comparison src/fftw-3.3.8/dft/scalar/codelets/q1_5.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:30 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
29
30 /*
31 * This function contains 200 FP additions, 170 FP multiplications,
32 * (or, 70 additions, 40 multiplications, 130 fused multiply/add),
33 * 75 stack variables, 4 constants, and 100 memory accesses
34 */
35 #include "dft/scalar/q.h"
36
37 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
46 E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr, TV, T15, T1G;
47 E T1q, T12, T14, T1h, T1d, T1B, T1m, T1k, T1l, T1P, T1Z, T2A, T2k, T1W, T1Y;
48 E T2b, T27, T2v, T2g, T2e, T2f, T3Z, T3V, T4j, T44, T42, T43, T3D, T3N, T4o;
49 E T48, T3K, T3M, T2J, T2T, T3u, T3e, T2Q, T2S, T35, T31, T3p, T3a, T38, T39;
50 {
51 E T7, Tv, T4, Tu;
52 T1 = rio[0];
53 {
54 E T5, T6, T2, T3;
55 T5 = rio[WS(rs, 2)];
56 T6 = rio[WS(rs, 3)];
57 T7 = T5 + T6;
58 Tv = T5 - T6;
59 T2 = rio[WS(rs, 1)];
60 T3 = rio[WS(rs, 4)];
61 T4 = T2 + T3;
62 Tu = T2 - T3;
63 }
64 Tb = T4 - T7;
65 TM = FNMS(KP618033988, Tu, Tv);
66 Tw = FMA(KP618033988, Tv, Tu);
67 T8 = T4 + T7;
68 Ta = FNMS(KP250000000, T8, T1);
69 }
70 {
71 E Ti, Tp, Tf, To;
72 Tn = iio[0];
73 {
74 E Tg, Th, Td, Te;
75 Tg = iio[WS(rs, 2)];
76 Th = iio[WS(rs, 3)];
77 Ti = Tg - Th;
78 Tp = Tg + Th;
79 Td = iio[WS(rs, 1)];
80 Te = iio[WS(rs, 4)];
81 Tf = Td - Te;
82 To = Td + Te;
83 }
84 Tj = FMA(KP618033988, Ti, Tf);
85 TH = FNMS(KP618033988, Tf, Ti);
86 Ts = To - Tp;
87 Tq = To + Tp;
88 Tr = FNMS(KP250000000, Tq, Tn);
89 }
90 {
91 E T11, T1p, TY, T1o;
92 TV = rio[WS(vs, 1)];
93 {
94 E TZ, T10, TW, TX;
95 TZ = rio[WS(vs, 1) + WS(rs, 2)];
96 T10 = rio[WS(vs, 1) + WS(rs, 3)];
97 T11 = TZ + T10;
98 T1p = TZ - T10;
99 TW = rio[WS(vs, 1) + WS(rs, 1)];
100 TX = rio[WS(vs, 1) + WS(rs, 4)];
101 TY = TW + TX;
102 T1o = TW - TX;
103 }
104 T15 = TY - T11;
105 T1G = FNMS(KP618033988, T1o, T1p);
106 T1q = FMA(KP618033988, T1p, T1o);
107 T12 = TY + T11;
108 T14 = FNMS(KP250000000, T12, TV);
109 }
110 {
111 E T1c, T1j, T19, T1i;
112 T1h = iio[WS(vs, 1)];
113 {
114 E T1a, T1b, T17, T18;
115 T1a = iio[WS(vs, 1) + WS(rs, 2)];
116 T1b = iio[WS(vs, 1) + WS(rs, 3)];
117 T1c = T1a - T1b;
118 T1j = T1a + T1b;
119 T17 = iio[WS(vs, 1) + WS(rs, 1)];
120 T18 = iio[WS(vs, 1) + WS(rs, 4)];
121 T19 = T17 - T18;
122 T1i = T17 + T18;
123 }
124 T1d = FMA(KP618033988, T1c, T19);
125 T1B = FNMS(KP618033988, T19, T1c);
126 T1m = T1i - T1j;
127 T1k = T1i + T1j;
128 T1l = FNMS(KP250000000, T1k, T1h);
129 }
130 {
131 E T1V, T2j, T1S, T2i;
132 T1P = rio[WS(vs, 2)];
133 {
134 E T1T, T1U, T1Q, T1R;
135 T1T = rio[WS(vs, 2) + WS(rs, 2)];
136 T1U = rio[WS(vs, 2) + WS(rs, 3)];
137 T1V = T1T + T1U;
138 T2j = T1T - T1U;
139 T1Q = rio[WS(vs, 2) + WS(rs, 1)];
140 T1R = rio[WS(vs, 2) + WS(rs, 4)];
141 T1S = T1Q + T1R;
142 T2i = T1Q - T1R;
143 }
144 T1Z = T1S - T1V;
145 T2A = FNMS(KP618033988, T2i, T2j);
146 T2k = FMA(KP618033988, T2j, T2i);
147 T1W = T1S + T1V;
148 T1Y = FNMS(KP250000000, T1W, T1P);
149 }
150 {
151 E T26, T2d, T23, T2c;
152 T2b = iio[WS(vs, 2)];
153 {
154 E T24, T25, T21, T22;
155 T24 = iio[WS(vs, 2) + WS(rs, 2)];
156 T25 = iio[WS(vs, 2) + WS(rs, 3)];
157 T26 = T24 - T25;
158 T2d = T24 + T25;
159 T21 = iio[WS(vs, 2) + WS(rs, 1)];
160 T22 = iio[WS(vs, 2) + WS(rs, 4)];
161 T23 = T21 - T22;
162 T2c = T21 + T22;
163 }
164 T27 = FMA(KP618033988, T26, T23);
165 T2v = FNMS(KP618033988, T23, T26);
166 T2g = T2c - T2d;
167 T2e = T2c + T2d;
168 T2f = FNMS(KP250000000, T2e, T2b);
169 }
170 {
171 E T3U, T41, T3R, T40;
172 T3Z = iio[WS(vs, 4)];
173 {
174 E T3S, T3T, T3P, T3Q;
175 T3S = iio[WS(vs, 4) + WS(rs, 2)];
176 T3T = iio[WS(vs, 4) + WS(rs, 3)];
177 T3U = T3S - T3T;
178 T41 = T3S + T3T;
179 T3P = iio[WS(vs, 4) + WS(rs, 1)];
180 T3Q = iio[WS(vs, 4) + WS(rs, 4)];
181 T3R = T3P - T3Q;
182 T40 = T3P + T3Q;
183 }
184 T3V = FMA(KP618033988, T3U, T3R);
185 T4j = FNMS(KP618033988, T3R, T3U);
186 T44 = T40 - T41;
187 T42 = T40 + T41;
188 T43 = FNMS(KP250000000, T42, T3Z);
189 }
190 {
191 E T3J, T47, T3G, T46;
192 T3D = rio[WS(vs, 4)];
193 {
194 E T3H, T3I, T3E, T3F;
195 T3H = rio[WS(vs, 4) + WS(rs, 2)];
196 T3I = rio[WS(vs, 4) + WS(rs, 3)];
197 T3J = T3H + T3I;
198 T47 = T3H - T3I;
199 T3E = rio[WS(vs, 4) + WS(rs, 1)];
200 T3F = rio[WS(vs, 4) + WS(rs, 4)];
201 T3G = T3E + T3F;
202 T46 = T3E - T3F;
203 }
204 T3N = T3G - T3J;
205 T4o = FNMS(KP618033988, T46, T47);
206 T48 = FMA(KP618033988, T47, T46);
207 T3K = T3G + T3J;
208 T3M = FNMS(KP250000000, T3K, T3D);
209 }
210 {
211 E T2P, T3d, T2M, T3c;
212 T2J = rio[WS(vs, 3)];
213 {
214 E T2N, T2O, T2K, T2L;
215 T2N = rio[WS(vs, 3) + WS(rs, 2)];
216 T2O = rio[WS(vs, 3) + WS(rs, 3)];
217 T2P = T2N + T2O;
218 T3d = T2N - T2O;
219 T2K = rio[WS(vs, 3) + WS(rs, 1)];
220 T2L = rio[WS(vs, 3) + WS(rs, 4)];
221 T2M = T2K + T2L;
222 T3c = T2K - T2L;
223 }
224 T2T = T2M - T2P;
225 T3u = FNMS(KP618033988, T3c, T3d);
226 T3e = FMA(KP618033988, T3d, T3c);
227 T2Q = T2M + T2P;
228 T2S = FNMS(KP250000000, T2Q, T2J);
229 }
230 {
231 E T30, T37, T2X, T36;
232 T35 = iio[WS(vs, 3)];
233 {
234 E T2Y, T2Z, T2V, T2W;
235 T2Y = iio[WS(vs, 3) + WS(rs, 2)];
236 T2Z = iio[WS(vs, 3) + WS(rs, 3)];
237 T30 = T2Y - T2Z;
238 T37 = T2Y + T2Z;
239 T2V = iio[WS(vs, 3) + WS(rs, 1)];
240 T2W = iio[WS(vs, 3) + WS(rs, 4)];
241 T2X = T2V - T2W;
242 T36 = T2V + T2W;
243 }
244 T31 = FMA(KP618033988, T30, T2X);
245 T3p = FNMS(KP618033988, T2X, T30);
246 T3a = T36 - T37;
247 T38 = T36 + T37;
248 T39 = FNMS(KP250000000, T38, T35);
249 }
250 rio[0] = T1 + T8;
251 iio[0] = Tn + Tq;
252 rio[WS(rs, 1)] = TV + T12;
253 iio[WS(rs, 1)] = T1h + T1k;
254 rio[WS(rs, 2)] = T1P + T1W;
255 iio[WS(rs, 2)] = T2b + T2e;
256 iio[WS(rs, 4)] = T3Z + T42;
257 rio[WS(rs, 4)] = T3D + T3K;
258 rio[WS(rs, 3)] = T2J + T2Q;
259 iio[WS(rs, 3)] = T35 + T38;
260 {
261 E Tk, TA, Tx, TD, Tc, Tt;
262 Tc = FMA(KP559016994, Tb, Ta);
263 Tk = FMA(KP951056516, Tj, Tc);
264 TA = FNMS(KP951056516, Tj, Tc);
265 Tt = FMA(KP559016994, Ts, Tr);
266 Tx = FNMS(KP951056516, Tw, Tt);
267 TD = FMA(KP951056516, Tw, Tt);
268 {
269 E Tl, Ty, T9, Tm;
270 T9 = W[0];
271 Tl = T9 * Tk;
272 Ty = T9 * Tx;
273 Tm = W[1];
274 rio[WS(vs, 1)] = FMA(Tm, Tx, Tl);
275 iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty);
276 }
277 {
278 E TB, TE, Tz, TC;
279 Tz = W[6];
280 TB = Tz * TA;
281 TE = Tz * TD;
282 TC = W[7];
283 rio[WS(vs, 4)] = FMA(TC, TD, TB);
284 iio[WS(vs, 4)] = FNMS(TC, TA, TE);
285 }
286 }
287 {
288 E TI, TQ, TN, TT, TG, TL;
289 TG = FNMS(KP559016994, Tb, Ta);
290 TI = FNMS(KP951056516, TH, TG);
291 TQ = FMA(KP951056516, TH, TG);
292 TL = FNMS(KP559016994, Ts, Tr);
293 TN = FMA(KP951056516, TM, TL);
294 TT = FNMS(KP951056516, TM, TL);
295 {
296 E TJ, TO, TF, TK;
297 TF = W[2];
298 TJ = TF * TI;
299 TO = TF * TN;
300 TK = W[3];
301 rio[WS(vs, 2)] = FMA(TK, TN, TJ);
302 iio[WS(vs, 2)] = FNMS(TK, TI, TO);
303 }
304 {
305 E TR, TU, TP, TS;
306 TP = W[4];
307 TR = TP * TQ;
308 TU = TP * TT;
309 TS = W[5];
310 rio[WS(vs, 3)] = FMA(TS, TT, TR);
311 iio[WS(vs, 3)] = FNMS(TS, TQ, TU);
312 }
313 }
314 {
315 E T2w, T2E, T2B, T2H, T2u, T2z;
316 T2u = FNMS(KP559016994, T1Z, T1Y);
317 T2w = FNMS(KP951056516, T2v, T2u);
318 T2E = FMA(KP951056516, T2v, T2u);
319 T2z = FNMS(KP559016994, T2g, T2f);
320 T2B = FMA(KP951056516, T2A, T2z);
321 T2H = FNMS(KP951056516, T2A, T2z);
322 {
323 E T2x, T2C, T2t, T2y;
324 T2t = W[2];
325 T2x = T2t * T2w;
326 T2C = T2t * T2B;
327 T2y = W[3];
328 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x);
329 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C);
330 }
331 {
332 E T2F, T2I, T2D, T2G;
333 T2D = W[4];
334 T2F = T2D * T2E;
335 T2I = T2D * T2H;
336 T2G = W[5];
337 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F);
338 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I);
339 }
340 }
341 {
342 E T4k, T4s, T4p, T4v, T4i, T4n;
343 T4i = FNMS(KP559016994, T3N, T3M);
344 T4k = FNMS(KP951056516, T4j, T4i);
345 T4s = FMA(KP951056516, T4j, T4i);
346 T4n = FNMS(KP559016994, T44, T43);
347 T4p = FMA(KP951056516, T4o, T4n);
348 T4v = FNMS(KP951056516, T4o, T4n);
349 {
350 E T4l, T4q, T4h, T4m;
351 T4h = W[2];
352 T4l = T4h * T4k;
353 T4q = T4h * T4p;
354 T4m = W[3];
355 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l);
356 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q);
357 }
358 {
359 E T4t, T4w, T4r, T4u;
360 T4r = W[4];
361 T4t = T4r * T4s;
362 T4w = T4r * T4v;
363 T4u = W[5];
364 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t);
365 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w);
366 }
367 }
368 {
369 E T28, T2o, T2l, T2r, T20, T2h;
370 T20 = FMA(KP559016994, T1Z, T1Y);
371 T28 = FMA(KP951056516, T27, T20);
372 T2o = FNMS(KP951056516, T27, T20);
373 T2h = FMA(KP559016994, T2g, T2f);
374 T2l = FNMS(KP951056516, T2k, T2h);
375 T2r = FMA(KP951056516, T2k, T2h);
376 {
377 E T29, T2m, T1X, T2a;
378 T1X = W[0];
379 T29 = T1X * T28;
380 T2m = T1X * T2l;
381 T2a = W[1];
382 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29);
383 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m);
384 }
385 {
386 E T2p, T2s, T2n, T2q;
387 T2n = W[6];
388 T2p = T2n * T2o;
389 T2s = T2n * T2r;
390 T2q = W[7];
391 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p);
392 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s);
393 }
394 }
395 {
396 E T32, T3i, T3f, T3l, T2U, T3b;
397 T2U = FMA(KP559016994, T2T, T2S);
398 T32 = FMA(KP951056516, T31, T2U);
399 T3i = FNMS(KP951056516, T31, T2U);
400 T3b = FMA(KP559016994, T3a, T39);
401 T3f = FNMS(KP951056516, T3e, T3b);
402 T3l = FMA(KP951056516, T3e, T3b);
403 {
404 E T33, T3g, T2R, T34;
405 T2R = W[0];
406 T33 = T2R * T32;
407 T3g = T2R * T3f;
408 T34 = W[1];
409 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33);
410 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g);
411 }
412 {
413 E T3j, T3m, T3h, T3k;
414 T3h = W[6];
415 T3j = T3h * T3i;
416 T3m = T3h * T3l;
417 T3k = W[7];
418 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j);
419 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m);
420 }
421 }
422 {
423 E T3q, T3y, T3v, T3B, T3o, T3t;
424 T3o = FNMS(KP559016994, T2T, T2S);
425 T3q = FNMS(KP951056516, T3p, T3o);
426 T3y = FMA(KP951056516, T3p, T3o);
427 T3t = FNMS(KP559016994, T3a, T39);
428 T3v = FMA(KP951056516, T3u, T3t);
429 T3B = FNMS(KP951056516, T3u, T3t);
430 {
431 E T3r, T3w, T3n, T3s;
432 T3n = W[2];
433 T3r = T3n * T3q;
434 T3w = T3n * T3v;
435 T3s = W[3];
436 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r);
437 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w);
438 }
439 {
440 E T3z, T3C, T3x, T3A;
441 T3x = W[4];
442 T3z = T3x * T3y;
443 T3C = T3x * T3B;
444 T3A = W[5];
445 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z);
446 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C);
447 }
448 }
449 {
450 E T3W, T4c, T49, T4f, T3O, T45;
451 T3O = FMA(KP559016994, T3N, T3M);
452 T3W = FMA(KP951056516, T3V, T3O);
453 T4c = FNMS(KP951056516, T3V, T3O);
454 T45 = FMA(KP559016994, T44, T43);
455 T49 = FNMS(KP951056516, T48, T45);
456 T4f = FMA(KP951056516, T48, T45);
457 {
458 E T3X, T4a, T3L, T3Y;
459 T3L = W[0];
460 T3X = T3L * T3W;
461 T4a = T3L * T49;
462 T3Y = W[1];
463 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X);
464 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a);
465 }
466 {
467 E T4d, T4g, T4b, T4e;
468 T4b = W[6];
469 T4d = T4b * T4c;
470 T4g = T4b * T4f;
471 T4e = W[7];
472 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d);
473 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g);
474 }
475 }
476 {
477 E T1C, T1K, T1H, T1N, T1A, T1F;
478 T1A = FNMS(KP559016994, T15, T14);
479 T1C = FNMS(KP951056516, T1B, T1A);
480 T1K = FMA(KP951056516, T1B, T1A);
481 T1F = FNMS(KP559016994, T1m, T1l);
482 T1H = FMA(KP951056516, T1G, T1F);
483 T1N = FNMS(KP951056516, T1G, T1F);
484 {
485 E T1D, T1I, T1z, T1E;
486 T1z = W[2];
487 T1D = T1z * T1C;
488 T1I = T1z * T1H;
489 T1E = W[3];
490 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D);
491 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I);
492 }
493 {
494 E T1L, T1O, T1J, T1M;
495 T1J = W[4];
496 T1L = T1J * T1K;
497 T1O = T1J * T1N;
498 T1M = W[5];
499 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L);
500 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O);
501 }
502 }
503 {
504 E T1e, T1u, T1r, T1x, T16, T1n;
505 T16 = FMA(KP559016994, T15, T14);
506 T1e = FMA(KP951056516, T1d, T16);
507 T1u = FNMS(KP951056516, T1d, T16);
508 T1n = FMA(KP559016994, T1m, T1l);
509 T1r = FNMS(KP951056516, T1q, T1n);
510 T1x = FMA(KP951056516, T1q, T1n);
511 {
512 E T1f, T1s, T13, T1g;
513 T13 = W[0];
514 T1f = T13 * T1e;
515 T1s = T13 * T1r;
516 T1g = W[1];
517 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f);
518 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s);
519 }
520 {
521 E T1v, T1y, T1t, T1w;
522 T1t = W[6];
523 T1v = T1t * T1u;
524 T1y = T1t * T1x;
525 T1w = W[7];
526 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v);
527 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y);
528 }
529 }
530 }
531 }
532 }
533
534 static const tw_instr twinstr[] = {
535 {TW_FULL, 0, 5},
536 {TW_NEXT, 1, 0}
537 };
538
539 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {70, 40, 130, 0}, 0, 0, 0 };
540
541 void X(codelet_q1_5) (planner *p) {
542 X(kdft_difsq_register) (p, q1_5, &desc);
543 }
544 #else
545
546 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
547
548 /*
549 * This function contains 200 FP additions, 140 FP multiplications,
550 * (or, 130 additions, 70 multiplications, 70 fused multiply/add),
551 * 75 stack variables, 4 constants, and 100 memory accesses
552 */
553 #include "dft/scalar/q.h"
554
555 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
556 {
557 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
558 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
559 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
560 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
561 {
562 INT m;
563 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
564 E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s;
565 E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J;
566 E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M;
567 E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L;
568 {
569 E T7, Tu, T4, Tt;
570 T1 = rio[0];
571 {
572 E T5, T6, T2, T3;
573 T5 = rio[WS(rs, 2)];
574 T6 = rio[WS(rs, 3)];
575 T7 = T5 + T6;
576 Tu = T5 - T6;
577 T2 = rio[WS(rs, 1)];
578 T3 = rio[WS(rs, 4)];
579 T4 = T2 + T3;
580 Tt = T2 - T3;
581 }
582 Ta = KP559016994 * (T4 - T7);
583 TG = FNMS(KP587785252, Tt, KP951056516 * Tu);
584 Tv = FMA(KP951056516, Tt, KP587785252 * Tu);
585 T8 = T4 + T7;
586 Tb = FNMS(KP250000000, T8, T1);
587 }
588 {
589 E Ti, Tn, Tf, Tm;
590 Tp = iio[0];
591 {
592 E Tg, Th, Td, Te;
593 Tg = iio[WS(rs, 2)];
594 Th = iio[WS(rs, 3)];
595 Ti = Tg - Th;
596 Tn = Tg + Th;
597 Td = iio[WS(rs, 1)];
598 Te = iio[WS(rs, 4)];
599 Tf = Td - Te;
600 Tm = Td + Te;
601 }
602 Tj = FMA(KP951056516, Tf, KP587785252 * Ti);
603 TD = FNMS(KP587785252, Tf, KP951056516 * Ti);
604 To = KP559016994 * (Tm - Tn);
605 Tq = Tm + Tn;
606 Tr = FNMS(KP250000000, Tq, Tp);
607 }
608 {
609 E TT, T1g, TQ, T1f;
610 TN = rio[WS(vs, 1)];
611 {
612 E TR, TS, TO, TP;
613 TR = rio[WS(vs, 1) + WS(rs, 2)];
614 TS = rio[WS(vs, 1) + WS(rs, 3)];
615 TT = TR + TS;
616 T1g = TR - TS;
617 TO = rio[WS(vs, 1) + WS(rs, 1)];
618 TP = rio[WS(vs, 1) + WS(rs, 4)];
619 TQ = TO + TP;
620 T1f = TO - TP;
621 }
622 TW = KP559016994 * (TQ - TT);
623 T1s = FNMS(KP587785252, T1f, KP951056516 * T1g);
624 T1h = FMA(KP951056516, T1f, KP587785252 * T1g);
625 TU = TQ + TT;
626 TX = FNMS(KP250000000, TU, TN);
627 }
628 {
629 E T14, T19, T11, T18;
630 T1b = iio[WS(vs, 1)];
631 {
632 E T12, T13, TZ, T10;
633 T12 = iio[WS(vs, 1) + WS(rs, 2)];
634 T13 = iio[WS(vs, 1) + WS(rs, 3)];
635 T14 = T12 - T13;
636 T19 = T12 + T13;
637 TZ = iio[WS(vs, 1) + WS(rs, 1)];
638 T10 = iio[WS(vs, 1) + WS(rs, 4)];
639 T11 = TZ - T10;
640 T18 = TZ + T10;
641 }
642 T15 = FMA(KP951056516, T11, KP587785252 * T14);
643 T1p = FNMS(KP587785252, T11, KP951056516 * T14);
644 T1a = KP559016994 * (T18 - T19);
645 T1c = T18 + T19;
646 T1d = FNMS(KP250000000, T1c, T1b);
647 }
648 {
649 E T1F, T22, T1C, T21;
650 T1z = rio[WS(vs, 2)];
651 {
652 E T1D, T1E, T1A, T1B;
653 T1D = rio[WS(vs, 2) + WS(rs, 2)];
654 T1E = rio[WS(vs, 2) + WS(rs, 3)];
655 T1F = T1D + T1E;
656 T22 = T1D - T1E;
657 T1A = rio[WS(vs, 2) + WS(rs, 1)];
658 T1B = rio[WS(vs, 2) + WS(rs, 4)];
659 T1C = T1A + T1B;
660 T21 = T1A - T1B;
661 }
662 T1I = KP559016994 * (T1C - T1F);
663 T2e = FNMS(KP587785252, T21, KP951056516 * T22);
664 T23 = FMA(KP951056516, T21, KP587785252 * T22);
665 T1G = T1C + T1F;
666 T1J = FNMS(KP250000000, T1G, T1z);
667 }
668 {
669 E T1Q, T1V, T1N, T1U;
670 T1X = iio[WS(vs, 2)];
671 {
672 E T1O, T1P, T1L, T1M;
673 T1O = iio[WS(vs, 2) + WS(rs, 2)];
674 T1P = iio[WS(vs, 2) + WS(rs, 3)];
675 T1Q = T1O - T1P;
676 T1V = T1O + T1P;
677 T1L = iio[WS(vs, 2) + WS(rs, 1)];
678 T1M = iio[WS(vs, 2) + WS(rs, 4)];
679 T1N = T1L - T1M;
680 T1U = T1L + T1M;
681 }
682 T1R = FMA(KP951056516, T1N, KP587785252 * T1Q);
683 T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q);
684 T1W = KP559016994 * (T1U - T1V);
685 T1Y = T1U + T1V;
686 T1Z = FNMS(KP250000000, T1Y, T1X);
687 }
688 {
689 E T3o, T3t, T3l, T3s;
690 T3v = iio[WS(vs, 4)];
691 {
692 E T3m, T3n, T3j, T3k;
693 T3m = iio[WS(vs, 4) + WS(rs, 2)];
694 T3n = iio[WS(vs, 4) + WS(rs, 3)];
695 T3o = T3m - T3n;
696 T3t = T3m + T3n;
697 T3j = iio[WS(vs, 4) + WS(rs, 1)];
698 T3k = iio[WS(vs, 4) + WS(rs, 4)];
699 T3l = T3j - T3k;
700 T3s = T3j + T3k;
701 }
702 T3p = FMA(KP951056516, T3l, KP587785252 * T3o);
703 T3J = FNMS(KP587785252, T3l, KP951056516 * T3o);
704 T3u = KP559016994 * (T3s - T3t);
705 T3w = T3s + T3t;
706 T3x = FNMS(KP250000000, T3w, T3v);
707 }
708 {
709 E T3d, T3A, T3a, T3z;
710 T37 = rio[WS(vs, 4)];
711 {
712 E T3b, T3c, T38, T39;
713 T3b = rio[WS(vs, 4) + WS(rs, 2)];
714 T3c = rio[WS(vs, 4) + WS(rs, 3)];
715 T3d = T3b + T3c;
716 T3A = T3b - T3c;
717 T38 = rio[WS(vs, 4) + WS(rs, 1)];
718 T39 = rio[WS(vs, 4) + WS(rs, 4)];
719 T3a = T38 + T39;
720 T3z = T38 - T39;
721 }
722 T3g = KP559016994 * (T3a - T3d);
723 T3M = FNMS(KP587785252, T3z, KP951056516 * T3A);
724 T3B = FMA(KP951056516, T3z, KP587785252 * T3A);
725 T3e = T3a + T3d;
726 T3h = FNMS(KP250000000, T3e, T37);
727 }
728 {
729 E T2r, T2O, T2o, T2N;
730 T2l = rio[WS(vs, 3)];
731 {
732 E T2p, T2q, T2m, T2n;
733 T2p = rio[WS(vs, 3) + WS(rs, 2)];
734 T2q = rio[WS(vs, 3) + WS(rs, 3)];
735 T2r = T2p + T2q;
736 T2O = T2p - T2q;
737 T2m = rio[WS(vs, 3) + WS(rs, 1)];
738 T2n = rio[WS(vs, 3) + WS(rs, 4)];
739 T2o = T2m + T2n;
740 T2N = T2m - T2n;
741 }
742 T2u = KP559016994 * (T2o - T2r);
743 T30 = FNMS(KP587785252, T2N, KP951056516 * T2O);
744 T2P = FMA(KP951056516, T2N, KP587785252 * T2O);
745 T2s = T2o + T2r;
746 T2v = FNMS(KP250000000, T2s, T2l);
747 }
748 {
749 E T2C, T2H, T2z, T2G;
750 T2J = iio[WS(vs, 3)];
751 {
752 E T2A, T2B, T2x, T2y;
753 T2A = iio[WS(vs, 3) + WS(rs, 2)];
754 T2B = iio[WS(vs, 3) + WS(rs, 3)];
755 T2C = T2A - T2B;
756 T2H = T2A + T2B;
757 T2x = iio[WS(vs, 3) + WS(rs, 1)];
758 T2y = iio[WS(vs, 3) + WS(rs, 4)];
759 T2z = T2x - T2y;
760 T2G = T2x + T2y;
761 }
762 T2D = FMA(KP951056516, T2z, KP587785252 * T2C);
763 T2X = FNMS(KP587785252, T2z, KP951056516 * T2C);
764 T2I = KP559016994 * (T2G - T2H);
765 T2K = T2G + T2H;
766 T2L = FNMS(KP250000000, T2K, T2J);
767 }
768 rio[0] = T1 + T8;
769 iio[0] = Tp + Tq;
770 rio[WS(rs, 1)] = TN + TU;
771 iio[WS(rs, 1)] = T1b + T1c;
772 rio[WS(rs, 2)] = T1z + T1G;
773 iio[WS(rs, 2)] = T1X + T1Y;
774 iio[WS(rs, 4)] = T3v + T3w;
775 rio[WS(rs, 4)] = T37 + T3e;
776 rio[WS(rs, 3)] = T2l + T2s;
777 iio[WS(rs, 3)] = T2J + T2K;
778 {
779 E Tk, Ty, Tw, TA, Tc, Ts;
780 Tc = Ta + Tb;
781 Tk = Tc + Tj;
782 Ty = Tc - Tj;
783 Ts = To + Tr;
784 Tw = Ts - Tv;
785 TA = Tv + Ts;
786 {
787 E T9, Tl, Tx, Tz;
788 T9 = W[0];
789 Tl = W[1];
790 rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw);
791 iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw);
792 Tx = W[6];
793 Tz = W[7];
794 rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA);
795 iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA);
796 }
797 }
798 {
799 E TE, TK, TI, TM, TC, TH;
800 TC = Tb - Ta;
801 TE = TC - TD;
802 TK = TC + TD;
803 TH = Tr - To;
804 TI = TG + TH;
805 TM = TH - TG;
806 {
807 E TB, TF, TJ, TL;
808 TB = W[2];
809 TF = W[3];
810 rio[WS(vs, 2)] = FMA(TB, TE, TF * TI);
811 iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI);
812 TJ = W[4];
813 TL = W[5];
814 rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM);
815 iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM);
816 }
817 }
818 {
819 E T2c, T2i, T2g, T2k, T2a, T2f;
820 T2a = T1J - T1I;
821 T2c = T2a - T2b;
822 T2i = T2a + T2b;
823 T2f = T1Z - T1W;
824 T2g = T2e + T2f;
825 T2k = T2f - T2e;
826 {
827 E T29, T2d, T2h, T2j;
828 T29 = W[2];
829 T2d = W[3];
830 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g);
831 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g);
832 T2h = W[4];
833 T2j = W[5];
834 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k);
835 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k);
836 }
837 }
838 {
839 E T3K, T3Q, T3O, T3S, T3I, T3N;
840 T3I = T3h - T3g;
841 T3K = T3I - T3J;
842 T3Q = T3I + T3J;
843 T3N = T3x - T3u;
844 T3O = T3M + T3N;
845 T3S = T3N - T3M;
846 {
847 E T3H, T3L, T3P, T3R;
848 T3H = W[2];
849 T3L = W[3];
850 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O);
851 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O);
852 T3P = W[4];
853 T3R = W[5];
854 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S);
855 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S);
856 }
857 }
858 {
859 E T1S, T26, T24, T28, T1K, T20;
860 T1K = T1I + T1J;
861 T1S = T1K + T1R;
862 T26 = T1K - T1R;
863 T20 = T1W + T1Z;
864 T24 = T20 - T23;
865 T28 = T23 + T20;
866 {
867 E T1H, T1T, T25, T27;
868 T1H = W[0];
869 T1T = W[1];
870 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24);
871 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24);
872 T25 = W[6];
873 T27 = W[7];
874 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28);
875 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28);
876 }
877 }
878 {
879 E T2E, T2S, T2Q, T2U, T2w, T2M;
880 T2w = T2u + T2v;
881 T2E = T2w + T2D;
882 T2S = T2w - T2D;
883 T2M = T2I + T2L;
884 T2Q = T2M - T2P;
885 T2U = T2P + T2M;
886 {
887 E T2t, T2F, T2R, T2T;
888 T2t = W[0];
889 T2F = W[1];
890 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q);
891 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q);
892 T2R = W[6];
893 T2T = W[7];
894 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U);
895 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U);
896 }
897 }
898 {
899 E T2Y, T34, T32, T36, T2W, T31;
900 T2W = T2v - T2u;
901 T2Y = T2W - T2X;
902 T34 = T2W + T2X;
903 T31 = T2L - T2I;
904 T32 = T30 + T31;
905 T36 = T31 - T30;
906 {
907 E T2V, T2Z, T33, T35;
908 T2V = W[2];
909 T2Z = W[3];
910 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32);
911 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32);
912 T33 = W[4];
913 T35 = W[5];
914 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36);
915 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36);
916 }
917 }
918 {
919 E T3q, T3E, T3C, T3G, T3i, T3y;
920 T3i = T3g + T3h;
921 T3q = T3i + T3p;
922 T3E = T3i - T3p;
923 T3y = T3u + T3x;
924 T3C = T3y - T3B;
925 T3G = T3B + T3y;
926 {
927 E T3f, T3r, T3D, T3F;
928 T3f = W[0];
929 T3r = W[1];
930 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C);
931 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C);
932 T3D = W[6];
933 T3F = W[7];
934 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G);
935 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G);
936 }
937 }
938 {
939 E T1q, T1w, T1u, T1y, T1o, T1t;
940 T1o = TX - TW;
941 T1q = T1o - T1p;
942 T1w = T1o + T1p;
943 T1t = T1d - T1a;
944 T1u = T1s + T1t;
945 T1y = T1t - T1s;
946 {
947 E T1n, T1r, T1v, T1x;
948 T1n = W[2];
949 T1r = W[3];
950 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u);
951 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u);
952 T1v = W[4];
953 T1x = W[5];
954 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y);
955 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y);
956 }
957 }
958 {
959 E T16, T1k, T1i, T1m, TY, T1e;
960 TY = TW + TX;
961 T16 = TY + T15;
962 T1k = TY - T15;
963 T1e = T1a + T1d;
964 T1i = T1e - T1h;
965 T1m = T1h + T1e;
966 {
967 E TV, T17, T1j, T1l;
968 TV = W[0];
969 T17 = W[1];
970 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i);
971 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i);
972 T1j = W[6];
973 T1l = W[7];
974 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m);
975 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m);
976 }
977 }
978 }
979 }
980 }
981
982 static const tw_instr twinstr[] = {
983 {TW_FULL, 0, 5},
984 {TW_NEXT, 1, 0}
985 };
986
987 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {130, 70, 70, 0}, 0, 0, 0 };
988
989 void X(codelet_q1_5) (planner *p) {
990 X(kdft_difsq_register) (p, q1_5, &desc);
991 }
992 #endif