Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/q1_5.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:30 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */ | |
29 | |
30 /* | |
31 * This function contains 200 FP additions, 170 FP multiplications, | |
32 * (or, 70 additions, 40 multiplications, 130 fused multiply/add), | |
33 * 75 stack variables, 4 constants, and 100 memory accesses | |
34 */ | |
35 #include "dft/scalar/q.h" | |
36 | |
37 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
46 E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr, TV, T15, T1G; | |
47 E T1q, T12, T14, T1h, T1d, T1B, T1m, T1k, T1l, T1P, T1Z, T2A, T2k, T1W, T1Y; | |
48 E T2b, T27, T2v, T2g, T2e, T2f, T3Z, T3V, T4j, T44, T42, T43, T3D, T3N, T4o; | |
49 E T48, T3K, T3M, T2J, T2T, T3u, T3e, T2Q, T2S, T35, T31, T3p, T3a, T38, T39; | |
50 { | |
51 E T7, Tv, T4, Tu; | |
52 T1 = rio[0]; | |
53 { | |
54 E T5, T6, T2, T3; | |
55 T5 = rio[WS(rs, 2)]; | |
56 T6 = rio[WS(rs, 3)]; | |
57 T7 = T5 + T6; | |
58 Tv = T5 - T6; | |
59 T2 = rio[WS(rs, 1)]; | |
60 T3 = rio[WS(rs, 4)]; | |
61 T4 = T2 + T3; | |
62 Tu = T2 - T3; | |
63 } | |
64 Tb = T4 - T7; | |
65 TM = FNMS(KP618033988, Tu, Tv); | |
66 Tw = FMA(KP618033988, Tv, Tu); | |
67 T8 = T4 + T7; | |
68 Ta = FNMS(KP250000000, T8, T1); | |
69 } | |
70 { | |
71 E Ti, Tp, Tf, To; | |
72 Tn = iio[0]; | |
73 { | |
74 E Tg, Th, Td, Te; | |
75 Tg = iio[WS(rs, 2)]; | |
76 Th = iio[WS(rs, 3)]; | |
77 Ti = Tg - Th; | |
78 Tp = Tg + Th; | |
79 Td = iio[WS(rs, 1)]; | |
80 Te = iio[WS(rs, 4)]; | |
81 Tf = Td - Te; | |
82 To = Td + Te; | |
83 } | |
84 Tj = FMA(KP618033988, Ti, Tf); | |
85 TH = FNMS(KP618033988, Tf, Ti); | |
86 Ts = To - Tp; | |
87 Tq = To + Tp; | |
88 Tr = FNMS(KP250000000, Tq, Tn); | |
89 } | |
90 { | |
91 E T11, T1p, TY, T1o; | |
92 TV = rio[WS(vs, 1)]; | |
93 { | |
94 E TZ, T10, TW, TX; | |
95 TZ = rio[WS(vs, 1) + WS(rs, 2)]; | |
96 T10 = rio[WS(vs, 1) + WS(rs, 3)]; | |
97 T11 = TZ + T10; | |
98 T1p = TZ - T10; | |
99 TW = rio[WS(vs, 1) + WS(rs, 1)]; | |
100 TX = rio[WS(vs, 1) + WS(rs, 4)]; | |
101 TY = TW + TX; | |
102 T1o = TW - TX; | |
103 } | |
104 T15 = TY - T11; | |
105 T1G = FNMS(KP618033988, T1o, T1p); | |
106 T1q = FMA(KP618033988, T1p, T1o); | |
107 T12 = TY + T11; | |
108 T14 = FNMS(KP250000000, T12, TV); | |
109 } | |
110 { | |
111 E T1c, T1j, T19, T1i; | |
112 T1h = iio[WS(vs, 1)]; | |
113 { | |
114 E T1a, T1b, T17, T18; | |
115 T1a = iio[WS(vs, 1) + WS(rs, 2)]; | |
116 T1b = iio[WS(vs, 1) + WS(rs, 3)]; | |
117 T1c = T1a - T1b; | |
118 T1j = T1a + T1b; | |
119 T17 = iio[WS(vs, 1) + WS(rs, 1)]; | |
120 T18 = iio[WS(vs, 1) + WS(rs, 4)]; | |
121 T19 = T17 - T18; | |
122 T1i = T17 + T18; | |
123 } | |
124 T1d = FMA(KP618033988, T1c, T19); | |
125 T1B = FNMS(KP618033988, T19, T1c); | |
126 T1m = T1i - T1j; | |
127 T1k = T1i + T1j; | |
128 T1l = FNMS(KP250000000, T1k, T1h); | |
129 } | |
130 { | |
131 E T1V, T2j, T1S, T2i; | |
132 T1P = rio[WS(vs, 2)]; | |
133 { | |
134 E T1T, T1U, T1Q, T1R; | |
135 T1T = rio[WS(vs, 2) + WS(rs, 2)]; | |
136 T1U = rio[WS(vs, 2) + WS(rs, 3)]; | |
137 T1V = T1T + T1U; | |
138 T2j = T1T - T1U; | |
139 T1Q = rio[WS(vs, 2) + WS(rs, 1)]; | |
140 T1R = rio[WS(vs, 2) + WS(rs, 4)]; | |
141 T1S = T1Q + T1R; | |
142 T2i = T1Q - T1R; | |
143 } | |
144 T1Z = T1S - T1V; | |
145 T2A = FNMS(KP618033988, T2i, T2j); | |
146 T2k = FMA(KP618033988, T2j, T2i); | |
147 T1W = T1S + T1V; | |
148 T1Y = FNMS(KP250000000, T1W, T1P); | |
149 } | |
150 { | |
151 E T26, T2d, T23, T2c; | |
152 T2b = iio[WS(vs, 2)]; | |
153 { | |
154 E T24, T25, T21, T22; | |
155 T24 = iio[WS(vs, 2) + WS(rs, 2)]; | |
156 T25 = iio[WS(vs, 2) + WS(rs, 3)]; | |
157 T26 = T24 - T25; | |
158 T2d = T24 + T25; | |
159 T21 = iio[WS(vs, 2) + WS(rs, 1)]; | |
160 T22 = iio[WS(vs, 2) + WS(rs, 4)]; | |
161 T23 = T21 - T22; | |
162 T2c = T21 + T22; | |
163 } | |
164 T27 = FMA(KP618033988, T26, T23); | |
165 T2v = FNMS(KP618033988, T23, T26); | |
166 T2g = T2c - T2d; | |
167 T2e = T2c + T2d; | |
168 T2f = FNMS(KP250000000, T2e, T2b); | |
169 } | |
170 { | |
171 E T3U, T41, T3R, T40; | |
172 T3Z = iio[WS(vs, 4)]; | |
173 { | |
174 E T3S, T3T, T3P, T3Q; | |
175 T3S = iio[WS(vs, 4) + WS(rs, 2)]; | |
176 T3T = iio[WS(vs, 4) + WS(rs, 3)]; | |
177 T3U = T3S - T3T; | |
178 T41 = T3S + T3T; | |
179 T3P = iio[WS(vs, 4) + WS(rs, 1)]; | |
180 T3Q = iio[WS(vs, 4) + WS(rs, 4)]; | |
181 T3R = T3P - T3Q; | |
182 T40 = T3P + T3Q; | |
183 } | |
184 T3V = FMA(KP618033988, T3U, T3R); | |
185 T4j = FNMS(KP618033988, T3R, T3U); | |
186 T44 = T40 - T41; | |
187 T42 = T40 + T41; | |
188 T43 = FNMS(KP250000000, T42, T3Z); | |
189 } | |
190 { | |
191 E T3J, T47, T3G, T46; | |
192 T3D = rio[WS(vs, 4)]; | |
193 { | |
194 E T3H, T3I, T3E, T3F; | |
195 T3H = rio[WS(vs, 4) + WS(rs, 2)]; | |
196 T3I = rio[WS(vs, 4) + WS(rs, 3)]; | |
197 T3J = T3H + T3I; | |
198 T47 = T3H - T3I; | |
199 T3E = rio[WS(vs, 4) + WS(rs, 1)]; | |
200 T3F = rio[WS(vs, 4) + WS(rs, 4)]; | |
201 T3G = T3E + T3F; | |
202 T46 = T3E - T3F; | |
203 } | |
204 T3N = T3G - T3J; | |
205 T4o = FNMS(KP618033988, T46, T47); | |
206 T48 = FMA(KP618033988, T47, T46); | |
207 T3K = T3G + T3J; | |
208 T3M = FNMS(KP250000000, T3K, T3D); | |
209 } | |
210 { | |
211 E T2P, T3d, T2M, T3c; | |
212 T2J = rio[WS(vs, 3)]; | |
213 { | |
214 E T2N, T2O, T2K, T2L; | |
215 T2N = rio[WS(vs, 3) + WS(rs, 2)]; | |
216 T2O = rio[WS(vs, 3) + WS(rs, 3)]; | |
217 T2P = T2N + T2O; | |
218 T3d = T2N - T2O; | |
219 T2K = rio[WS(vs, 3) + WS(rs, 1)]; | |
220 T2L = rio[WS(vs, 3) + WS(rs, 4)]; | |
221 T2M = T2K + T2L; | |
222 T3c = T2K - T2L; | |
223 } | |
224 T2T = T2M - T2P; | |
225 T3u = FNMS(KP618033988, T3c, T3d); | |
226 T3e = FMA(KP618033988, T3d, T3c); | |
227 T2Q = T2M + T2P; | |
228 T2S = FNMS(KP250000000, T2Q, T2J); | |
229 } | |
230 { | |
231 E T30, T37, T2X, T36; | |
232 T35 = iio[WS(vs, 3)]; | |
233 { | |
234 E T2Y, T2Z, T2V, T2W; | |
235 T2Y = iio[WS(vs, 3) + WS(rs, 2)]; | |
236 T2Z = iio[WS(vs, 3) + WS(rs, 3)]; | |
237 T30 = T2Y - T2Z; | |
238 T37 = T2Y + T2Z; | |
239 T2V = iio[WS(vs, 3) + WS(rs, 1)]; | |
240 T2W = iio[WS(vs, 3) + WS(rs, 4)]; | |
241 T2X = T2V - T2W; | |
242 T36 = T2V + T2W; | |
243 } | |
244 T31 = FMA(KP618033988, T30, T2X); | |
245 T3p = FNMS(KP618033988, T2X, T30); | |
246 T3a = T36 - T37; | |
247 T38 = T36 + T37; | |
248 T39 = FNMS(KP250000000, T38, T35); | |
249 } | |
250 rio[0] = T1 + T8; | |
251 iio[0] = Tn + Tq; | |
252 rio[WS(rs, 1)] = TV + T12; | |
253 iio[WS(rs, 1)] = T1h + T1k; | |
254 rio[WS(rs, 2)] = T1P + T1W; | |
255 iio[WS(rs, 2)] = T2b + T2e; | |
256 iio[WS(rs, 4)] = T3Z + T42; | |
257 rio[WS(rs, 4)] = T3D + T3K; | |
258 rio[WS(rs, 3)] = T2J + T2Q; | |
259 iio[WS(rs, 3)] = T35 + T38; | |
260 { | |
261 E Tk, TA, Tx, TD, Tc, Tt; | |
262 Tc = FMA(KP559016994, Tb, Ta); | |
263 Tk = FMA(KP951056516, Tj, Tc); | |
264 TA = FNMS(KP951056516, Tj, Tc); | |
265 Tt = FMA(KP559016994, Ts, Tr); | |
266 Tx = FNMS(KP951056516, Tw, Tt); | |
267 TD = FMA(KP951056516, Tw, Tt); | |
268 { | |
269 E Tl, Ty, T9, Tm; | |
270 T9 = W[0]; | |
271 Tl = T9 * Tk; | |
272 Ty = T9 * Tx; | |
273 Tm = W[1]; | |
274 rio[WS(vs, 1)] = FMA(Tm, Tx, Tl); | |
275 iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty); | |
276 } | |
277 { | |
278 E TB, TE, Tz, TC; | |
279 Tz = W[6]; | |
280 TB = Tz * TA; | |
281 TE = Tz * TD; | |
282 TC = W[7]; | |
283 rio[WS(vs, 4)] = FMA(TC, TD, TB); | |
284 iio[WS(vs, 4)] = FNMS(TC, TA, TE); | |
285 } | |
286 } | |
287 { | |
288 E TI, TQ, TN, TT, TG, TL; | |
289 TG = FNMS(KP559016994, Tb, Ta); | |
290 TI = FNMS(KP951056516, TH, TG); | |
291 TQ = FMA(KP951056516, TH, TG); | |
292 TL = FNMS(KP559016994, Ts, Tr); | |
293 TN = FMA(KP951056516, TM, TL); | |
294 TT = FNMS(KP951056516, TM, TL); | |
295 { | |
296 E TJ, TO, TF, TK; | |
297 TF = W[2]; | |
298 TJ = TF * TI; | |
299 TO = TF * TN; | |
300 TK = W[3]; | |
301 rio[WS(vs, 2)] = FMA(TK, TN, TJ); | |
302 iio[WS(vs, 2)] = FNMS(TK, TI, TO); | |
303 } | |
304 { | |
305 E TR, TU, TP, TS; | |
306 TP = W[4]; | |
307 TR = TP * TQ; | |
308 TU = TP * TT; | |
309 TS = W[5]; | |
310 rio[WS(vs, 3)] = FMA(TS, TT, TR); | |
311 iio[WS(vs, 3)] = FNMS(TS, TQ, TU); | |
312 } | |
313 } | |
314 { | |
315 E T2w, T2E, T2B, T2H, T2u, T2z; | |
316 T2u = FNMS(KP559016994, T1Z, T1Y); | |
317 T2w = FNMS(KP951056516, T2v, T2u); | |
318 T2E = FMA(KP951056516, T2v, T2u); | |
319 T2z = FNMS(KP559016994, T2g, T2f); | |
320 T2B = FMA(KP951056516, T2A, T2z); | |
321 T2H = FNMS(KP951056516, T2A, T2z); | |
322 { | |
323 E T2x, T2C, T2t, T2y; | |
324 T2t = W[2]; | |
325 T2x = T2t * T2w; | |
326 T2C = T2t * T2B; | |
327 T2y = W[3]; | |
328 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x); | |
329 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C); | |
330 } | |
331 { | |
332 E T2F, T2I, T2D, T2G; | |
333 T2D = W[4]; | |
334 T2F = T2D * T2E; | |
335 T2I = T2D * T2H; | |
336 T2G = W[5]; | |
337 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F); | |
338 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I); | |
339 } | |
340 } | |
341 { | |
342 E T4k, T4s, T4p, T4v, T4i, T4n; | |
343 T4i = FNMS(KP559016994, T3N, T3M); | |
344 T4k = FNMS(KP951056516, T4j, T4i); | |
345 T4s = FMA(KP951056516, T4j, T4i); | |
346 T4n = FNMS(KP559016994, T44, T43); | |
347 T4p = FMA(KP951056516, T4o, T4n); | |
348 T4v = FNMS(KP951056516, T4o, T4n); | |
349 { | |
350 E T4l, T4q, T4h, T4m; | |
351 T4h = W[2]; | |
352 T4l = T4h * T4k; | |
353 T4q = T4h * T4p; | |
354 T4m = W[3]; | |
355 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l); | |
356 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q); | |
357 } | |
358 { | |
359 E T4t, T4w, T4r, T4u; | |
360 T4r = W[4]; | |
361 T4t = T4r * T4s; | |
362 T4w = T4r * T4v; | |
363 T4u = W[5]; | |
364 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t); | |
365 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w); | |
366 } | |
367 } | |
368 { | |
369 E T28, T2o, T2l, T2r, T20, T2h; | |
370 T20 = FMA(KP559016994, T1Z, T1Y); | |
371 T28 = FMA(KP951056516, T27, T20); | |
372 T2o = FNMS(KP951056516, T27, T20); | |
373 T2h = FMA(KP559016994, T2g, T2f); | |
374 T2l = FNMS(KP951056516, T2k, T2h); | |
375 T2r = FMA(KP951056516, T2k, T2h); | |
376 { | |
377 E T29, T2m, T1X, T2a; | |
378 T1X = W[0]; | |
379 T29 = T1X * T28; | |
380 T2m = T1X * T2l; | |
381 T2a = W[1]; | |
382 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29); | |
383 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m); | |
384 } | |
385 { | |
386 E T2p, T2s, T2n, T2q; | |
387 T2n = W[6]; | |
388 T2p = T2n * T2o; | |
389 T2s = T2n * T2r; | |
390 T2q = W[7]; | |
391 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p); | |
392 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s); | |
393 } | |
394 } | |
395 { | |
396 E T32, T3i, T3f, T3l, T2U, T3b; | |
397 T2U = FMA(KP559016994, T2T, T2S); | |
398 T32 = FMA(KP951056516, T31, T2U); | |
399 T3i = FNMS(KP951056516, T31, T2U); | |
400 T3b = FMA(KP559016994, T3a, T39); | |
401 T3f = FNMS(KP951056516, T3e, T3b); | |
402 T3l = FMA(KP951056516, T3e, T3b); | |
403 { | |
404 E T33, T3g, T2R, T34; | |
405 T2R = W[0]; | |
406 T33 = T2R * T32; | |
407 T3g = T2R * T3f; | |
408 T34 = W[1]; | |
409 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33); | |
410 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g); | |
411 } | |
412 { | |
413 E T3j, T3m, T3h, T3k; | |
414 T3h = W[6]; | |
415 T3j = T3h * T3i; | |
416 T3m = T3h * T3l; | |
417 T3k = W[7]; | |
418 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j); | |
419 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m); | |
420 } | |
421 } | |
422 { | |
423 E T3q, T3y, T3v, T3B, T3o, T3t; | |
424 T3o = FNMS(KP559016994, T2T, T2S); | |
425 T3q = FNMS(KP951056516, T3p, T3o); | |
426 T3y = FMA(KP951056516, T3p, T3o); | |
427 T3t = FNMS(KP559016994, T3a, T39); | |
428 T3v = FMA(KP951056516, T3u, T3t); | |
429 T3B = FNMS(KP951056516, T3u, T3t); | |
430 { | |
431 E T3r, T3w, T3n, T3s; | |
432 T3n = W[2]; | |
433 T3r = T3n * T3q; | |
434 T3w = T3n * T3v; | |
435 T3s = W[3]; | |
436 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r); | |
437 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w); | |
438 } | |
439 { | |
440 E T3z, T3C, T3x, T3A; | |
441 T3x = W[4]; | |
442 T3z = T3x * T3y; | |
443 T3C = T3x * T3B; | |
444 T3A = W[5]; | |
445 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z); | |
446 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C); | |
447 } | |
448 } | |
449 { | |
450 E T3W, T4c, T49, T4f, T3O, T45; | |
451 T3O = FMA(KP559016994, T3N, T3M); | |
452 T3W = FMA(KP951056516, T3V, T3O); | |
453 T4c = FNMS(KP951056516, T3V, T3O); | |
454 T45 = FMA(KP559016994, T44, T43); | |
455 T49 = FNMS(KP951056516, T48, T45); | |
456 T4f = FMA(KP951056516, T48, T45); | |
457 { | |
458 E T3X, T4a, T3L, T3Y; | |
459 T3L = W[0]; | |
460 T3X = T3L * T3W; | |
461 T4a = T3L * T49; | |
462 T3Y = W[1]; | |
463 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X); | |
464 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a); | |
465 } | |
466 { | |
467 E T4d, T4g, T4b, T4e; | |
468 T4b = W[6]; | |
469 T4d = T4b * T4c; | |
470 T4g = T4b * T4f; | |
471 T4e = W[7]; | |
472 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d); | |
473 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g); | |
474 } | |
475 } | |
476 { | |
477 E T1C, T1K, T1H, T1N, T1A, T1F; | |
478 T1A = FNMS(KP559016994, T15, T14); | |
479 T1C = FNMS(KP951056516, T1B, T1A); | |
480 T1K = FMA(KP951056516, T1B, T1A); | |
481 T1F = FNMS(KP559016994, T1m, T1l); | |
482 T1H = FMA(KP951056516, T1G, T1F); | |
483 T1N = FNMS(KP951056516, T1G, T1F); | |
484 { | |
485 E T1D, T1I, T1z, T1E; | |
486 T1z = W[2]; | |
487 T1D = T1z * T1C; | |
488 T1I = T1z * T1H; | |
489 T1E = W[3]; | |
490 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D); | |
491 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I); | |
492 } | |
493 { | |
494 E T1L, T1O, T1J, T1M; | |
495 T1J = W[4]; | |
496 T1L = T1J * T1K; | |
497 T1O = T1J * T1N; | |
498 T1M = W[5]; | |
499 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); | |
500 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); | |
501 } | |
502 } | |
503 { | |
504 E T1e, T1u, T1r, T1x, T16, T1n; | |
505 T16 = FMA(KP559016994, T15, T14); | |
506 T1e = FMA(KP951056516, T1d, T16); | |
507 T1u = FNMS(KP951056516, T1d, T16); | |
508 T1n = FMA(KP559016994, T1m, T1l); | |
509 T1r = FNMS(KP951056516, T1q, T1n); | |
510 T1x = FMA(KP951056516, T1q, T1n); | |
511 { | |
512 E T1f, T1s, T13, T1g; | |
513 T13 = W[0]; | |
514 T1f = T13 * T1e; | |
515 T1s = T13 * T1r; | |
516 T1g = W[1]; | |
517 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f); | |
518 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s); | |
519 } | |
520 { | |
521 E T1v, T1y, T1t, T1w; | |
522 T1t = W[6]; | |
523 T1v = T1t * T1u; | |
524 T1y = T1t * T1x; | |
525 T1w = W[7]; | |
526 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v); | |
527 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y); | |
528 } | |
529 } | |
530 } | |
531 } | |
532 } | |
533 | |
534 static const tw_instr twinstr[] = { | |
535 {TW_FULL, 0, 5}, | |
536 {TW_NEXT, 1, 0} | |
537 }; | |
538 | |
539 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {70, 40, 130, 0}, 0, 0, 0 }; | |
540 | |
541 void X(codelet_q1_5) (planner *p) { | |
542 X(kdft_difsq_register) (p, q1_5, &desc); | |
543 } | |
544 #else | |
545 | |
546 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */ | |
547 | |
548 /* | |
549 * This function contains 200 FP additions, 140 FP multiplications, | |
550 * (or, 130 additions, 70 multiplications, 70 fused multiply/add), | |
551 * 75 stack variables, 4 constants, and 100 memory accesses | |
552 */ | |
553 #include "dft/scalar/q.h" | |
554 | |
555 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
556 { | |
557 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
558 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
559 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
560 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
561 { | |
562 INT m; | |
563 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
564 E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s; | |
565 E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J; | |
566 E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M; | |
567 E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L; | |
568 { | |
569 E T7, Tu, T4, Tt; | |
570 T1 = rio[0]; | |
571 { | |
572 E T5, T6, T2, T3; | |
573 T5 = rio[WS(rs, 2)]; | |
574 T6 = rio[WS(rs, 3)]; | |
575 T7 = T5 + T6; | |
576 Tu = T5 - T6; | |
577 T2 = rio[WS(rs, 1)]; | |
578 T3 = rio[WS(rs, 4)]; | |
579 T4 = T2 + T3; | |
580 Tt = T2 - T3; | |
581 } | |
582 Ta = KP559016994 * (T4 - T7); | |
583 TG = FNMS(KP587785252, Tt, KP951056516 * Tu); | |
584 Tv = FMA(KP951056516, Tt, KP587785252 * Tu); | |
585 T8 = T4 + T7; | |
586 Tb = FNMS(KP250000000, T8, T1); | |
587 } | |
588 { | |
589 E Ti, Tn, Tf, Tm; | |
590 Tp = iio[0]; | |
591 { | |
592 E Tg, Th, Td, Te; | |
593 Tg = iio[WS(rs, 2)]; | |
594 Th = iio[WS(rs, 3)]; | |
595 Ti = Tg - Th; | |
596 Tn = Tg + Th; | |
597 Td = iio[WS(rs, 1)]; | |
598 Te = iio[WS(rs, 4)]; | |
599 Tf = Td - Te; | |
600 Tm = Td + Te; | |
601 } | |
602 Tj = FMA(KP951056516, Tf, KP587785252 * Ti); | |
603 TD = FNMS(KP587785252, Tf, KP951056516 * Ti); | |
604 To = KP559016994 * (Tm - Tn); | |
605 Tq = Tm + Tn; | |
606 Tr = FNMS(KP250000000, Tq, Tp); | |
607 } | |
608 { | |
609 E TT, T1g, TQ, T1f; | |
610 TN = rio[WS(vs, 1)]; | |
611 { | |
612 E TR, TS, TO, TP; | |
613 TR = rio[WS(vs, 1) + WS(rs, 2)]; | |
614 TS = rio[WS(vs, 1) + WS(rs, 3)]; | |
615 TT = TR + TS; | |
616 T1g = TR - TS; | |
617 TO = rio[WS(vs, 1) + WS(rs, 1)]; | |
618 TP = rio[WS(vs, 1) + WS(rs, 4)]; | |
619 TQ = TO + TP; | |
620 T1f = TO - TP; | |
621 } | |
622 TW = KP559016994 * (TQ - TT); | |
623 T1s = FNMS(KP587785252, T1f, KP951056516 * T1g); | |
624 T1h = FMA(KP951056516, T1f, KP587785252 * T1g); | |
625 TU = TQ + TT; | |
626 TX = FNMS(KP250000000, TU, TN); | |
627 } | |
628 { | |
629 E T14, T19, T11, T18; | |
630 T1b = iio[WS(vs, 1)]; | |
631 { | |
632 E T12, T13, TZ, T10; | |
633 T12 = iio[WS(vs, 1) + WS(rs, 2)]; | |
634 T13 = iio[WS(vs, 1) + WS(rs, 3)]; | |
635 T14 = T12 - T13; | |
636 T19 = T12 + T13; | |
637 TZ = iio[WS(vs, 1) + WS(rs, 1)]; | |
638 T10 = iio[WS(vs, 1) + WS(rs, 4)]; | |
639 T11 = TZ - T10; | |
640 T18 = TZ + T10; | |
641 } | |
642 T15 = FMA(KP951056516, T11, KP587785252 * T14); | |
643 T1p = FNMS(KP587785252, T11, KP951056516 * T14); | |
644 T1a = KP559016994 * (T18 - T19); | |
645 T1c = T18 + T19; | |
646 T1d = FNMS(KP250000000, T1c, T1b); | |
647 } | |
648 { | |
649 E T1F, T22, T1C, T21; | |
650 T1z = rio[WS(vs, 2)]; | |
651 { | |
652 E T1D, T1E, T1A, T1B; | |
653 T1D = rio[WS(vs, 2) + WS(rs, 2)]; | |
654 T1E = rio[WS(vs, 2) + WS(rs, 3)]; | |
655 T1F = T1D + T1E; | |
656 T22 = T1D - T1E; | |
657 T1A = rio[WS(vs, 2) + WS(rs, 1)]; | |
658 T1B = rio[WS(vs, 2) + WS(rs, 4)]; | |
659 T1C = T1A + T1B; | |
660 T21 = T1A - T1B; | |
661 } | |
662 T1I = KP559016994 * (T1C - T1F); | |
663 T2e = FNMS(KP587785252, T21, KP951056516 * T22); | |
664 T23 = FMA(KP951056516, T21, KP587785252 * T22); | |
665 T1G = T1C + T1F; | |
666 T1J = FNMS(KP250000000, T1G, T1z); | |
667 } | |
668 { | |
669 E T1Q, T1V, T1N, T1U; | |
670 T1X = iio[WS(vs, 2)]; | |
671 { | |
672 E T1O, T1P, T1L, T1M; | |
673 T1O = iio[WS(vs, 2) + WS(rs, 2)]; | |
674 T1P = iio[WS(vs, 2) + WS(rs, 3)]; | |
675 T1Q = T1O - T1P; | |
676 T1V = T1O + T1P; | |
677 T1L = iio[WS(vs, 2) + WS(rs, 1)]; | |
678 T1M = iio[WS(vs, 2) + WS(rs, 4)]; | |
679 T1N = T1L - T1M; | |
680 T1U = T1L + T1M; | |
681 } | |
682 T1R = FMA(KP951056516, T1N, KP587785252 * T1Q); | |
683 T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q); | |
684 T1W = KP559016994 * (T1U - T1V); | |
685 T1Y = T1U + T1V; | |
686 T1Z = FNMS(KP250000000, T1Y, T1X); | |
687 } | |
688 { | |
689 E T3o, T3t, T3l, T3s; | |
690 T3v = iio[WS(vs, 4)]; | |
691 { | |
692 E T3m, T3n, T3j, T3k; | |
693 T3m = iio[WS(vs, 4) + WS(rs, 2)]; | |
694 T3n = iio[WS(vs, 4) + WS(rs, 3)]; | |
695 T3o = T3m - T3n; | |
696 T3t = T3m + T3n; | |
697 T3j = iio[WS(vs, 4) + WS(rs, 1)]; | |
698 T3k = iio[WS(vs, 4) + WS(rs, 4)]; | |
699 T3l = T3j - T3k; | |
700 T3s = T3j + T3k; | |
701 } | |
702 T3p = FMA(KP951056516, T3l, KP587785252 * T3o); | |
703 T3J = FNMS(KP587785252, T3l, KP951056516 * T3o); | |
704 T3u = KP559016994 * (T3s - T3t); | |
705 T3w = T3s + T3t; | |
706 T3x = FNMS(KP250000000, T3w, T3v); | |
707 } | |
708 { | |
709 E T3d, T3A, T3a, T3z; | |
710 T37 = rio[WS(vs, 4)]; | |
711 { | |
712 E T3b, T3c, T38, T39; | |
713 T3b = rio[WS(vs, 4) + WS(rs, 2)]; | |
714 T3c = rio[WS(vs, 4) + WS(rs, 3)]; | |
715 T3d = T3b + T3c; | |
716 T3A = T3b - T3c; | |
717 T38 = rio[WS(vs, 4) + WS(rs, 1)]; | |
718 T39 = rio[WS(vs, 4) + WS(rs, 4)]; | |
719 T3a = T38 + T39; | |
720 T3z = T38 - T39; | |
721 } | |
722 T3g = KP559016994 * (T3a - T3d); | |
723 T3M = FNMS(KP587785252, T3z, KP951056516 * T3A); | |
724 T3B = FMA(KP951056516, T3z, KP587785252 * T3A); | |
725 T3e = T3a + T3d; | |
726 T3h = FNMS(KP250000000, T3e, T37); | |
727 } | |
728 { | |
729 E T2r, T2O, T2o, T2N; | |
730 T2l = rio[WS(vs, 3)]; | |
731 { | |
732 E T2p, T2q, T2m, T2n; | |
733 T2p = rio[WS(vs, 3) + WS(rs, 2)]; | |
734 T2q = rio[WS(vs, 3) + WS(rs, 3)]; | |
735 T2r = T2p + T2q; | |
736 T2O = T2p - T2q; | |
737 T2m = rio[WS(vs, 3) + WS(rs, 1)]; | |
738 T2n = rio[WS(vs, 3) + WS(rs, 4)]; | |
739 T2o = T2m + T2n; | |
740 T2N = T2m - T2n; | |
741 } | |
742 T2u = KP559016994 * (T2o - T2r); | |
743 T30 = FNMS(KP587785252, T2N, KP951056516 * T2O); | |
744 T2P = FMA(KP951056516, T2N, KP587785252 * T2O); | |
745 T2s = T2o + T2r; | |
746 T2v = FNMS(KP250000000, T2s, T2l); | |
747 } | |
748 { | |
749 E T2C, T2H, T2z, T2G; | |
750 T2J = iio[WS(vs, 3)]; | |
751 { | |
752 E T2A, T2B, T2x, T2y; | |
753 T2A = iio[WS(vs, 3) + WS(rs, 2)]; | |
754 T2B = iio[WS(vs, 3) + WS(rs, 3)]; | |
755 T2C = T2A - T2B; | |
756 T2H = T2A + T2B; | |
757 T2x = iio[WS(vs, 3) + WS(rs, 1)]; | |
758 T2y = iio[WS(vs, 3) + WS(rs, 4)]; | |
759 T2z = T2x - T2y; | |
760 T2G = T2x + T2y; | |
761 } | |
762 T2D = FMA(KP951056516, T2z, KP587785252 * T2C); | |
763 T2X = FNMS(KP587785252, T2z, KP951056516 * T2C); | |
764 T2I = KP559016994 * (T2G - T2H); | |
765 T2K = T2G + T2H; | |
766 T2L = FNMS(KP250000000, T2K, T2J); | |
767 } | |
768 rio[0] = T1 + T8; | |
769 iio[0] = Tp + Tq; | |
770 rio[WS(rs, 1)] = TN + TU; | |
771 iio[WS(rs, 1)] = T1b + T1c; | |
772 rio[WS(rs, 2)] = T1z + T1G; | |
773 iio[WS(rs, 2)] = T1X + T1Y; | |
774 iio[WS(rs, 4)] = T3v + T3w; | |
775 rio[WS(rs, 4)] = T37 + T3e; | |
776 rio[WS(rs, 3)] = T2l + T2s; | |
777 iio[WS(rs, 3)] = T2J + T2K; | |
778 { | |
779 E Tk, Ty, Tw, TA, Tc, Ts; | |
780 Tc = Ta + Tb; | |
781 Tk = Tc + Tj; | |
782 Ty = Tc - Tj; | |
783 Ts = To + Tr; | |
784 Tw = Ts - Tv; | |
785 TA = Tv + Ts; | |
786 { | |
787 E T9, Tl, Tx, Tz; | |
788 T9 = W[0]; | |
789 Tl = W[1]; | |
790 rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw); | |
791 iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw); | |
792 Tx = W[6]; | |
793 Tz = W[7]; | |
794 rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA); | |
795 iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA); | |
796 } | |
797 } | |
798 { | |
799 E TE, TK, TI, TM, TC, TH; | |
800 TC = Tb - Ta; | |
801 TE = TC - TD; | |
802 TK = TC + TD; | |
803 TH = Tr - To; | |
804 TI = TG + TH; | |
805 TM = TH - TG; | |
806 { | |
807 E TB, TF, TJ, TL; | |
808 TB = W[2]; | |
809 TF = W[3]; | |
810 rio[WS(vs, 2)] = FMA(TB, TE, TF * TI); | |
811 iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI); | |
812 TJ = W[4]; | |
813 TL = W[5]; | |
814 rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM); | |
815 iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM); | |
816 } | |
817 } | |
818 { | |
819 E T2c, T2i, T2g, T2k, T2a, T2f; | |
820 T2a = T1J - T1I; | |
821 T2c = T2a - T2b; | |
822 T2i = T2a + T2b; | |
823 T2f = T1Z - T1W; | |
824 T2g = T2e + T2f; | |
825 T2k = T2f - T2e; | |
826 { | |
827 E T29, T2d, T2h, T2j; | |
828 T29 = W[2]; | |
829 T2d = W[3]; | |
830 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g); | |
831 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g); | |
832 T2h = W[4]; | |
833 T2j = W[5]; | |
834 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k); | |
835 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k); | |
836 } | |
837 } | |
838 { | |
839 E T3K, T3Q, T3O, T3S, T3I, T3N; | |
840 T3I = T3h - T3g; | |
841 T3K = T3I - T3J; | |
842 T3Q = T3I + T3J; | |
843 T3N = T3x - T3u; | |
844 T3O = T3M + T3N; | |
845 T3S = T3N - T3M; | |
846 { | |
847 E T3H, T3L, T3P, T3R; | |
848 T3H = W[2]; | |
849 T3L = W[3]; | |
850 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O); | |
851 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O); | |
852 T3P = W[4]; | |
853 T3R = W[5]; | |
854 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S); | |
855 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S); | |
856 } | |
857 } | |
858 { | |
859 E T1S, T26, T24, T28, T1K, T20; | |
860 T1K = T1I + T1J; | |
861 T1S = T1K + T1R; | |
862 T26 = T1K - T1R; | |
863 T20 = T1W + T1Z; | |
864 T24 = T20 - T23; | |
865 T28 = T23 + T20; | |
866 { | |
867 E T1H, T1T, T25, T27; | |
868 T1H = W[0]; | |
869 T1T = W[1]; | |
870 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24); | |
871 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24); | |
872 T25 = W[6]; | |
873 T27 = W[7]; | |
874 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28); | |
875 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28); | |
876 } | |
877 } | |
878 { | |
879 E T2E, T2S, T2Q, T2U, T2w, T2M; | |
880 T2w = T2u + T2v; | |
881 T2E = T2w + T2D; | |
882 T2S = T2w - T2D; | |
883 T2M = T2I + T2L; | |
884 T2Q = T2M - T2P; | |
885 T2U = T2P + T2M; | |
886 { | |
887 E T2t, T2F, T2R, T2T; | |
888 T2t = W[0]; | |
889 T2F = W[1]; | |
890 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q); | |
891 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q); | |
892 T2R = W[6]; | |
893 T2T = W[7]; | |
894 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U); | |
895 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U); | |
896 } | |
897 } | |
898 { | |
899 E T2Y, T34, T32, T36, T2W, T31; | |
900 T2W = T2v - T2u; | |
901 T2Y = T2W - T2X; | |
902 T34 = T2W + T2X; | |
903 T31 = T2L - T2I; | |
904 T32 = T30 + T31; | |
905 T36 = T31 - T30; | |
906 { | |
907 E T2V, T2Z, T33, T35; | |
908 T2V = W[2]; | |
909 T2Z = W[3]; | |
910 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32); | |
911 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32); | |
912 T33 = W[4]; | |
913 T35 = W[5]; | |
914 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36); | |
915 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36); | |
916 } | |
917 } | |
918 { | |
919 E T3q, T3E, T3C, T3G, T3i, T3y; | |
920 T3i = T3g + T3h; | |
921 T3q = T3i + T3p; | |
922 T3E = T3i - T3p; | |
923 T3y = T3u + T3x; | |
924 T3C = T3y - T3B; | |
925 T3G = T3B + T3y; | |
926 { | |
927 E T3f, T3r, T3D, T3F; | |
928 T3f = W[0]; | |
929 T3r = W[1]; | |
930 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C); | |
931 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C); | |
932 T3D = W[6]; | |
933 T3F = W[7]; | |
934 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G); | |
935 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G); | |
936 } | |
937 } | |
938 { | |
939 E T1q, T1w, T1u, T1y, T1o, T1t; | |
940 T1o = TX - TW; | |
941 T1q = T1o - T1p; | |
942 T1w = T1o + T1p; | |
943 T1t = T1d - T1a; | |
944 T1u = T1s + T1t; | |
945 T1y = T1t - T1s; | |
946 { | |
947 E T1n, T1r, T1v, T1x; | |
948 T1n = W[2]; | |
949 T1r = W[3]; | |
950 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u); | |
951 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u); | |
952 T1v = W[4]; | |
953 T1x = W[5]; | |
954 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); | |
955 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); | |
956 } | |
957 } | |
958 { | |
959 E T16, T1k, T1i, T1m, TY, T1e; | |
960 TY = TW + TX; | |
961 T16 = TY + T15; | |
962 T1k = TY - T15; | |
963 T1e = T1a + T1d; | |
964 T1i = T1e - T1h; | |
965 T1m = T1h + T1e; | |
966 { | |
967 E TV, T17, T1j, T1l; | |
968 TV = W[0]; | |
969 T17 = W[1]; | |
970 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i); | |
971 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i); | |
972 T1j = W[6]; | |
973 T1l = W[7]; | |
974 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m); | |
975 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m); | |
976 } | |
977 } | |
978 } | |
979 } | |
980 } | |
981 | |
982 static const tw_instr twinstr[] = { | |
983 {TW_FULL, 0, 5}, | |
984 {TW_NEXT, 1, 0} | |
985 }; | |
986 | |
987 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {130, 70, 70, 0}, 0, 0, 0 }; | |
988 | |
989 void X(codelet_q1_5) (planner *p) { | |
990 X(kdft_difsq_register) (p, q1_5, &desc); | |
991 } | |
992 #endif |