I; | |
532 ii[WS(rs, 1)] = T27 - T28; | |
533 } | |
534 { | |
535 E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e; | |
536 { | |
537 E T19, T1e, T2b, T2c; | |
538 T19 = T15 - T18; | |
539 T1e = T1a - T1d; | |
540 T1f = T19 + T1e; | |
541 T1J = T19 - T1e; | |
542 T2b = T25 - T24; | |
543 T2c = T22 - T21; | |
544 T2d = T2b + T2c; | |
545 T2f = T2c - T2b; | |
546 } | |
547 { | |
548 E T1k, T1p, T1K, T1L; | |
549 T1k = T1g - T1j; | |
550 T1p = T1l - T1o; | |
551 T1q = T1k + T1p; | |
552 T2g = T1k - T1p; | |
553 T1K = T1B - T1y; | |
554 T1L = T1G - T1D; | |
555 T1M = T1K - T1L; | |
556 T2e = T1K + T1L; | |
557 } | |
558 ri[WS(rs, 2)] = T1f - T1q; | |
559 ii[WS(rs, 2)] = T2d - T2e; | |
560 ri[WS(rs, 8)] = T1f + T1q; | |
561 ii[WS(rs, 8)] = T2e + T2d; | |
562 ri[WS(rs, 11)] = T1J - T1M; | |
563 ii[WS(rs, 11)] = T2g + T2f; | |
564 ri[WS(rs, 5)] = T1J + T1M; | |
565 ii[WS(rs, 5)] = T2f - T2g; | |
566 } | |
567 } | |
568 } | |
569 } | |
570 | |
571 static const tw_instr twinstr[] = { | |
572 {TW_FULL, 0, 12}, | |
573 {TW_NEXT, 1, 0} | |
574 }; | |
575 | |
576 static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {88, 30, 30, 0}, 0, 0, 0 }; | |
577 | |
578 void X(codelet_t1_12) (planner *p) { | |
579 X(kdft_dit_register) (p, t1_12, &desc); | |
580 } | |
581 #endif |