Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/n1_64.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:12 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ | |
29 | |
30 /* | |
31 * This function contains 912 FP additions, 392 FP multiplications, | |
32 * (or, 520 additions, 0 multiplications, 392 fused multiply/add), | |
33 * 172 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "dft/scalar/n.h" | |
36 | |
37 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
40 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
41 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
42 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
43 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
44 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
45 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
46 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT i; | |
56 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | |
57 E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; | |
58 E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J; | |
59 E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; | |
60 E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z; | |
61 E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; | |
62 E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; | |
63 E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; | |
64 E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W; | |
65 E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A; | |
66 { | |
67 E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; | |
68 E T3c; | |
69 { | |
70 E T1, T2, T24, T25; | |
71 T1 = ri[0]; | |
72 T2 = ri[WS(is, 32)]; | |
73 T3 = T1 + T2; | |
74 T35 = T1 - T2; | |
75 T24 = ii[0]; | |
76 T25 = ii[WS(is, 32)]; | |
77 T26 = T24 + T25; | |
78 T5Y = T24 - T25; | |
79 } | |
80 { | |
81 E T4, T5, T27, T28; | |
82 T4 = ri[WS(is, 16)]; | |
83 T5 = ri[WS(is, 48)]; | |
84 T6 = T4 + T5; | |
85 T5X = T4 - T5; | |
86 T27 = ii[WS(is, 16)]; | |
87 T28 = ii[WS(is, 48)]; | |
88 T29 = T27 + T28; | |
89 T36 = T27 - T28; | |
90 } | |
91 { | |
92 E T8, T9, T2b, T2c; | |
93 T8 = ri[WS(is, 8)]; | |
94 T9 = ri[WS(is, 40)]; | |
95 Ta = T8 + T9; | |
96 T39 = T8 - T9; | |
97 T2b = ii[WS(is, 8)]; | |
98 T2c = ii[WS(is, 40)]; | |
99 T2d = T2b + T2c; | |
100 T38 = T2b - T2c; | |
101 } | |
102 { | |
103 E Tb, Tc, T2e, T2f; | |
104 Tb = ri[WS(is, 56)]; | |
105 Tc = ri[WS(is, 24)]; | |
106 Td = Tb + Tc; | |
107 T3b = Tb - Tc; | |
108 T2e = ii[WS(is, 56)]; | |
109 T2f = ii[WS(is, 24)]; | |
110 T2g = T2e + T2f; | |
111 T3c = T2e - T2f; | |
112 } | |
113 { | |
114 E T7, Te, T2a, T2h; | |
115 T37 = T35 - T36; | |
116 T7B = T35 + T36; | |
117 T8F = T5Y - T5X; | |
118 T5Z = T5X + T5Y; | |
119 T7 = T3 + T6; | |
120 Te = Ta + Td; | |
121 Tf = T7 + Te; | |
122 Td9 = T7 - Te; | |
123 { | |
124 E Tbz, TbA, T60, T61; | |
125 Tbz = Td - Ta; | |
126 TbA = T26 - T29; | |
127 TbB = Tbz + TbA; | |
128 TcB = TbA - Tbz; | |
129 T60 = T3b - T3c; | |
130 T61 = T39 + T38; | |
131 T62 = T60 - T61; | |
132 T7C = T61 + T60; | |
133 } | |
134 T2a = T26 + T29; | |
135 T2h = T2d + T2g; | |
136 T2i = T2a + T2h; | |
137 TdH = T2a - T2h; | |
138 { | |
139 E Taf, Tag, T3a, T3d; | |
140 Taf = T3 - T6; | |
141 Tag = T2d - T2g; | |
142 Tah = Taf + Tag; | |
143 Tcb = Taf - Tag; | |
144 T3a = T38 - T39; | |
145 T3d = T3b + T3c; | |
146 T3e = T3a - T3d; | |
147 T8G = T3a + T3d; | |
148 } | |
149 } | |
150 } | |
151 { | |
152 E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; | |
153 E T3r; | |
154 { | |
155 E Tg, Th, T2j, T2k; | |
156 Tg = ri[WS(is, 4)]; | |
157 Th = ri[WS(is, 36)]; | |
158 Ti = Tg + Th; | |
159 T3j = Tg - Th; | |
160 T2j = ii[WS(is, 4)]; | |
161 T2k = ii[WS(is, 36)]; | |
162 T2l = T2j + T2k; | |
163 T3h = T2j - T2k; | |
164 } | |
165 { | |
166 E Tj, Tk, T2m, T2n; | |
167 Tj = ri[WS(is, 20)]; | |
168 Tk = ri[WS(is, 52)]; | |
169 Tl = Tj + Tk; | |
170 T3g = Tj - Tk; | |
171 T2m = ii[WS(is, 20)]; | |
172 T2n = ii[WS(is, 52)]; | |
173 T2o = T2m + T2n; | |
174 T3k = T2m - T2n; | |
175 } | |
176 { | |
177 E Tn, To, T2q, T2r; | |
178 Tn = ri[WS(is, 60)]; | |
179 To = ri[WS(is, 28)]; | |
180 Tp = Tn + To; | |
181 T3q = Tn - To; | |
182 T2q = ii[WS(is, 60)]; | |
183 T2r = ii[WS(is, 28)]; | |
184 T2s = T2q + T2r; | |
185 T3o = T2q - T2r; | |
186 } | |
187 { | |
188 E Tq, Tr, T2t, T2u; | |
189 Tq = ri[WS(is, 12)]; | |
190 Tr = ri[WS(is, 44)]; | |
191 Ts = Tq + Tr; | |
192 T3n = Tq - Tr; | |
193 T2t = ii[WS(is, 12)]; | |
194 T2u = ii[WS(is, 44)]; | |
195 T2v = T2t + T2u; | |
196 T3r = T2t - T2u; | |
197 } | |
198 { | |
199 E Tm, Tt, Tai, Taj; | |
200 Tm = Ti + Tl; | |
201 Tt = Tp + Ts; | |
202 Tu = Tm + Tt; | |
203 TdI = Tt - Tm; | |
204 Tai = Ti - Tl; | |
205 Taj = T2l - T2o; | |
206 Tak = Tai + Taj; | |
207 TbC = Taj - Tai; | |
208 } | |
209 { | |
210 E Tal, Tam, T2p, T2w; | |
211 Tal = Tp - Ts; | |
212 Tam = T2s - T2v; | |
213 Tan = Tal - Tam; | |
214 TbD = Tal + Tam; | |
215 T2p = T2l + T2o; | |
216 T2w = T2s + T2v; | |
217 T2x = T2p + T2w; | |
218 Tda = T2p - T2w; | |
219 } | |
220 { | |
221 E T3i, T3l, T7E, T7F; | |
222 T3i = T3g + T3h; | |
223 T3l = T3j - T3k; | |
224 T3m = FMA(KP414213562, T3l, T3i); | |
225 T65 = FNMS(KP414213562, T3i, T3l); | |
226 T7E = T3j + T3k; | |
227 T7F = T3h - T3g; | |
228 T7G = FMA(KP414213562, T7F, T7E); | |
229 T8I = FNMS(KP414213562, T7E, T7F); | |
230 } | |
231 { | |
232 E T7H, T7I, T3p, T3s; | |
233 T7H = T3q + T3r; | |
234 T7I = T3o - T3n; | |
235 T7J = FNMS(KP414213562, T7I, T7H); | |
236 T8J = FMA(KP414213562, T7H, T7I); | |
237 T3p = T3n + T3o; | |
238 T3s = T3q - T3r; | |
239 T3t = FNMS(KP414213562, T3s, T3p); | |
240 T64 = FMA(KP414213562, T3p, T3s); | |
241 } | |
242 } | |
243 { | |
244 E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I; | |
245 E T3B; | |
246 { | |
247 E Tw, Tx, T2C, T2D; | |
248 Tw = ri[WS(is, 2)]; | |
249 Tx = ri[WS(is, 34)]; | |
250 Ty = Tw + Tx; | |
251 T3H = Tw - Tx; | |
252 { | |
253 E T2z, T2A, Tz, TA; | |
254 T2z = ii[WS(is, 2)]; | |
255 T2A = ii[WS(is, 34)]; | |
256 T2B = T2z + T2A; | |
257 T3x = T2z - T2A; | |
258 Tz = ri[WS(is, 18)]; | |
259 TA = ri[WS(is, 50)]; | |
260 TB = Tz + TA; | |
261 T3w = Tz - TA; | |
262 } | |
263 T2C = ii[WS(is, 18)]; | |
264 T2D = ii[WS(is, 50)]; | |
265 T2E = T2C + T2D; | |
266 T3I = T2C - T2D; | |
267 { | |
268 E TG, TH, T3C, T2J, T2K, T3D; | |
269 TG = ri[WS(is, 58)]; | |
270 TH = ri[WS(is, 26)]; | |
271 T3C = TG - TH; | |
272 T2J = ii[WS(is, 58)]; | |
273 T2K = ii[WS(is, 26)]; | |
274 T3D = T2J - T2K; | |
275 TI = TG + TH; | |
276 T3K = T3C + T3D; | |
277 T2L = T2J + T2K; | |
278 T3E = T3C - T3D; | |
279 } | |
280 { | |
281 E TD, TE, T3z, T2G, T2H, T3A; | |
282 TD = ri[WS(is, 10)]; | |
283 TE = ri[WS(is, 42)]; | |
284 T3z = TD - TE; | |
285 T2G = ii[WS(is, 10)]; | |
286 T2H = ii[WS(is, 42)]; | |
287 T3A = T2G - T2H; | |
288 TF = TD + TE; | |
289 T3L = T3A - T3z; | |
290 T2I = T2G + T2H; | |
291 T3B = T3z + T3A; | |
292 } | |
293 } | |
294 { | |
295 E TC, TJ, Taq, Tar; | |
296 TC = Ty + TB; | |
297 TJ = TF + TI; | |
298 TK = TC + TJ; | |
299 Tdd = TC - TJ; | |
300 Taq = TI - TF; | |
301 Tar = T2B - T2E; | |
302 Tas = Taq + Tar; | |
303 Tce = Tar - Taq; | |
304 } | |
305 { | |
306 E Tat, Tau, T2F, T2M; | |
307 Tat = Ty - TB; | |
308 Tau = T2I - T2L; | |
309 Tav = Tat + Tau; | |
310 Tcf = Tat - Tau; | |
311 T2F = T2B + T2E; | |
312 T2M = T2I + T2L; | |
313 T2N = T2F + T2M; | |
314 Tdc = T2F - T2M; | |
315 } | |
316 { | |
317 E T3y, T3F, T7M, T7N; | |
318 T3y = T3w + T3x; | |
319 T3F = T3B - T3E; | |
320 T3G = FNMS(KP707106781, T3F, T3y); | |
321 T6G = FMA(KP707106781, T3F, T3y); | |
322 T7M = T3x - T3w; | |
323 T7N = T3L + T3K; | |
324 T7O = FMA(KP707106781, T7N, T7M); | |
325 T9k = FNMS(KP707106781, T7N, T7M); | |
326 } | |
327 { | |
328 E T7P, T7Q, T3J, T3M; | |
329 T7P = T3H + T3I; | |
330 T7Q = T3B + T3E; | |
331 T7R = FMA(KP707106781, T7Q, T7P); | |
332 T9l = FNMS(KP707106781, T7Q, T7P); | |
333 T3J = T3H - T3I; | |
334 T3M = T3K - T3L; | |
335 T3N = FNMS(KP707106781, T3M, T3J); | |
336 T6H = FMA(KP707106781, T3M, T3J); | |
337 } | |
338 } | |
339 { | |
340 E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c; | |
341 E T5O; | |
342 { | |
343 E T1x, T1y, T5J, T5K; | |
344 T1x = ri[WS(is, 63)]; | |
345 T1y = ri[WS(is, 31)]; | |
346 T1z = T1x + T1y; | |
347 T5I = T1x - T1y; | |
348 { | |
349 E T54, T55, T1A, T1B; | |
350 T54 = ii[WS(is, 63)]; | |
351 T55 = ii[WS(is, 31)]; | |
352 T56 = T54 - T55; | |
353 Tb8 = T54 + T55; | |
354 T1A = ri[WS(is, 15)]; | |
355 T1B = ri[WS(is, 47)]; | |
356 T1C = T1A + T1B; | |
357 T53 = T1A - T1B; | |
358 } | |
359 T5J = ii[WS(is, 15)]; | |
360 T5K = ii[WS(is, 47)]; | |
361 T5L = T5J - T5K; | |
362 Tb9 = T5J + T5K; | |
363 { | |
364 E T1H, T1I, T5d, T5e, T5f, T5g; | |
365 T1H = ri[WS(is, 55)]; | |
366 T1I = ri[WS(is, 23)]; | |
367 T5d = T1H - T1I; | |
368 T5e = ii[WS(is, 55)]; | |
369 T5f = ii[WS(is, 23)]; | |
370 T5g = T5e - T5f; | |
371 T1J = T1H + T1I; | |
372 Tbq = T5e + T5f; | |
373 T5h = T5d - T5g; | |
374 T5N = T5d + T5g; | |
375 } | |
376 { | |
377 E T1E, T1F, T58, T59, T5a, T5b; | |
378 T1E = ri[WS(is, 7)]; | |
379 T1F = ri[WS(is, 39)]; | |
380 T58 = T1E - T1F; | |
381 T59 = ii[WS(is, 7)]; | |
382 T5a = ii[WS(is, 39)]; | |
383 T5b = T59 - T5a; | |
384 T1G = T1E + T1F; | |
385 Tbp = T59 + T5a; | |
386 T5c = T58 + T5b; | |
387 T5O = T5b - T58; | |
388 } | |
389 } | |
390 { | |
391 E T1D, T1K, Tbo, Tbr; | |
392 T1D = T1z + T1C; | |
393 T1K = T1G + T1J; | |
394 T1L = T1D + T1K; | |
395 TdA = T1D - T1K; | |
396 Tbo = T1z - T1C; | |
397 Tbr = Tbp - Tbq; | |
398 Tbs = Tbo + Tbr; | |
399 Tct = Tbo - Tbr; | |
400 } | |
401 { | |
402 E Tdv, Tdw, T57, T5i; | |
403 Tdv = Tb8 + Tb9; | |
404 Tdw = Tbp + Tbq; | |
405 Tdx = Tdv - Tdw; | |
406 Teo = Tdv + Tdw; | |
407 T57 = T53 + T56; | |
408 T5i = T5c - T5h; | |
409 T5j = FNMS(KP707106781, T5i, T57); | |
410 T6Y = FMA(KP707106781, T5i, T57); | |
411 } | |
412 { | |
413 E T5M, T5P, T8w, T8x; | |
414 T5M = T5I - T5L; | |
415 T5P = T5N - T5O; | |
416 T5Q = FNMS(KP707106781, T5P, T5M); | |
417 T6V = FMA(KP707106781, T5P, T5M); | |
418 T8w = T5I + T5L; | |
419 T8x = T5c + T5h; | |
420 T8y = FMA(KP707106781, T8x, T8w); | |
421 T9z = FNMS(KP707106781, T8x, T8w); | |
422 } | |
423 { | |
424 E Tb7, Tba, T8l, T8m; | |
425 Tb7 = T1J - T1G; | |
426 Tba = Tb8 - Tb9; | |
427 Tbb = Tb7 + Tba; | |
428 Tcw = Tba - Tb7; | |
429 T8l = T56 - T53; | |
430 T8m = T5O + T5N; | |
431 T8n = FMA(KP707106781, T8m, T8l); | |
432 T9C = FNMS(KP707106781, T8m, T8l); | |
433 } | |
434 } | |
435 { | |
436 E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X; | |
437 E T3U; | |
438 { | |
439 E TL, TM, T2R, T2S; | |
440 TL = ri[WS(is, 62)]; | |
441 TM = ri[WS(is, 30)]; | |
442 TN = TL + TM; | |
443 T40 = TL - TM; | |
444 { | |
445 E T2O, T2P, TO, TP; | |
446 T2O = ii[WS(is, 62)]; | |
447 T2P = ii[WS(is, 30)]; | |
448 T2Q = T2O + T2P; | |
449 T3Q = T2O - T2P; | |
450 TO = ri[WS(is, 14)]; | |
451 TP = ri[WS(is, 46)]; | |
452 TQ = TO + TP; | |
453 T3P = TO - TP; | |
454 } | |
455 T2R = ii[WS(is, 14)]; | |
456 T2S = ii[WS(is, 46)]; | |
457 T2T = T2R + T2S; | |
458 T41 = T2R - T2S; | |
459 { | |
460 E TV, TW, T3V, T2Y, T2Z, T3W; | |
461 TV = ri[WS(is, 54)]; | |
462 TW = ri[WS(is, 22)]; | |
463 T3V = TV - TW; | |
464 T2Y = ii[WS(is, 54)]; | |
465 T2Z = ii[WS(is, 22)]; | |
466 T3W = T2Y - T2Z; | |
467 TX = TV + TW; | |
468 T43 = T3V + T3W; | |
469 T30 = T2Y + T2Z; | |
470 T3X = T3V - T3W; | |
471 } | |
472 { | |
473 E TS, TT, T3S, T2V, T2W, T3T; | |
474 TS = ri[WS(is, 6)]; | |
475 TT = ri[WS(is, 38)]; | |
476 T3S = TS - TT; | |
477 T2V = ii[WS(is, 6)]; | |
478 T2W = ii[WS(is, 38)]; | |
479 T3T = T2V - T2W; | |
480 TU = TS + TT; | |
481 T44 = T3T - T3S; | |
482 T2X = T2V + T2W; | |
483 T3U = T3S + T3T; | |
484 } | |
485 } | |
486 { | |
487 E TR, TY, Tax, Tay; | |
488 TR = TN + TQ; | |
489 TY = TU + TX; | |
490 TZ = TR + TY; | |
491 Tdf = TR - TY; | |
492 Tax = TX - TU; | |
493 Tay = T2Q - T2T; | |
494 Taz = Tax + Tay; | |
495 Tch = Tay - Tax; | |
496 } | |
497 { | |
498 E TaA, TaB, T2U, T31; | |
499 TaA = TN - TQ; | |
500 TaB = T2X - T30; | |
501 TaC = TaA + TaB; | |
502 Tci = TaA - TaB; | |
503 T2U = T2Q + T2T; | |
504 T31 = T2X + T30; | |
505 T32 = T2U + T31; | |
506 Tdg = T2U - T31; | |
507 } | |
508 { | |
509 E T3R, T3Y, T7T, T7U; | |
510 T3R = T3P + T3Q; | |
511 T3Y = T3U - T3X; | |
512 T3Z = FNMS(KP707106781, T3Y, T3R); | |
513 T6J = FMA(KP707106781, T3Y, T3R); | |
514 T7T = T3Q - T3P; | |
515 T7U = T44 + T43; | |
516 T7V = FMA(KP707106781, T7U, T7T); | |
517 T9n = FNMS(KP707106781, T7U, T7T); | |
518 } | |
519 { | |
520 E T7W, T7X, T42, T45; | |
521 T7W = T40 + T41; | |
522 T7X = T3U + T3X; | |
523 T7Y = FMA(KP707106781, T7X, T7W); | |
524 T9o = FNMS(KP707106781, T7X, T7W); | |
525 T42 = T40 - T41; | |
526 T45 = T43 - T44; | |
527 T46 = FNMS(KP707106781, T45, T42); | |
528 T6K = FMA(KP707106781, T45, T42); | |
529 } | |
530 } | |
531 { | |
532 E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j; | |
533 E T4V; | |
534 { | |
535 E T12, T13, T4Q, T4R; | |
536 T12 = ri[WS(is, 1)]; | |
537 T13 = ri[WS(is, 33)]; | |
538 T14 = T12 + T13; | |
539 T4P = T12 - T13; | |
540 { | |
541 E T4b, T4c, T15, T16; | |
542 T4b = ii[WS(is, 1)]; | |
543 T4c = ii[WS(is, 33)]; | |
544 T4d = T4b - T4c; | |
545 TaH = T4b + T4c; | |
546 T15 = ri[WS(is, 17)]; | |
547 T16 = ri[WS(is, 49)]; | |
548 T17 = T15 + T16; | |
549 T4a = T15 - T16; | |
550 } | |
551 T4Q = ii[WS(is, 17)]; | |
552 T4R = ii[WS(is, 49)]; | |
553 T4S = T4Q - T4R; | |
554 TaI = T4Q + T4R; | |
555 { | |
556 E T1c, T1d, T4k, T4l, T4m, T4n; | |
557 T1c = ri[WS(is, 57)]; | |
558 T1d = ri[WS(is, 25)]; | |
559 T4k = T1c - T1d; | |
560 T4l = ii[WS(is, 57)]; | |
561 T4m = ii[WS(is, 25)]; | |
562 T4n = T4l - T4m; | |
563 T1e = T1c + T1d; | |
564 TaZ = T4l + T4m; | |
565 T4o = T4k - T4n; | |
566 T4U = T4k + T4n; | |
567 } | |
568 { | |
569 E T19, T1a, T4f, T4g, T4h, T4i; | |
570 T19 = ri[WS(is, 9)]; | |
571 T1a = ri[WS(is, 41)]; | |
572 T4f = T19 - T1a; | |
573 T4g = ii[WS(is, 9)]; | |
574 T4h = ii[WS(is, 41)]; | |
575 T4i = T4g - T4h; | |
576 T1b = T19 + T1a; | |
577 TaY = T4g + T4h; | |
578 T4j = T4f + T4i; | |
579 T4V = T4i - T4f; | |
580 } | |
581 } | |
582 { | |
583 E T18, T1f, TaX, Tb0; | |
584 T18 = T14 + T17; | |
585 T1f = T1b + T1e; | |
586 T1g = T18 + T1f; | |
587 Tdp = T18 - T1f; | |
588 TaX = T14 - T17; | |
589 Tb0 = TaY - TaZ; | |
590 Tb1 = TaX + Tb0; | |
591 Tcm = TaX - Tb0; | |
592 } | |
593 { | |
594 E Tdk, Tdl, T4e, T4p; | |
595 Tdk = TaH + TaI; | |
596 Tdl = TaY + TaZ; | |
597 Tdm = Tdk - Tdl; | |
598 Tej = Tdk + Tdl; | |
599 T4e = T4a + T4d; | |
600 T4p = T4j - T4o; | |
601 T4q = FNMS(KP707106781, T4p, T4e); | |
602 T6R = FMA(KP707106781, T4p, T4e); | |
603 } | |
604 { | |
605 E T4T, T4W, T8d, T8e; | |
606 T4T = T4P - T4S; | |
607 T4W = T4U - T4V; | |
608 T4X = FNMS(KP707106781, T4W, T4T); | |
609 T6O = FMA(KP707106781, T4W, T4T); | |
610 T8d = T4P + T4S; | |
611 T8e = T4j + T4o; | |
612 T8f = FMA(KP707106781, T8e, T8d); | |
613 T9s = FNMS(KP707106781, T8e, T8d); | |
614 } | |
615 { | |
616 E TaG, TaJ, T82, T83; | |
617 TaG = T1e - T1b; | |
618 TaJ = TaH - TaI; | |
619 TaK = TaG + TaJ; | |
620 Tcp = TaJ - TaG; | |
621 T82 = T4d - T4a; | |
622 T83 = T4V + T4U; | |
623 T84 = FMA(KP707106781, T83, T82); | |
624 T9v = FNMS(KP707106781, T83, T82); | |
625 } | |
626 } | |
627 { | |
628 E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v; | |
629 E T4A, TaT, TaQ, T89, T88; | |
630 { | |
631 E T4C, T4K, T4H, T4F; | |
632 { | |
633 E T1h, T1i, T4I, T4J; | |
634 T1h = ri[WS(is, 5)]; | |
635 T1i = ri[WS(is, 37)]; | |
636 T1j = T1h + T1i; | |
637 T4C = T1h - T1i; | |
638 T4I = ii[WS(is, 5)]; | |
639 T4J = ii[WS(is, 37)]; | |
640 T4K = T4I - T4J; | |
641 TaL = T4I + T4J; | |
642 } | |
643 { | |
644 E T1k, T1l, T4D, T4E; | |
645 T1k = ri[WS(is, 21)]; | |
646 T1l = ri[WS(is, 53)]; | |
647 T1m = T1k + T1l; | |
648 T4H = T1k - T1l; | |
649 T4D = ii[WS(is, 21)]; | |
650 T4E = ii[WS(is, 53)]; | |
651 T4F = T4D - T4E; | |
652 TaM = T4D + T4E; | |
653 } | |
654 T4G = T4C - T4F; | |
655 T4L = T4H + T4K; | |
656 TaO = T1j - T1m; | |
657 TaN = TaL - TaM; | |
658 T86 = T4C + T4F; | |
659 T85 = T4K - T4H; | |
660 } | |
661 { | |
662 E T4r, T4z, T4w, T4u; | |
663 { | |
664 E T1o, T1p, T4x, T4y; | |
665 T1o = ri[WS(is, 61)]; | |
666 T1p = ri[WS(is, 29)]; | |
667 T1q = T1o + T1p; | |
668 T4r = T1o - T1p; | |
669 T4x = ii[WS(is, 61)]; | |
670 T4y = ii[WS(is, 29)]; | |
671 T4z = T4x - T4y; | |
672 TaR = T4x + T4y; | |
673 } | |
674 { | |
675 E T1r, T1s, T4s, T4t; | |
676 T1r = ri[WS(is, 13)]; | |
677 T1s = ri[WS(is, 45)]; | |
678 T1t = T1r + T1s; | |
679 T4w = T1r - T1s; | |
680 T4s = ii[WS(is, 13)]; | |
681 T4t = ii[WS(is, 45)]; | |
682 T4u = T4s - T4t; | |
683 TaS = T4s + T4t; | |
684 } | |
685 T4v = T4r - T4u; | |
686 T4A = T4w + T4z; | |
687 TaT = TaR - TaS; | |
688 TaQ = T1q - T1t; | |
689 T89 = T4r + T4u; | |
690 T88 = T4z - T4w; | |
691 } | |
692 { | |
693 E T1n, T1u, Tb2, Tb3; | |
694 T1n = T1j + T1m; | |
695 T1u = T1q + T1t; | |
696 T1v = T1n + T1u; | |
697 Tdn = T1u - T1n; | |
698 Tb2 = TaO + TaN; | |
699 Tb3 = TaQ - TaT; | |
700 Tb4 = Tb2 + Tb3; | |
701 Tcq = Tb2 - Tb3; | |
702 } | |
703 { | |
704 E Tdq, Tdr, T4B, T4M; | |
705 Tdq = TaL + TaM; | |
706 Tdr = TaR + TaS; | |
707 Tds = Tdq - Tdr; | |
708 Tek = Tdq + Tdr; | |
709 T4B = FMA(KP414213562, T4A, T4v); | |
710 T4M = FNMS(KP414213562, T4L, T4G); | |
711 T4N = T4B - T4M; | |
712 T6P = T4M + T4B; | |
713 } | |
714 { | |
715 E T4Y, T4Z, T8g, T8h; | |
716 T4Y = FMA(KP414213562, T4G, T4L); | |
717 T4Z = FNMS(KP414213562, T4v, T4A); | |
718 T50 = T4Y - T4Z; | |
719 T6S = T4Y + T4Z; | |
720 T8g = FMA(KP414213562, T85, T86); | |
721 T8h = FNMS(KP414213562, T88, T89); | |
722 T8i = T8g + T8h; | |
723 T9w = T8g - T8h; | |
724 } | |
725 { | |
726 E TaP, TaU, T87, T8a; | |
727 TaP = TaN - TaO; | |
728 TaU = TaQ + TaT; | |
729 TaV = TaP + TaU; | |
730 Tcn = TaU - TaP; | |
731 T87 = FNMS(KP414213562, T86, T85); | |
732 T8a = FMA(KP414213562, T89, T88); | |
733 T8b = T87 + T8a; | |
734 T9t = T8a - T87; | |
735 } | |
736 } | |
737 { | |
738 E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o; | |
739 E T5t, Tbk, Tbh, T8s, T8r; | |
740 { | |
741 E T5v, T5D, T5A, T5y; | |
742 { | |
743 E T1M, T1N, T5B, T5C; | |
744 T1M = ri[WS(is, 3)]; | |
745 T1N = ri[WS(is, 35)]; | |
746 T1O = T1M + T1N; | |
747 T5v = T1M - T1N; | |
748 T5B = ii[WS(is, 3)]; | |
749 T5C = ii[WS(is, 35)]; | |
750 T5D = T5B - T5C; | |
751 Tbc = T5B + T5C; | |
752 } | |
753 { | |
754 E T1P, T1Q, T5w, T5x; | |
755 T1P = ri[WS(is, 19)]; | |
756 T1Q = ri[WS(is, 51)]; | |
757 T1R = T1P + T1Q; | |
758 T5A = T1P - T1Q; | |
759 T5w = ii[WS(is, 19)]; | |
760 T5x = ii[WS(is, 51)]; | |
761 T5y = T5w - T5x; | |
762 Tbd = T5w + T5x; | |
763 } | |
764 T5z = T5v - T5y; | |
765 T5E = T5A + T5D; | |
766 Tbf = T1O - T1R; | |
767 Tbe = Tbc - Tbd; | |
768 T8p = T5v + T5y; | |
769 T8o = T5D - T5A; | |
770 } | |
771 { | |
772 E T5k, T5s, T5p, T5n; | |
773 { | |
774 E T1T, T1U, T5q, T5r; | |
775 T1T = ri[WS(is, 59)]; | |
776 T1U = ri[WS(is, 27)]; | |
777 T1V = T1T + T1U; | |
778 T5k = T1T - T1U; | |
779 T5q = ii[WS(is, 59)]; | |
780 T5r = ii[WS(is, 27)]; | |
781 T5s = T5q - T5r; | |
782 Tbi = T5q + T5r; | |
783 } | |
784 { | |
785 E T1W, T1X, T5l, T5m; | |
786 T1W = ri[WS(is, 11)]; | |
787 T1X = ri[WS(is, 43)]; | |
788 T1Y = T1W + T1X; | |
789 T5p = T1W - T1X; | |
790 T5l = ii[WS(is, 11)]; | |
791 T5m = ii[WS(is, 43)]; | |
792 T5n = T5l - T5m; | |
793 Tbj = T5l + T5m; | |
794 } | |
795 T5o = T5k - T5n; | |
796 T5t = T5p + T5s; | |
797 Tbk = Tbi - Tbj; | |
798 Tbh = T1V - T1Y; | |
799 T8s = T5k + T5n; | |
800 T8r = T5s - T5p; | |
801 } | |
802 { | |
803 E T1S, T1Z, Tbt, Tbu; | |
804 T1S = T1O + T1R; | |
805 T1Z = T1V + T1Y; | |
806 T20 = T1S + T1Z; | |
807 Tdy = T1Z - T1S; | |
808 Tbt = Tbf + Tbe; | |
809 Tbu = Tbh - Tbk; | |
810 Tbv = Tbt + Tbu; | |
811 Tcx = Tbt - Tbu; | |
812 } | |
813 { | |
814 E TdB, TdC, T5u, T5F; | |
815 TdB = Tbc + Tbd; | |
816 TdC = Tbi + Tbj; | |
817 TdD = TdB - TdC; | |
818 Tep = TdB + TdC; | |
819 T5u = FMA(KP414213562, T5t, T5o); | |
820 T5F = FNMS(KP414213562, T5E, T5z); | |
821 T5G = T5u - T5F; | |
822 T6W = T5F + T5u; | |
823 } | |
824 { | |
825 E T5R, T5S, T8z, T8A; | |
826 T5R = FMA(KP414213562, T5z, T5E); | |
827 T5S = FNMS(KP414213562, T5o, T5t); | |
828 T5T = T5R - T5S; | |
829 T6Z = T5R + T5S; | |
830 T8z = FMA(KP414213562, T8o, T8p); | |
831 T8A = FNMS(KP414213562, T8r, T8s); | |
832 T8B = T8z + T8A; | |
833 T9D = T8z - T8A; | |
834 } | |
835 { | |
836 E Tbg, Tbl, T8q, T8t; | |
837 Tbg = Tbe - Tbf; | |
838 Tbl = Tbh + Tbk; | |
839 Tbm = Tbg + Tbl; | |
840 Tcu = Tbl - Tbg; | |
841 T8q = FNMS(KP414213562, T8p, T8o); | |
842 T8t = FMA(KP414213562, T8s, T8r); | |
843 T8u = T8q + T8t; | |
844 T9A = T8t - T8q; | |
845 } | |
846 } | |
847 { | |
848 E T11, TeD, TeG, TeI, T22, T23, T34, TeH; | |
849 { | |
850 E Tv, T10, TeE, TeF; | |
851 Tv = Tf + Tu; | |
852 T10 = TK + TZ; | |
853 T11 = Tv + T10; | |
854 TeD = Tv - T10; | |
855 TeE = Tej + Tek; | |
856 TeF = Teo + Tep; | |
857 TeG = TeE - TeF; | |
858 TeI = TeE + TeF; | |
859 } | |
860 { | |
861 E T1w, T21, T2y, T33; | |
862 T1w = T1g + T1v; | |
863 T21 = T1L + T20; | |
864 T22 = T1w + T21; | |
865 T23 = T21 - T1w; | |
866 T2y = T2i + T2x; | |
867 T33 = T2N + T32; | |
868 T34 = T2y - T33; | |
869 TeH = T2y + T33; | |
870 } | |
871 ro[WS(os, 32)] = T11 - T22; | |
872 io[WS(os, 32)] = TeH - TeI; | |
873 ro[0] = T11 + T22; | |
874 io[0] = TeH + TeI; | |
875 io[WS(os, 16)] = T23 + T34; | |
876 ro[WS(os, 16)] = TeD + TeG; | |
877 io[WS(os, 48)] = T34 - T23; | |
878 ro[WS(os, 48)] = TeD - TeG; | |
879 } | |
880 { | |
881 E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; | |
882 { | |
883 E Tef, Teg, Tet, Teu; | |
884 Tef = Tf - Tu; | |
885 Teg = T2N - T32; | |
886 Teh = Tef + Teg; | |
887 Tex = Tef - Teg; | |
888 Tet = T2i - T2x; | |
889 Teu = TZ - TK; | |
890 Tev = Tet - Teu; | |
891 TeB = Teu + Tet; | |
892 } | |
893 { | |
894 E Tei, Tel, Ten, Teq; | |
895 Tei = T1g - T1v; | |
896 Tel = Tej - Tek; | |
897 Tem = Tei + Tel; | |
898 Tey = Tel - Tei; | |
899 Ten = T1L - T20; | |
900 Teq = Teo - Tep; | |
901 Ter = Ten - Teq; | |
902 Tez = Ten + Teq; | |
903 } | |
904 { | |
905 E Tes, TeC, Tew, TeA; | |
906 Tes = Tem + Ter; | |
907 ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh); | |
908 ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh); | |
909 TeC = Tey + Tez; | |
910 io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB); | |
911 io[WS(os, 8)] = FMA(KP707106781, TeC, TeB); | |
912 Tew = Ter - Tem; | |
913 io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev); | |
914 io[WS(os, 24)] = FMA(KP707106781, Tew, Tev); | |
915 TeA = Tey - Tez; | |
916 ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex); | |
917 ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex); | |
918 } | |
919 } | |
920 { | |
921 E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF; | |
922 E TdQ; | |
923 { | |
924 E Tde, Tdh, Tdo, Tdt; | |
925 Tdb = Td9 - Tda; | |
926 TdV = Td9 + Tda; | |
927 Te5 = TdI + TdH; | |
928 TdJ = TdH - TdI; | |
929 Tde = Tdc - Tdd; | |
930 Tdh = Tdf + Tdg; | |
931 Tdi = Tde - Tdh; | |
932 Te6 = Tde + Tdh; | |
933 { | |
934 E Te1, Te2, TdK, TdL; | |
935 Te1 = TdA + TdD; | |
936 Te2 = Tdy + Tdx; | |
937 Te3 = FNMS(KP414213562, Te2, Te1); | |
938 Teb = FMA(KP414213562, Te1, Te2); | |
939 TdK = Tdf - Tdg; | |
940 TdL = Tdd + Tdc; | |
941 TdM = TdK - TdL; | |
942 TdW = TdL + TdK; | |
943 } | |
944 Tdo = Tdm - Tdn; | |
945 Tdt = Tdp - Tds; | |
946 Tdu = FMA(KP414213562, Tdt, Tdo); | |
947 TdR = FNMS(KP414213562, Tdo, Tdt); | |
948 { | |
949 E TdY, TdZ, Tdz, TdE; | |
950 TdY = Tdp + Tds; | |
951 TdZ = Tdn + Tdm; | |
952 Te0 = FMA(KP414213562, TdZ, TdY); | |
953 Tea = FNMS(KP414213562, TdY, TdZ); | |
954 Tdz = Tdx - Tdy; | |
955 TdE = TdA - TdD; | |
956 TdF = FNMS(KP414213562, TdE, Tdz); | |
957 TdQ = FMA(KP414213562, Tdz, TdE); | |
958 } | |
959 } | |
960 { | |
961 E Tdj, TdG, TdP, TdS; | |
962 Tdj = FMA(KP707106781, Tdi, Tdb); | |
963 TdG = Tdu - TdF; | |
964 ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj); | |
965 ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj); | |
966 TdP = FMA(KP707106781, TdM, TdJ); | |
967 TdS = TdQ - TdR; | |
968 io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP); | |
969 io[WS(os, 12)] = FMA(KP923879532, TdS, TdP); | |
970 } | |
971 { | |
972 E TdN, TdO, TdT, TdU; | |
973 TdN = FNMS(KP707106781, TdM, TdJ); | |
974 TdO = Tdu + TdF; | |
975 io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN); | |
976 io[WS(os, 60)] = FMA(KP923879532, TdO, TdN); | |
977 TdT = FNMS(KP707106781, Tdi, Tdb); | |
978 TdU = TdR + TdQ; | |
979 ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT); | |
980 ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT); | |
981 } | |
982 { | |
983 E TdX, Te4, Ted, Tee; | |
984 TdX = FMA(KP707106781, TdW, TdV); | |
985 Te4 = Te0 + Te3; | |
986 ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX); | |
987 ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX); | |
988 Ted = FMA(KP707106781, Te6, Te5); | |
989 Tee = Tea + Teb; | |
990 io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted); | |
991 io[WS(os, 4)] = FMA(KP923879532, Tee, Ted); | |
992 } | |
993 { | |
994 E Te7, Te8, Te9, Tec; | |
995 Te7 = FNMS(KP707106781, Te6, Te5); | |
996 Te8 = Te3 - Te0; | |
997 io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7); | |
998 io[WS(os, 20)] = FMA(KP923879532, Te8, Te7); | |
999 Te9 = FNMS(KP707106781, TdW, TdV); | |
1000 Tec = Tea - Teb; | |
1001 ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9); | |
1002 ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9); | |
1003 } | |
1004 } | |
1005 { | |
1006 E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz; | |
1007 E TcL, Tcc, TcC; | |
1008 Tcc = TbC - TbD; | |
1009 Tcd = FMA(KP707106781, Tcc, Tcb); | |
1010 TcP = FNMS(KP707106781, Tcc, Tcb); | |
1011 TcC = Tan - Tak; | |
1012 TcD = FMA(KP707106781, TcC, TcB); | |
1013 TcZ = FNMS(KP707106781, TcC, TcB); | |
1014 { | |
1015 E Tcg, Tcj, TcV, TcW; | |
1016 Tcg = FMA(KP414213562, Tcf, Tce); | |
1017 Tcj = FNMS(KP414213562, Tci, Tch); | |
1018 Tck = Tcg - Tcj; | |
1019 Td0 = Tcg + Tcj; | |
1020 TcV = FMA(KP707106781, Tcx, Tcw); | |
1021 TcW = FMA(KP707106781, Tcu, Tct); | |
1022 TcX = FNMS(KP198912367, TcW, TcV); | |
1023 Td4 = FMA(KP198912367, TcV, TcW); | |
1024 } | |
1025 { | |
1026 E Tco, Tcr, TcE, TcF; | |
1027 Tco = FNMS(KP707106781, Tcn, Tcm); | |
1028 Tcr = FNMS(KP707106781, Tcq, Tcp); | |
1029 Tcs = FMA(KP668178637, Tcr, Tco); | |
1030 TcK = FNMS(KP668178637, Tco, Tcr); | |
1031 TcE = FMA(KP414213562, Tch, Tci); | |
1032 TcF = FNMS(KP414213562, Tce, Tcf); | |
1033 TcG = TcE - TcF; | |
1034 TcQ = TcF + TcE; | |
1035 } | |
1036 { | |
1037 E TcS, TcT, Tcv, Tcy; | |
1038 TcS = FMA(KP707106781, Tcq, Tcp); | |
1039 TcT = FMA(KP707106781, Tcn, Tcm); | |
1040 TcU = FMA(KP198912367, TcT, TcS); | |
1041 Td5 = FNMS(KP198912367, TcS, TcT); | |
1042 Tcv = FNMS(KP707106781, Tcu, Tct); | |
1043 Tcy = FNMS(KP707106781, Tcx, Tcw); | |
1044 Tcz = FNMS(KP668178637, Tcy, Tcv); | |
1045 TcL = FMA(KP668178637, Tcv, Tcy); | |
1046 } | |
1047 { | |
1048 E Tcl, TcA, TcN, TcO; | |
1049 Tcl = FMA(KP923879532, Tck, Tcd); | |
1050 TcA = Tcs + Tcz; | |
1051 ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl); | |
1052 ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl); | |
1053 TcN = FMA(KP923879532, TcG, TcD); | |
1054 TcO = TcK + TcL; | |
1055 io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN); | |
1056 io[WS(os, 6)] = FMA(KP831469612, TcO, TcN); | |
1057 } | |
1058 { | |
1059 E TcH, TcI, TcJ, TcM; | |
1060 TcH = FNMS(KP923879532, TcG, TcD); | |
1061 TcI = Tcz - Tcs; | |
1062 io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH); | |
1063 io[WS(os, 22)] = FMA(KP831469612, TcI, TcH); | |
1064 TcJ = FNMS(KP923879532, Tck, Tcd); | |
1065 TcM = TcK - TcL; | |
1066 ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ); | |
1067 ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ); | |
1068 } | |
1069 { | |
1070 E TcR, TcY, Td3, Td6; | |
1071 TcR = FNMS(KP923879532, TcQ, TcP); | |
1072 TcY = TcU - TcX; | |
1073 ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR); | |
1074 ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR); | |
1075 Td3 = FNMS(KP923879532, Td0, TcZ); | |
1076 Td6 = Td4 - Td5; | |
1077 io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3); | |
1078 io[WS(os, 14)] = FMA(KP980785280, Td6, Td3); | |
1079 } | |
1080 { | |
1081 E Td1, Td2, Td7, Td8; | |
1082 Td1 = FMA(KP923879532, Td0, TcZ); | |
1083 Td2 = TcU + TcX; | |
1084 io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1); | |
1085 io[WS(os, 62)] = FMA(KP980785280, Td2, Td1); | |
1086 Td7 = FMA(KP923879532, TcQ, TcP); | |
1087 Td8 = Td5 + Td4; | |
1088 ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7); | |
1089 ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7); | |
1090 } | |
1091 } | |
1092 { | |
1093 E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx; | |
1094 E TbM, Tao, TbE; | |
1095 Tao = Tak + Tan; | |
1096 Tap = FNMS(KP707106781, Tao, Tah); | |
1097 TbR = FMA(KP707106781, Tao, Tah); | |
1098 TbE = TbC + TbD; | |
1099 TbF = FNMS(KP707106781, TbE, TbB); | |
1100 Tc1 = FMA(KP707106781, TbE, TbB); | |
1101 { | |
1102 E Taw, TaD, TbX, TbY; | |
1103 Taw = FNMS(KP414213562, Tav, Tas); | |
1104 TaD = FMA(KP414213562, TaC, Taz); | |
1105 TaE = Taw - TaD; | |
1106 Tc2 = Taw + TaD; | |
1107 TbX = FMA(KP707106781, Tbv, Tbs); | |
1108 TbY = FMA(KP707106781, Tbm, Tbb); | |
1109 TbZ = FNMS(KP198912367, TbY, TbX); | |
1110 Tc7 = FMA(KP198912367, TbX, TbY); | |
1111 } | |
1112 { | |
1113 E TaW, Tb5, TbG, TbH; | |
1114 TaW = FNMS(KP707106781, TaV, TaK); | |
1115 Tb5 = FNMS(KP707106781, Tb4, Tb1); | |
1116 Tb6 = FMA(KP668178637, Tb5, TaW); | |
1117 TbN = FNMS(KP668178637, TaW, Tb5); | |
1118 TbG = FNMS(KP414213562, Taz, TaC); | |
1119 TbH = FMA(KP414213562, Tas, Tav); | |
1120 TbI = TbG - TbH; | |
1121 TbS = TbH + TbG; | |
1122 } | |
1123 { | |
1124 E TbU, TbV, Tbn, Tbw; | |
1125 TbU = FMA(KP707106781, Tb4, Tb1); | |
1126 TbV = FMA(KP707106781, TaV, TaK); | |
1127 TbW = FMA(KP198912367, TbV, TbU); | |
1128 Tc6 = FNMS(KP198912367, TbU, TbV); | |
1129 Tbn = FNMS(KP707106781, Tbm, Tbb); | |
1130 Tbw = FNMS(KP707106781, Tbv, Tbs); | |
1131 Tbx = FNMS(KP668178637, Tbw, Tbn); | |
1132 TbM = FMA(KP668178637, Tbn, Tbw); | |
1133 } | |
1134 { | |
1135 E TaF, Tby, TbL, TbO; | |
1136 TaF = FMA(KP923879532, TaE, Tap); | |
1137 Tby = Tb6 - Tbx; | |
1138 ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF); | |
1139 ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF); | |
1140 TbL = FMA(KP923879532, TbI, TbF); | |
1141 TbO = TbM - TbN; | |
1142 io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL); | |
1143 io[WS(os, 10)] = FMA(KP831469612, TbO, TbL); | |
1144 } | |
1145 { | |
1146 E TbJ, TbK, TbP, TbQ; | |
1147 TbJ = FNMS(KP923879532, TbI, TbF); | |
1148 TbK = Tb6 + Tbx; | |
1149 io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ); | |
1150 io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ); | |
1151 TbP = FNMS(KP923879532, TaE, Tap); | |
1152 TbQ = TbN + TbM; | |
1153 ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP); | |
1154 ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP); | |
1155 } | |
1156 { | |
1157 E TbT, Tc0, Tc9, Tca; | |
1158 TbT = FMA(KP923879532, TbS, TbR); | |
1159 Tc0 = TbW + TbZ; | |
1160 ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT); | |
1161 ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT); | |
1162 Tc9 = FMA(KP923879532, Tc2, Tc1); | |
1163 Tca = Tc6 + Tc7; | |
1164 io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9); | |
1165 io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9); | |
1166 } | |
1167 { | |
1168 E Tc3, Tc4, Tc5, Tc8; | |
1169 Tc3 = FNMS(KP923879532, Tc2, Tc1); | |
1170 Tc4 = TbZ - TbW; | |
1171 io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3); | |
1172 io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3); | |
1173 Tc5 = FNMS(KP923879532, TbS, TbR); | |
1174 Tc8 = Tc6 - Tc7; | |
1175 ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5); | |
1176 ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5); | |
1177 } | |
1178 } | |
1179 { | |
1180 E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; | |
1181 E T7d; | |
1182 { | |
1183 E T6D, T6E, T7k, T7l; | |
1184 T6D = FNMS(KP707106781, T3e, T37); | |
1185 T6E = T65 + T64; | |
1186 T6F = FNMS(KP923879532, T6E, T6D); | |
1187 T7h = FMA(KP923879532, T6E, T6D); | |
1188 T7k = FMA(KP923879532, T6S, T6R); | |
1189 T7l = FMA(KP923879532, T6P, T6O); | |
1190 T7m = FMA(KP098491403, T7l, T7k); | |
1191 T7x = FNMS(KP098491403, T7k, T7l); | |
1192 } | |
1193 { | |
1194 E T7n, T7o, T6I, T6L; | |
1195 T7n = FMA(KP923879532, T6Z, T6Y); | |
1196 T7o = FMA(KP923879532, T6W, T6V); | |
1197 T7p = FNMS(KP098491403, T7o, T7n); | |
1198 T7w = FMA(KP098491403, T7n, T7o); | |
1199 T6I = FMA(KP198912367, T6H, T6G); | |
1200 T6L = FNMS(KP198912367, T6K, T6J); | |
1201 T6M = T6I - T6L; | |
1202 T7s = T6I + T6L; | |
1203 } | |
1204 { | |
1205 E T6Q, T6T, T73, T74; | |
1206 T6Q = FNMS(KP923879532, T6P, T6O); | |
1207 T6T = FNMS(KP923879532, T6S, T6R); | |
1208 T6U = FMA(KP820678790, T6T, T6Q); | |
1209 T7c = FNMS(KP820678790, T6Q, T6T); | |
1210 T73 = FNMS(KP707106781, T62, T5Z); | |
1211 T74 = T3m + T3t; | |
1212 T75 = FNMS(KP923879532, T74, T73); | |
1213 T7r = FMA(KP923879532, T74, T73); | |
1214 } | |
1215 { | |
1216 E T76, T77, T6X, T70; | |
1217 T76 = FMA(KP198912367, T6J, T6K); | |
1218 T77 = FNMS(KP198912367, T6G, T6H); | |
1219 T78 = T76 - T77; | |
1220 T7i = T77 + T76; | |
1221 T6X = FNMS(KP923879532, T6W, T6V); | |
1222 T70 = FNMS(KP923879532, T6Z, T6Y); | |
1223 T71 = FNMS(KP820678790, T70, T6X); | |
1224 T7d = FMA(KP820678790, T6X, T70); | |
1225 } | |
1226 { | |
1227 E T6N, T72, T7f, T7g; | |
1228 T6N = FMA(KP980785280, T6M, T6F); | |
1229 T72 = T6U + T71; | |
1230 ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N); | |
1231 ro[WS(os, 7)] = FMA(KP773010453, T72, T6N); | |
1232 T7f = FMA(KP980785280, T78, T75); | |
1233 T7g = T7c + T7d; | |
1234 io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f); | |
1235 io[WS(os, 7)] = FMA(KP773010453, T7g, T7f); | |
1236 } | |
1237 { | |
1238 E T79, T7a, T7b, T7e; | |
1239 T79 = FNMS(KP980785280, T78, T75); | |
1240 T7a = T71 - T6U; | |
1241 io[WS(os, 55)] = FNMS(KP773010453, T7a, T79); | |
1242 io[WS(os, 23)] = FMA(KP773010453, T7a, T79); | |
1243 T7b = FNMS(KP980785280, T6M, T6F); | |
1244 T7e = T7c - T7d; | |
1245 ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b); | |
1246 ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b); | |
1247 } | |
1248 { | |
1249 E T7j, T7q, T7v, T7y; | |
1250 T7j = FNMS(KP980785280, T7i, T7h); | |
1251 T7q = T7m - T7p; | |
1252 ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j); | |
1253 ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j); | |
1254 T7v = FNMS(KP980785280, T7s, T7r); | |
1255 T7y = T7w - T7x; | |
1256 io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v); | |
1257 io[WS(os, 15)] = FMA(KP995184726, T7y, T7v); | |
1258 } | |
1259 { | |
1260 E T7t, T7u, T7z, T7A; | |
1261 T7t = FMA(KP980785280, T7s, T7r); | |
1262 T7u = T7m + T7p; | |
1263 io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t); | |
1264 io[WS(os, 63)] = FMA(KP995184726, T7u, T7t); | |
1265 T7z = FMA(KP980785280, T7i, T7h); | |
1266 T7A = T7x + T7w; | |
1267 ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z); | |
1268 ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z); | |
1269 } | |
1270 } | |
1271 { | |
1272 E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; | |
1273 E T9R; | |
1274 { | |
1275 E T9h, T9i, T9Y, T9Z; | |
1276 T9h = FNMS(KP707106781, T7C, T7B); | |
1277 T9i = T8I - T8J; | |
1278 T9j = FMA(KP923879532, T9i, T9h); | |
1279 T9V = FNMS(KP923879532, T9i, T9h); | |
1280 T9Y = FMA(KP923879532, T9w, T9v); | |
1281 T9Z = FMA(KP923879532, T9t, T9s); | |
1282 Ta0 = FMA(KP303346683, T9Z, T9Y); | |
1283 Tab = FNMS(KP303346683, T9Y, T9Z); | |
1284 } | |
1285 { | |
1286 E Ta1, Ta2, T9m, T9p; | |
1287 Ta1 = FMA(KP923879532, T9D, T9C); | |
1288 Ta2 = FMA(KP923879532, T9A, T9z); | |
1289 Ta3 = FNMS(KP303346683, Ta2, Ta1); | |
1290 Taa = FMA(KP303346683, Ta1, Ta2); | |
1291 T9m = FMA(KP668178637, T9l, T9k); | |
1292 T9p = FNMS(KP668178637, T9o, T9n); | |
1293 T9q = T9m - T9p; | |
1294 Ta6 = T9m + T9p; | |
1295 } | |
1296 { | |
1297 E T9u, T9x, T9H, T9I; | |
1298 T9u = FNMS(KP923879532, T9t, T9s); | |
1299 T9x = FNMS(KP923879532, T9w, T9v); | |
1300 T9y = FMA(KP534511135, T9x, T9u); | |
1301 T9Q = FNMS(KP534511135, T9u, T9x); | |
1302 T9H = FNMS(KP707106781, T8G, T8F); | |
1303 T9I = T7J - T7G; | |
1304 T9J = FMA(KP923879532, T9I, T9H); | |
1305 Ta5 = FNMS(KP923879532, T9I, T9H); | |
1306 } | |
1307 { | |
1308 E T9K, T9L, T9B, T9E; | |
1309 T9K = FMA(KP668178637, T9n, T9o); | |
1310 T9L = FNMS(KP668178637, T9k, T9l); | |
1311 T9M = T9K - T9L; | |
1312 T9W = T9L + T9K; | |
1313 T9B = FNMS(KP923879532, T9A, T9z); | |
1314 T9E = FNMS(KP923879532, T9D, T9C); | |
1315 T9F = FNMS(KP534511135, T9E, T9B); | |
1316 T9R = FMA(KP534511135, T9B, T9E); | |
1317 } | |
1318 { | |
1319 E T9r, T9G, T9T, T9U; | |
1320 T9r = FMA(KP831469612, T9q, T9j); | |
1321 T9G = T9y + T9F; | |
1322 ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r); | |
1323 ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r); | |
1324 T9T = FMA(KP831469612, T9M, T9J); | |
1325 T9U = T9Q + T9R; | |
1326 io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T); | |
1327 io[WS(os, 5)] = FMA(KP881921264, T9U, T9T); | |
1328 } | |
1329 { | |
1330 E T9N, T9O, T9P, T9S; | |
1331 T9N = FNMS(KP831469612, T9M, T9J); | |
1332 T9O = T9F - T9y; | |
1333 io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N); | |
1334 io[WS(os, 21)] = FMA(KP881921264, T9O, T9N); | |
1335 T9P = FNMS(KP831469612, T9q, T9j); | |
1336 T9S = T9Q - T9R; | |
1337 ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P); | |
1338 ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P); | |
1339 } | |
1340 { | |
1341 E T9X, Ta4, Ta9, Tac; | |
1342 T9X = FNMS(KP831469612, T9W, T9V); | |
1343 Ta4 = Ta0 - Ta3; | |
1344 ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X); | |
1345 ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X); | |
1346 Ta9 = FNMS(KP831469612, Ta6, Ta5); | |
1347 Tac = Taa - Tab; | |
1348 io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9); | |
1349 io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9); | |
1350 } | |
1351 { | |
1352 E Ta7, Ta8, Tad, Tae; | |
1353 Ta7 = FMA(KP831469612, Ta6, Ta5); | |
1354 Ta8 = Ta0 + Ta3; | |
1355 io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7); | |
1356 io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7); | |
1357 Tad = FMA(KP831469612, T9W, T9V); | |
1358 Tae = Tab + Taa; | |
1359 ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad); | |
1360 ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad); | |
1361 } | |
1362 } | |
1363 { | |
1364 E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V; | |
1365 E T6e; | |
1366 { | |
1367 E T3f, T3u, T6m, T6n; | |
1368 T3f = FMA(KP707106781, T3e, T37); | |
1369 T3u = T3m - T3t; | |
1370 T3v = FNMS(KP923879532, T3u, T3f); | |
1371 T6j = FMA(KP923879532, T3u, T3f); | |
1372 T6m = FMA(KP923879532, T50, T4X); | |
1373 T6n = FMA(KP923879532, T4N, T4q); | |
1374 T6o = FMA(KP303346683, T6n, T6m); | |
1375 T6y = FNMS(KP303346683, T6m, T6n); | |
1376 } | |
1377 { | |
1378 E T6p, T6q, T3O, T47; | |
1379 T6p = FMA(KP923879532, T5T, T5Q); | |
1380 T6q = FMA(KP923879532, T5G, T5j); | |
1381 T6r = FNMS(KP303346683, T6q, T6p); | |
1382 T6z = FMA(KP303346683, T6p, T6q); | |
1383 T3O = FNMS(KP668178637, T3N, T3G); | |
1384 T47 = FMA(KP668178637, T46, T3Z); | |
1385 T48 = T3O - T47; | |
1386 T6u = T3O + T47; | |
1387 } | |
1388 { | |
1389 E T4O, T51, T63, T66; | |
1390 T4O = FNMS(KP923879532, T4N, T4q); | |
1391 T51 = FNMS(KP923879532, T50, T4X); | |
1392 T52 = FMA(KP534511135, T51, T4O); | |
1393 T6f = FNMS(KP534511135, T4O, T51); | |
1394 T63 = FMA(KP707106781, T62, T5Z); | |
1395 T66 = T64 - T65; | |
1396 T67 = FNMS(KP923879532, T66, T63); | |
1397 T6t = FMA(KP923879532, T66, T63); | |
1398 } | |
1399 { | |
1400 E T68, T69, T5H, T5U; | |
1401 T68 = FNMS(KP668178637, T3Z, T46); | |
1402 T69 = FMA(KP668178637, T3G, T3N); | |
1403 T6a = T68 - T69; | |
1404 T6k = T69 + T68; | |
1405 T5H = FNMS(KP923879532, T5G, T5j); | |
1406 T5U = FNMS(KP923879532, T5T, T5Q); | |
1407 T5V = FNMS(KP534511135, T5U, T5H); | |
1408 T6e = FMA(KP534511135, T5H, T5U); | |
1409 } | |
1410 { | |
1411 E T49, T5W, T6d, T6g; | |
1412 T49 = FMA(KP831469612, T48, T3v); | |
1413 T5W = T52 - T5V; | |
1414 ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49); | |
1415 ro[WS(os, 11)] = FMA(KP881921264, T5W, T49); | |
1416 T6d = FMA(KP831469612, T6a, T67); | |
1417 T6g = T6e - T6f; | |
1418 io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d); | |
1419 io[WS(os, 11)] = FMA(KP881921264, T6g, T6d); | |
1420 } | |
1421 { | |
1422 E T6b, T6c, T6h, T6i; | |
1423 T6b = FNMS(KP831469612, T6a, T67); | |
1424 T6c = T52 + T5V; | |
1425 io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b); | |
1426 io[WS(os, 59)] = FMA(KP881921264, T6c, T6b); | |
1427 T6h = FNMS(KP831469612, T48, T3v); | |
1428 T6i = T6f + T6e; | |
1429 ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h); | |
1430 ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h); | |
1431 } | |
1432 { | |
1433 E T6l, T6s, T6B, T6C; | |
1434 T6l = FMA(KP831469612, T6k, T6j); | |
1435 T6s = T6o + T6r; | |
1436 ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l); | |
1437 ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l); | |
1438 T6B = FMA(KP831469612, T6u, T6t); | |
1439 T6C = T6y + T6z; | |
1440 io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B); | |
1441 io[WS(os, 3)] = FMA(KP956940335, T6C, T6B); | |
1442 } | |
1443 { | |
1444 E T6v, T6w, T6x, T6A; | |
1445 T6v = FNMS(KP831469612, T6u, T6t); | |
1446 T6w = T6r - T6o; | |
1447 io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v); | |
1448 io[WS(os, 19)] = FMA(KP956940335, T6w, T6v); | |
1449 T6x = FNMS(KP831469612, T6k, T6j); | |
1450 T6A = T6y - T6z; | |
1451 ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x); | |
1452 ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x); | |
1453 } | |
1454 } | |
1455 { | |
1456 E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D; | |
1457 E T8S; | |
1458 { | |
1459 E T7D, T7K, T90, T91; | |
1460 T7D = FMA(KP707106781, T7C, T7B); | |
1461 T7K = T7G + T7J; | |
1462 T7L = FNMS(KP923879532, T7K, T7D); | |
1463 T8X = FMA(KP923879532, T7K, T7D); | |
1464 T90 = FMA(KP923879532, T8i, T8f); | |
1465 T91 = FMA(KP923879532, T8b, T84); | |
1466 T92 = FMA(KP098491403, T91, T90); | |
1467 T9c = FNMS(KP098491403, T90, T91); | |
1468 } | |
1469 { | |
1470 E T93, T94, T7S, T7Z; | |
1471 T93 = FMA(KP923879532, T8B, T8y); | |
1472 T94 = FMA(KP923879532, T8u, T8n); | |
1473 T95 = FNMS(KP098491403, T94, T93); | |
1474 T9d = FMA(KP098491403, T93, T94); | |
1475 T7S = FNMS(KP198912367, T7R, T7O); | |
1476 T7Z = FMA(KP198912367, T7Y, T7V); | |
1477 T80 = T7S - T7Z; | |
1478 T98 = T7S + T7Z; | |
1479 } | |
1480 { | |
1481 E T8c, T8j, T8H, T8K; | |
1482 T8c = FNMS(KP923879532, T8b, T84); | |
1483 T8j = FNMS(KP923879532, T8i, T8f); | |
1484 T8k = FMA(KP820678790, T8j, T8c); | |
1485 T8T = FNMS(KP820678790, T8c, T8j); | |
1486 T8H = FMA(KP707106781, T8G, T8F); | |
1487 T8K = T8I + T8J; | |
1488 T8L = FNMS(KP923879532, T8K, T8H); | |
1489 T97 = FMA(KP923879532, T8K, T8H); | |
1490 } | |
1491 { | |
1492 E T8M, T8N, T8v, T8C; | |
1493 T8M = FNMS(KP198912367, T7V, T7Y); | |
1494 T8N = FMA(KP198912367, T7O, T7R); | |
1495 T8O = T8M - T8N; | |
1496 T8Y = T8N + T8M; | |
1497 T8v = FNMS(KP923879532, T8u, T8n); | |
1498 T8C = FNMS(KP923879532, T8B, T8y); | |
1499 T8D = FNMS(KP820678790, T8C, T8v); | |
1500 T8S = FMA(KP820678790, T8v, T8C); | |
1501 } | |
1502 { | |
1503 E T81, T8E, T8R, T8U; | |
1504 T81 = FMA(KP980785280, T80, T7L); | |
1505 T8E = T8k - T8D; | |
1506 ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81); | |
1507 ro[WS(os, 9)] = FMA(KP773010453, T8E, T81); | |
1508 T8R = FMA(KP980785280, T8O, T8L); | |
1509 T8U = T8S - T8T; | |
1510 io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R); | |
1511 io[WS(os, 9)] = FMA(KP773010453, T8U, T8R); | |
1512 } | |
1513 { | |
1514 E T8P, T8Q, T8V, T8W; | |
1515 T8P = FNMS(KP980785280, T8O, T8L); | |
1516 T8Q = T8k + T8D; | |
1517 io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P); | |
1518 io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P); | |
1519 T8V = FNMS(KP980785280, T80, T7L); | |
1520 T8W = T8T + T8S; | |
1521 ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V); | |
1522 ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V); | |
1523 } | |
1524 { | |
1525 E T8Z, T96, T9f, T9g; | |
1526 T8Z = FMA(KP980785280, T8Y, T8X); | |
1527 T96 = T92 + T95; | |
1528 ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z); | |
1529 ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z); | |
1530 T9f = FMA(KP980785280, T98, T97); | |
1531 T9g = T9c + T9d; | |
1532 io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f); | |
1533 io[WS(os, 1)] = FMA(KP995184726, T9g, T9f); | |
1534 } | |
1535 { | |
1536 E T99, T9a, T9b, T9e; | |
1537 T99 = FNMS(KP980785280, T98, T97); | |
1538 T9a = T95 - T92; | |
1539 io[WS(os, 49)] = FNMS(KP995184726, T9a, T99); | |
1540 io[WS(os, 17)] = FMA(KP995184726, T9a, T99); | |
1541 T9b = FNMS(KP980785280, T8Y, T8X); | |
1542 T9e = T9c - T9d; | |
1543 ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b); | |
1544 ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b); | |
1545 } | |
1546 } | |
1547 } | |
1548 } | |
1549 } | |
1550 | |
1551 static const kdft_desc desc = { 64, "n1_64", {520, 0, 392, 0}, &GENUS, 0, 0, 0, 0 }; | |
1552 | |
1553 void X(codelet_n1_64) (planner *p) { | |
1554 X(kdft_register) (p, n1_64, &desc); | |
1555 } | |
1556 | |
1557 #else | |
1558 | |
1559 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */ | |
1560 | |
1561 /* | |
1562 * This function contains 912 FP additions, 248 FP multiplications, | |
1563 * (or, 808 additions, 144 multiplications, 104 fused multiply/add), | |
1564 * 172 stack variables, 15 constants, and 256 memory accesses | |
1565 */ | |
1566 #include "dft/scalar/n.h" | |
1567 | |
1568 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
1569 { | |
1570 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
1571 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
1572 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
1573 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
1574 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
1575 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
1576 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
1577 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
1578 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
1579 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
1580 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
1581 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
1582 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
1583 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
1584 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1585 { | |
1586 INT i; | |
1587 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | |
1588 E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; | |
1589 E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; | |
1590 E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; | |
1591 E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; | |
1592 E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; | |
1593 E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; | |
1594 E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; | |
1595 E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; | |
1596 E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; | |
1597 { | |
1598 E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; | |
1599 E T3c; | |
1600 { | |
1601 E T1, T2, T24, T25; | |
1602 T1 = ri[0]; | |
1603 T2 = ri[WS(is, 32)]; | |
1604 T3 = T1 + T2; | |
1605 T35 = T1 - T2; | |
1606 T24 = ii[0]; | |
1607 T25 = ii[WS(is, 32)]; | |
1608 T26 = T24 + T25; | |
1609 T5Y = T24 - T25; | |
1610 } | |
1611 { | |
1612 E T4, T5, T27, T28; | |
1613 T4 = ri[WS(is, 16)]; | |
1614 T5 = ri[WS(is, 48)]; | |
1615 T6 = T4 + T5; | |
1616 T5X = T4 - T5; | |
1617 T27 = ii[WS(is, 16)]; | |
1618 T28 = ii[WS(is, 48)]; | |
1619 T29 = T27 + T28; | |
1620 T36 = T27 - T28; | |
1621 } | |
1622 { | |
1623 E T8, T9, T2b, T2c; | |
1624 T8 = ri[WS(is, 8)]; | |
1625 T9 = ri[WS(is, 40)]; | |
1626 Ta = T8 + T9; | |
1627 T39 = T8 - T9; | |
1628 T2b = ii[WS(is, 8)]; | |
1629 T2c = ii[WS(is, 40)]; | |
1630 T2d = T2b + T2c; | |
1631 T38 = T2b - T2c; | |
1632 } | |
1633 { | |
1634 E Tb, Tc, T2e, T2f; | |
1635 Tb = ri[WS(is, 56)]; | |
1636 Tc = ri[WS(is, 24)]; | |
1637 Td = Tb + Tc; | |
1638 T3b = Tb - Tc; | |
1639 T2e = ii[WS(is, 56)]; | |
1640 T2f = ii[WS(is, 24)]; | |
1641 T2g = T2e + T2f; | |
1642 T3c = T2e - T2f; | |
1643 } | |
1644 { | |
1645 E T7, Te, T2a, T2h; | |
1646 T37 = T35 - T36; | |
1647 T7B = T35 + T36; | |
1648 T8F = T5Y - T5X; | |
1649 T5Z = T5X + T5Y; | |
1650 T7 = T3 + T6; | |
1651 Te = Ta + Td; | |
1652 Tf = T7 + Te; | |
1653 Td9 = T7 - Te; | |
1654 { | |
1655 E Tbz, TbA, T60, T61; | |
1656 Tbz = T26 - T29; | |
1657 TbA = Td - Ta; | |
1658 TbB = Tbz - TbA; | |
1659 TcB = TbA + Tbz; | |
1660 T60 = T3b - T3c; | |
1661 T61 = T39 + T38; | |
1662 T62 = KP707106781 * (T60 - T61); | |
1663 T7C = KP707106781 * (T61 + T60); | |
1664 } | |
1665 T2a = T26 + T29; | |
1666 T2h = T2d + T2g; | |
1667 T2i = T2a + T2h; | |
1668 TdH = T2a - T2h; | |
1669 { | |
1670 E Taf, Tag, T3a, T3d; | |
1671 Taf = T3 - T6; | |
1672 Tag = T2d - T2g; | |
1673 Tah = Taf - Tag; | |
1674 Tcb = Taf + Tag; | |
1675 T3a = T38 - T39; | |
1676 T3d = T3b + T3c; | |
1677 T3e = KP707106781 * (T3a - T3d); | |
1678 T8G = KP707106781 * (T3a + T3d); | |
1679 } | |
1680 } | |
1681 } | |
1682 { | |
1683 E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; | |
1684 E T3r; | |
1685 { | |
1686 E Tg, Th, T2j, T2k; | |
1687 Tg = ri[WS(is, 4)]; | |
1688 Th = ri[WS(is, 36)]; | |
1689 Ti = Tg + Th; | |
1690 T3j = Tg - Th; | |
1691 T2j = ii[WS(is, 4)]; | |
1692 T2k = ii[WS(is, 36)]; | |
1693 T2l = T2j + T2k; | |
1694 T3h = T2j - T2k; | |
1695 } | |
1696 { | |
1697 E Tj, Tk, T2m, T2n; | |
1698 Tj = ri[WS(is, 20)]; | |
1699 Tk = ri[WS(is, 52)]; | |
1700 Tl = Tj + Tk; | |
1701 T3g = Tj - Tk; | |
1702 T2m = ii[WS(is, 20)]; | |
1703 T2n = ii[WS(is, 52)]; | |
1704 T2o = T2m + T2n; | |
1705 T3k = T2m - T2n; | |
1706 } | |
1707 { | |
1708 E Tn, To, T2q, T2r; | |
1709 Tn = ri[WS(is, 60)]; | |
1710 To = ri[WS(is, 28)]; | |
1711 Tp = Tn + To; | |
1712 T3q = Tn - To; | |
1713 T2q = ii[WS(is, 60)]; | |
1714 T2r = ii[WS(is, 28)]; | |
1715 T2s = T2q + T2r; | |
1716 T3o = T2q - T2r; | |
1717 } | |
1718 { | |
1719 E Tq, Tr, T2t, T2u; | |
1720 Tq = ri[WS(is, 12)]; | |
1721 Tr = ri[WS(is, 44)]; | |
1722 Ts = Tq + Tr; | |
1723 T3n = Tq - Tr; | |
1724 T2t = ii[WS(is, 12)]; | |
1725 T2u = ii[WS(is, 44)]; | |
1726 T2v = T2t + T2u; | |
1727 T3r = T2t - T2u; | |
1728 } | |
1729 { | |
1730 E Tm, Tt, Tai, Taj; | |
1731 Tm = Ti + Tl; | |
1732 Tt = Tp + Ts; | |
1733 Tu = Tm + Tt; | |
1734 TdI = Tt - Tm; | |
1735 Tai = T2l - T2o; | |
1736 Taj = Ti - Tl; | |
1737 Tak = Tai - Taj; | |
1738 TbD = Taj + Tai; | |
1739 } | |
1740 { | |
1741 E Tal, Tam, T2p, T2w; | |
1742 Tal = Tp - Ts; | |
1743 Tam = T2s - T2v; | |
1744 Tan = Tal + Tam; | |
1745 TbC = Tal - Tam; | |
1746 T2p = T2l + T2o; | |
1747 T2w = T2s + T2v; | |
1748 T2x = T2p + T2w; | |
1749 Tda = T2p - T2w; | |
1750 } | |
1751 { | |
1752 E T3i, T3l, T7E, T7F; | |
1753 T3i = T3g + T3h; | |
1754 T3l = T3j - T3k; | |
1755 T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); | |
1756 T65 = FMA(KP923879532, T3i, KP382683432 * T3l); | |
1757 T7E = T3h - T3g; | |
1758 T7F = T3j + T3k; | |
1759 T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); | |
1760 T8J = FMA(KP382683432, T7E, KP923879532 * T7F); | |
1761 } | |
1762 { | |
1763 E T7H, T7I, T3p, T3s; | |
1764 T7H = T3o - T3n; | |
1765 T7I = T3q + T3r; | |
1766 T7J = FMA(KP923879532, T7H, KP382683432 * T7I); | |
1767 T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); | |
1768 T3p = T3n + T3o; | |
1769 T3s = T3q - T3r; | |
1770 T3t = FMA(KP382683432, T3p, KP923879532 * T3s); | |
1771 T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); | |
1772 } | |
1773 } | |
1774 { | |
1775 E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; | |
1776 E T3E; | |
1777 { | |
1778 E Tw, Tx, T2C, T2D; | |
1779 Tw = ri[WS(is, 2)]; | |
1780 Tx = ri[WS(is, 34)]; | |
1781 Ty = Tw + Tx; | |
1782 T3H = Tw - Tx; | |
1783 { | |
1784 E T2z, T2A, Tz, TA; | |
1785 T2z = ii[WS(is, 2)]; | |
1786 T2A = ii[WS(is, 34)]; | |
1787 T2B = T2z + T2A; | |
1788 T3x = T2z - T2A; | |
1789 Tz = ri[WS(is, 18)]; | |
1790 TA = ri[WS(is, 50)]; | |
1791 TB = Tz + TA; | |
1792 T3w = Tz - TA; | |
1793 } | |
1794 T2C = ii[WS(is, 18)]; | |
1795 T2D = ii[WS(is, 50)]; | |
1796 T2E = T2C + T2D; | |
1797 T3I = T2C - T2D; | |
1798 { | |
1799 E TG, TH, T3z, T2J, T2K, T3A; | |
1800 TG = ri[WS(is, 58)]; | |
1801 TH = ri[WS(is, 26)]; | |
1802 T3z = TG - TH; | |
1803 T2J = ii[WS(is, 58)]; | |
1804 T2K = ii[WS(is, 26)]; | |
1805 T3A = T2J - T2K; | |
1806 TI = TG + TH; | |
1807 T3L = T3z + T3A; | |
1808 T2L = T2J + T2K; | |
1809 T3B = T3z - T3A; | |
1810 } | |
1811 { | |
1812 E TD, TE, T3C, T2G, T2H, T3D; | |
1813 TD = ri[WS(is, 10)]; | |
1814 TE = ri[WS(is, 42)]; | |
1815 T3C = TD - TE; | |
1816 T2G = ii[WS(is, 10)]; | |
1817 T2H = ii[WS(is, 42)]; | |
1818 T3D = T2G - T2H; | |
1819 TF = TD + TE; | |
1820 T3K = T3D - T3C; | |
1821 T2I = T2G + T2H; | |
1822 T3E = T3C + T3D; | |
1823 } | |
1824 } | |
1825 { | |
1826 E TC, TJ, Taq, Tar; | |
1827 TC = Ty + TB; | |
1828 TJ = TF + TI; | |
1829 TK = TC + TJ; | |
1830 Tdd = TC - TJ; | |
1831 Taq = T2B - T2E; | |
1832 Tar = TI - TF; | |
1833 Tas = Taq - Tar; | |
1834 Tce = Tar + Taq; | |
1835 } | |
1836 { | |
1837 E Tat, Tau, T2F, T2M; | |
1838 Tat = Ty - TB; | |
1839 Tau = T2I - T2L; | |
1840 Tav = Tat - Tau; | |
1841 Tcf = Tat + Tau; | |
1842 T2F = T2B + T2E; | |
1843 T2M = T2I + T2L; | |
1844 T2N = T2F + T2M; | |
1845 Tdc = T2F - T2M; | |
1846 } | |
1847 { | |
1848 E T3y, T3F, T7M, T7N; | |
1849 T3y = T3w + T3x; | |
1850 T3F = KP707106781 * (T3B - T3E); | |
1851 T3G = T3y - T3F; | |
1852 T6G = T3y + T3F; | |
1853 T7M = T3x - T3w; | |
1854 T7N = KP707106781 * (T3K + T3L); | |
1855 T7O = T7M - T7N; | |
1856 T9k = T7M + T7N; | |
1857 } | |
1858 { | |
1859 E T7P, T7Q, T3J, T3M; | |
1860 T7P = T3H + T3I; | |
1861 T7Q = KP707106781 * (T3E + T3B); | |
1862 T7R = T7P - T7Q; | |
1863 T9l = T7P + T7Q; | |
1864 T3J = T3H - T3I; | |
1865 T3M = KP707106781 * (T3K - T3L); | |
1866 T3N = T3J - T3M; | |
1867 T6H = T3J + T3M; | |
1868 } | |
1869 } | |
1870 { | |
1871 E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; | |
1872 E T5O; | |
1873 { | |
1874 E T1x, T1y, T54, T55; | |
1875 T1x = ri[WS(is, 63)]; | |
1876 T1y = ri[WS(is, 31)]; | |
1877 T1z = T1x + T1y; | |
1878 T53 = T1x - T1y; | |
1879 { | |
1880 E T5J, T5K, T1A, T1B; | |
1881 T5J = ii[WS(is, 63)]; | |
1882 T5K = ii[WS(is, 31)]; | |
1883 T5L = T5J - T5K; | |
1884 Tbo = T5J + T5K; | |
1885 T1A = ri[WS(is, 15)]; | |
1886 T1B = ri[WS(is, 47)]; | |
1887 T1C = T1A + T1B; | |
1888 T5I = T1A - T1B; | |
1889 } | |
1890 T54 = ii[WS(is, 15)]; | |
1891 T55 = ii[WS(is, 47)]; | |
1892 T56 = T54 - T55; | |
1893 Tbp = T54 + T55; | |
1894 { | |
1895 E T1H, T1I, T5d, T5e, T5f, T5g; | |
1896 T1H = ri[WS(is, 55)]; | |
1897 T1I = ri[WS(is, 23)]; | |
1898 T5d = T1H - T1I; | |
1899 T5e = ii[WS(is, 55)]; | |
1900 T5f = ii[WS(is, 23)]; | |
1901 T5g = T5e - T5f; | |
1902 T1J = T1H + T1I; | |
1903 Tb9 = T5e + T5f; | |
1904 T5h = T5d + T5g; | |
1905 T5N = T5d - T5g; | |
1906 } | |
1907 { | |
1908 E T1E, T1F, T5b, T58, T59, T5a; | |
1909 T1E = ri[WS(is, 7)]; | |
1910 T1F = ri[WS(is, 39)]; | |
1911 T5b = T1E - T1F; | |
1912 T58 = ii[WS(is, 7)]; | |
1913 T59 = ii[WS(is, 39)]; | |
1914 T5a = T58 - T59; | |
1915 T1G = T1E + T1F; | |
1916 Tb8 = T58 + T59; | |
1917 T5c = T5a - T5b; | |
1918 T5O = T5b + T5a; | |
1919 } | |
1920 } | |
1921 { | |
1922 E T1D, T1K, Tbq, Tbr; | |
1923 T1D = T1z + T1C; | |
1924 T1K = T1G + T1J; | |
1925 T1L = T1D + T1K; | |
1926 Tdv = T1D - T1K; | |
1927 Tbq = Tbo - Tbp; | |
1928 Tbr = T1J - T1G; | |
1929 Tbs = Tbq - Tbr; | |
1930 Tcw = Tbr + Tbq; | |
1931 } | |
1932 { | |
1933 E TdA, TdB, T57, T5i; | |
1934 TdA = Tbo + Tbp; | |
1935 TdB = Tb8 + Tb9; | |
1936 TdC = TdA - TdB; | |
1937 Teo = TdA + TdB; | |
1938 T57 = T53 - T56; | |
1939 T5i = KP707106781 * (T5c - T5h); | |
1940 T5j = T57 - T5i; | |
1941 T6V = T57 + T5i; | |
1942 } | |
1943 { | |
1944 E T5M, T5P, T8w, T8x; | |
1945 T5M = T5I + T5L; | |
1946 T5P = KP707106781 * (T5N - T5O); | |
1947 T5Q = T5M - T5P; | |
1948 T6Y = T5M + T5P; | |
1949 T8w = T5L - T5I; | |
1950 T8x = KP707106781 * (T5c + T5h); | |
1951 T8y = T8w - T8x; | |
1952 T9C = T8w + T8x; | |
1953 } | |
1954 { | |
1955 E Tb7, Tba, T8l, T8m; | |
1956 Tb7 = T1z - T1C; | |
1957 Tba = Tb8 - Tb9; | |
1958 Tbb = Tb7 - Tba; | |
1959 Tct = Tb7 + Tba; | |
1960 T8l = T53 + T56; | |
1961 T8m = KP707106781 * (T5O + T5N); | |
1962 T8n = T8l - T8m; | |
1963 T9z = T8l + T8m; | |
1964 } | |
1965 } | |
1966 { | |
1967 E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; | |
1968 E T3X; | |
1969 { | |
1970 E TL, TM, T2R, T2S; | |
1971 TL = ri[WS(is, 62)]; | |
1972 TM = ri[WS(is, 30)]; | |
1973 TN = TL + TM; | |
1974 T40 = TL - TM; | |
1975 { | |
1976 E T2O, T2P, TO, TP; | |
1977 T2O = ii[WS(is, 62)]; | |
1978 T2P = ii[WS(is, 30)]; | |
1979 T2Q = T2O + T2P; | |
1980 T3Q = T2O - T2P; | |
1981 TO = ri[WS(is, 14)]; | |
1982 TP = ri[WS(is, 46)]; | |
1983 TQ = TO + TP; | |
1984 T3P = TO - TP; | |
1985 } | |
1986 T2R = ii[WS(is, 14)]; | |
1987 T2S = ii[WS(is, 46)]; | |
1988 T2T = T2R + T2S; | |
1989 T41 = T2R - T2S; | |
1990 { | |
1991 E TV, TW, T3S, T2Y, T2Z, T3T; | |
1992 TV = ri[WS(is, 54)]; | |
1993 TW = ri[WS(is, 22)]; | |
1994 T3S = TV - TW; | |
1995 T2Y = ii[WS(is, 54)]; | |
1996 T2Z = ii[WS(is, 22)]; | |
1997 T3T = T2Y - T2Z; | |
1998 TX = TV + TW; | |
1999 T44 = T3S + T3T; | |
2000 T30 = T2Y + T2Z; | |
2001 T3U = T3S - T3T; | |
2002 } | |
2003 { | |
2004 E TS, TT, T3V, T2V, T2W, T3W; | |
2005 TS = ri[WS(is, 6)]; | |
2006 TT = ri[WS(is, 38)]; | |
2007 T3V = TS - TT; | |
2008 T2V = ii[WS(is, 6)]; | |
2009 T2W = ii[WS(is, 38)]; | |
2010 T3W = T2V - T2W; | |
2011 TU = TS + TT; | |
2012 T43 = T3W - T3V; | |
2013 T2X = T2V + T2W; | |
2014 T3X = T3V + T3W; | |
2015 } | |
2016 } | |
2017 { | |
2018 E TR, TY, Tax, Tay; | |
2019 TR = TN + TQ; | |
2020 TY = TU + TX; | |
2021 TZ = TR + TY; | |
2022 Tdf = TR - TY; | |
2023 Tax = T2Q - T2T; | |
2024 Tay = TX - TU; | |
2025 Taz = Tax - Tay; | |
2026 Tch = Tay + Tax; | |
2027 } | |
2028 { | |
2029 E TaA, TaB, T2U, T31; | |
2030 TaA = TN - TQ; | |
2031 TaB = T2X - T30; | |
2032 TaC = TaA - TaB; | |
2033 Tci = TaA + TaB; | |
2034 T2U = T2Q + T2T; | |
2035 T31 = T2X + T30; | |
2036 T32 = T2U + T31; | |
2037 Tdg = T2U - T31; | |
2038 } | |
2039 { | |
2040 E T3R, T3Y, T7T, T7U; | |
2041 T3R = T3P + T3Q; | |
2042 T3Y = KP707106781 * (T3U - T3X); | |
2043 T3Z = T3R - T3Y; | |
2044 T6J = T3R + T3Y; | |
2045 T7T = T40 + T41; | |
2046 T7U = KP707106781 * (T3X + T3U); | |
2047 T7V = T7T - T7U; | |
2048 T9n = T7T + T7U; | |
2049 } | |
2050 { | |
2051 E T7W, T7X, T42, T45; | |
2052 T7W = T3Q - T3P; | |
2053 T7X = KP707106781 * (T43 + T44); | |
2054 T7Y = T7W - T7X; | |
2055 T9o = T7W + T7X; | |
2056 T42 = T40 - T41; | |
2057 T45 = KP707106781 * (T43 - T44); | |
2058 T46 = T42 - T45; | |
2059 T6K = T42 + T45; | |
2060 } | |
2061 } | |
2062 { | |
2063 E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; | |
2064 E T4U; | |
2065 { | |
2066 E T12, T13, T4Q, T4R; | |
2067 T12 = ri[WS(is, 1)]; | |
2068 T13 = ri[WS(is, 33)]; | |
2069 T14 = T12 + T13; | |
2070 T4P = T12 - T13; | |
2071 { | |
2072 E T4b, T4c, T15, T16; | |
2073 T4b = ii[WS(is, 1)]; | |
2074 T4c = ii[WS(is, 33)]; | |
2075 T4d = T4b - T4c; | |
2076 TaG = T4b + T4c; | |
2077 T15 = ri[WS(is, 17)]; | |
2078 T16 = ri[WS(is, 49)]; | |
2079 T17 = T15 + T16; | |
2080 T4a = T15 - T16; | |
2081 } | |
2082 T4Q = ii[WS(is, 17)]; | |
2083 T4R = ii[WS(is, 49)]; | |
2084 T4S = T4Q - T4R; | |
2085 TaH = T4Q + T4R; | |
2086 { | |
2087 E T1c, T1d, T4f, T4g, T4h, T4i; | |
2088 T1c = ri[WS(is, 57)]; | |
2089 T1d = ri[WS(is, 25)]; | |
2090 T4f = T1c - T1d; | |
2091 T4g = ii[WS(is, 57)]; | |
2092 T4h = ii[WS(is, 25)]; | |
2093 T4i = T4g - T4h; | |
2094 T1e = T1c + T1d; | |
2095 TaZ = T4g + T4h; | |
2096 T4j = T4f - T4i; | |
2097 T4V = T4f + T4i; | |
2098 } | |
2099 { | |
2100 E T19, T1a, T4k, T4l, T4m, T4n; | |
2101 T19 = ri[WS(is, 9)]; | |
2102 T1a = ri[WS(is, 41)]; | |
2103 T4k = T19 - T1a; | |
2104 T4l = ii[WS(is, 9)]; | |
2105 T4m = ii[WS(is, 41)]; | |
2106 T4n = T4l - T4m; | |
2107 T1b = T19 + T1a; | |
2108 TaY = T4l + T4m; | |
2109 T4o = T4k + T4n; | |
2110 T4U = T4n - T4k; | |
2111 } | |
2112 } | |
2113 { | |
2114 E T18, T1f, TaX, Tb0; | |
2115 T18 = T14 + T17; | |
2116 T1f = T1b + T1e; | |
2117 T1g = T18 + T1f; | |
2118 Tdp = T18 - T1f; | |
2119 TaX = T14 - T17; | |
2120 Tb0 = TaY - TaZ; | |
2121 Tb1 = TaX - Tb0; | |
2122 Tcm = TaX + Tb0; | |
2123 } | |
2124 { | |
2125 E Tdk, Tdl, T4e, T4p; | |
2126 Tdk = TaG + TaH; | |
2127 Tdl = TaY + TaZ; | |
2128 Tdm = Tdk - Tdl; | |
2129 Tej = Tdk + Tdl; | |
2130 T4e = T4a + T4d; | |
2131 T4p = KP707106781 * (T4j - T4o); | |
2132 T4q = T4e - T4p; | |
2133 T6R = T4e + T4p; | |
2134 } | |
2135 { | |
2136 E T4T, T4W, T8d, T8e; | |
2137 T4T = T4P - T4S; | |
2138 T4W = KP707106781 * (T4U - T4V); | |
2139 T4X = T4T - T4W; | |
2140 T6O = T4T + T4W; | |
2141 T8d = T4P + T4S; | |
2142 T8e = KP707106781 * (T4o + T4j); | |
2143 T8f = T8d - T8e; | |
2144 T9s = T8d + T8e; | |
2145 } | |
2146 { | |
2147 E TaI, TaJ, T82, T83; | |
2148 TaI = TaG - TaH; | |
2149 TaJ = T1e - T1b; | |
2150 TaK = TaI - TaJ; | |
2151 Tcp = TaJ + TaI; | |
2152 T82 = T4d - T4a; | |
2153 T83 = KP707106781 * (T4U + T4V); | |
2154 T84 = T82 - T83; | |
2155 T9v = T82 + T83; | |
2156 } | |
2157 } | |
2158 { | |
2159 E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; | |
2160 E T4A, TaO, TaL, T86, T85; | |
2161 { | |
2162 E T4H, T4F, T4C, T4K; | |
2163 { | |
2164 E T1h, T1i, T4D, T4E; | |
2165 T1h = ri[WS(is, 5)]; | |
2166 T1i = ri[WS(is, 37)]; | |
2167 T1j = T1h + T1i; | |
2168 T4H = T1h - T1i; | |
2169 T4D = ii[WS(is, 5)]; | |
2170 T4E = ii[WS(is, 37)]; | |
2171 T4F = T4D - T4E; | |
2172 TaR = T4D + T4E; | |
2173 } | |
2174 { | |
2175 E T1k, T1l, T4I, T4J; | |
2176 T1k = ri[WS(is, 21)]; | |
2177 T1l = ri[WS(is, 53)]; | |
2178 T1m = T1k + T1l; | |
2179 T4C = T1k - T1l; | |
2180 T4I = ii[WS(is, 21)]; | |
2181 T4J = ii[WS(is, 53)]; | |
2182 T4K = T4I - T4J; | |
2183 TaS = T4I + T4J; | |
2184 } | |
2185 T4G = T4C + T4F; | |
2186 T4L = T4H - T4K; | |
2187 TaT = TaR - TaS; | |
2188 TaQ = T1j - T1m; | |
2189 T89 = T4H + T4K; | |
2190 T88 = T4F - T4C; | |
2191 } | |
2192 { | |
2193 E T4r, T4z, T4w, T4u; | |
2194 { | |
2195 E T1o, T1p, T4x, T4y; | |
2196 T1o = ri[WS(is, 61)]; | |
2197 T1p = ri[WS(is, 29)]; | |
2198 T1q = T1o + T1p; | |
2199 T4r = T1o - T1p; | |
2200 T4x = ii[WS(is, 61)]; | |
2201 T4y = ii[WS(is, 29)]; | |
2202 T4z = T4x - T4y; | |
2203 TaM = T4x + T4y; | |
2204 } | |
2205 { | |
2206 E T1r, T1s, T4s, T4t; | |
2207 T1r = ri[WS(is, 13)]; | |
2208 T1s = ri[WS(is, 45)]; | |
2209 T1t = T1r + T1s; | |
2210 T4w = T1r - T1s; | |
2211 T4s = ii[WS(is, 13)]; | |
2212 T4t = ii[WS(is, 45)]; | |
2213 T4u = T4s - T4t; | |
2214 TaN = T4s + T4t; | |
2215 } | |
2216 T4v = T4r - T4u; | |
2217 T4A = T4w + T4z; | |
2218 TaO = TaM - TaN; | |
2219 TaL = T1q - T1t; | |
2220 T86 = T4z - T4w; | |
2221 T85 = T4r + T4u; | |
2222 } | |
2223 { | |
2224 E T1n, T1u, Tb2, Tb3; | |
2225 T1n = T1j + T1m; | |
2226 T1u = T1q + T1t; | |
2227 T1v = T1n + T1u; | |
2228 Tdn = T1u - T1n; | |
2229 Tb2 = TaT - TaQ; | |
2230 Tb3 = TaL + TaO; | |
2231 Tb4 = KP707106781 * (Tb2 - Tb3); | |
2232 Tcq = KP707106781 * (Tb2 + Tb3); | |
2233 } | |
2234 { | |
2235 E Tdq, Tdr, T4B, T4M; | |
2236 Tdq = TaR + TaS; | |
2237 Tdr = TaM + TaN; | |
2238 Tds = Tdq - Tdr; | |
2239 Tek = Tdq + Tdr; | |
2240 T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); | |
2241 T4M = FMA(KP923879532, T4G, KP382683432 * T4L); | |
2242 T4N = T4B - T4M; | |
2243 T6P = T4M + T4B; | |
2244 } | |
2245 { | |
2246 E T4Y, T4Z, T8g, T8h; | |
2247 T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); | |
2248 T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); | |
2249 T50 = T4Y - T4Z; | |
2250 T6S = T4Y + T4Z; | |
2251 T8g = FNMS(KP382683432, T89, KP923879532 * T88); | |
2252 T8h = FMA(KP923879532, T86, KP382683432 * T85); | |
2253 T8i = T8g - T8h; | |
2254 T9w = T8g + T8h; | |
2255 } | |
2256 { | |
2257 E TaP, TaU, T87, T8a; | |
2258 TaP = TaL - TaO; | |
2259 TaU = TaQ + TaT; | |
2260 TaV = KP707106781 * (TaP - TaU); | |
2261 Tcn = KP707106781 * (TaU + TaP); | |
2262 T87 = FNMS(KP382683432, T86, KP923879532 * T85); | |
2263 T8a = FMA(KP382683432, T88, KP923879532 * T89); | |
2264 T8b = T87 - T8a; | |
2265 T9t = T8a + T87; | |
2266 } | |
2267 } | |
2268 { | |
2269 E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; | |
2270 E T5E, Tbk, Tbh, T8s, T8r; | |
2271 { | |
2272 E T5p, T5n, T5k, T5s; | |
2273 { | |
2274 E T1M, T1N, T5l, T5m; | |
2275 T1M = ri[WS(is, 3)]; | |
2276 T1N = ri[WS(is, 35)]; | |
2277 T1O = T1M + T1N; | |
2278 T5p = T1M - T1N; | |
2279 T5l = ii[WS(is, 3)]; | |
2280 T5m = ii[WS(is, 35)]; | |
2281 T5n = T5l - T5m; | |
2282 Tbc = T5l + T5m; | |
2283 } | |
2284 { | |
2285 E T1P, T1Q, T5q, T5r; | |
2286 T1P = ri[WS(is, 19)]; | |
2287 T1Q = ri[WS(is, 51)]; | |
2288 T1R = T1P + T1Q; | |
2289 T5k = T1P - T1Q; | |
2290 T5q = ii[WS(is, 19)]; | |
2291 T5r = ii[WS(is, 51)]; | |
2292 T5s = T5q - T5r; | |
2293 Tbd = T5q + T5r; | |
2294 } | |
2295 T5o = T5k + T5n; | |
2296 T5t = T5p - T5s; | |
2297 Tbf = T1O - T1R; | |
2298 Tbe = Tbc - Tbd; | |
2299 T8p = T5p + T5s; | |
2300 T8o = T5n - T5k; | |
2301 } | |
2302 { | |
2303 E T5A, T5y, T5v, T5D; | |
2304 { | |
2305 E T1T, T1U, T5w, T5x; | |
2306 T1T = ri[WS(is, 59)]; | |
2307 T1U = ri[WS(is, 27)]; | |
2308 T1V = T1T + T1U; | |
2309 T5A = T1T - T1U; | |
2310 T5w = ii[WS(is, 59)]; | |
2311 T5x = ii[WS(is, 27)]; | |
2312 T5y = T5w - T5x; | |
2313 Tbi = T5w + T5x; | |
2314 } | |
2315 { | |
2316 E T1W, T1X, T5B, T5C; | |
2317 T1W = ri[WS(is, 11)]; | |
2318 T1X = ri[WS(is, 43)]; | |
2319 T1Y = T1W + T1X; | |
2320 T5v = T1W - T1X; | |
2321 T5B = ii[WS(is, 11)]; | |
2322 T5C = ii[WS(is, 43)]; | |
2323 T5D = T5B - T5C; | |
2324 Tbj = T5B + T5C; | |
2325 } | |
2326 T5z = T5v + T5y; | |
2327 T5E = T5A - T5D; | |
2328 Tbk = Tbi - Tbj; | |
2329 Tbh = T1V - T1Y; | |
2330 T8s = T5A + T5D; | |
2331 T8r = T5y - T5v; | |
2332 } | |
2333 { | |
2334 E T1S, T1Z, Tbt, Tbu; | |
2335 T1S = T1O + T1R; | |
2336 T1Z = T1V + T1Y; | |
2337 T20 = T1S + T1Z; | |
2338 TdD = T1Z - T1S; | |
2339 Tbt = Tbh - Tbk; | |
2340 Tbu = Tbf + Tbe; | |
2341 Tbv = KP707106781 * (Tbt - Tbu); | |
2342 Tcu = KP707106781 * (Tbu + Tbt); | |
2343 } | |
2344 { | |
2345 E Tdw, Tdx, T5u, T5F; | |
2346 Tdw = Tbc + Tbd; | |
2347 Tdx = Tbi + Tbj; | |
2348 Tdy = Tdw - Tdx; | |
2349 Tep = Tdw + Tdx; | |
2350 T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); | |
2351 T5F = FMA(KP382683432, T5z, KP923879532 * T5E); | |
2352 T5G = T5u - T5F; | |
2353 T6Z = T5u + T5F; | |
2354 } | |
2355 { | |
2356 E T5R, T5S, T8z, T8A; | |
2357 T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); | |
2358 T5S = FMA(KP923879532, T5o, KP382683432 * T5t); | |
2359 T5T = T5R - T5S; | |
2360 T6W = T5S + T5R; | |
2361 T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); | |
2362 T8A = FMA(KP382683432, T8o, KP923879532 * T8p); | |
2363 T8B = T8z - T8A; | |
2364 T9A = T8A + T8z; | |
2365 } | |
2366 { | |
2367 E Tbg, Tbl, T8q, T8t; | |
2368 Tbg = Tbe - Tbf; | |
2369 Tbl = Tbh + Tbk; | |
2370 Tbm = KP707106781 * (Tbg - Tbl); | |
2371 Tcx = KP707106781 * (Tbg + Tbl); | |
2372 T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); | |
2373 T8t = FMA(KP923879532, T8r, KP382683432 * T8s); | |
2374 T8u = T8q - T8t; | |
2375 T9D = T8q + T8t; | |
2376 } | |
2377 } | |
2378 { | |
2379 E T11, TeD, TeG, TeI, T22, T23, T34, TeH; | |
2380 { | |
2381 E Tv, T10, TeE, TeF; | |
2382 Tv = Tf + Tu; | |
2383 T10 = TK + TZ; | |
2384 T11 = Tv + T10; | |
2385 TeD = Tv - T10; | |
2386 TeE = Tej + Tek; | |
2387 TeF = Teo + Tep; | |
2388 TeG = TeE - TeF; | |
2389 TeI = TeE + TeF; | |
2390 } | |
2391 { | |
2392 E T1w, T21, T2y, T33; | |
2393 T1w = T1g + T1v; | |
2394 T21 = T1L + T20; | |
2395 T22 = T1w + T21; | |
2396 T23 = T21 - T1w; | |
2397 T2y = T2i + T2x; | |
2398 T33 = T2N + T32; | |
2399 T34 = T2y - T33; | |
2400 TeH = T2y + T33; | |
2401 } | |
2402 ro[WS(os, 32)] = T11 - T22; | |
2403 io[WS(os, 32)] = TeH - TeI; | |
2404 ro[0] = T11 + T22; | |
2405 io[0] = TeH + TeI; | |
2406 io[WS(os, 16)] = T23 + T34; | |
2407 ro[WS(os, 16)] = TeD + TeG; | |
2408 io[WS(os, 48)] = T34 - T23; | |
2409 ro[WS(os, 48)] = TeD - TeG; | |
2410 } | |
2411 { | |
2412 E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; | |
2413 { | |
2414 E Tef, Teg, Tet, Teu; | |
2415 Tef = Tf - Tu; | |
2416 Teg = T2N - T32; | |
2417 Teh = Tef + Teg; | |
2418 Tex = Tef - Teg; | |
2419 Tet = T2i - T2x; | |
2420 Teu = TZ - TK; | |
2421 Tev = Tet - Teu; | |
2422 TeB = Teu + Tet; | |
2423 } | |
2424 { | |
2425 E Tei, Tel, Ten, Teq; | |
2426 Tei = T1g - T1v; | |
2427 Tel = Tej - Tek; | |
2428 Tem = Tei + Tel; | |
2429 Tey = Tel - Tei; | |
2430 Ten = T1L - T20; | |
2431 Teq = Teo - Tep; | |
2432 Ter = Ten - Teq; | |
2433 Tez = Ten + Teq; | |
2434 } | |
2435 { | |
2436 E Tes, TeC, Tew, TeA; | |
2437 Tes = KP707106781 * (Tem + Ter); | |
2438 ro[WS(os, 40)] = Teh - Tes; | |
2439 ro[WS(os, 8)] = Teh + Tes; | |
2440 TeC = KP707106781 * (Tey + Tez); | |
2441 io[WS(os, 40)] = TeB - TeC; | |
2442 io[WS(os, 8)] = TeB + TeC; | |
2443 Tew = KP707106781 * (Ter - Tem); | |
2444 io[WS(os, 56)] = Tev - Tew; | |
2445 io[WS(os, 24)] = Tev + Tew; | |
2446 TeA = KP707106781 * (Tey - Tez); | |
2447 ro[WS(os, 56)] = Tex - TeA; | |
2448 ro[WS(os, 24)] = Tex + TeA; | |
2449 } | |
2450 } | |
2451 { | |
2452 E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; | |
2453 E TdR; | |
2454 { | |
2455 E Tde, Tdh, Tdo, Tdt; | |
2456 Tdb = Td9 - Tda; | |
2457 TdV = Td9 + Tda; | |
2458 Te5 = TdI + TdH; | |
2459 TdJ = TdH - TdI; | |
2460 Tde = Tdc - Tdd; | |
2461 Tdh = Tdf + Tdg; | |
2462 Tdi = KP707106781 * (Tde - Tdh); | |
2463 Te6 = KP707106781 * (Tde + Tdh); | |
2464 { | |
2465 E Te1, Te2, TdK, TdL; | |
2466 Te1 = Tdv + Tdy; | |
2467 Te2 = TdD + TdC; | |
2468 Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); | |
2469 Teb = FMA(KP923879532, Te2, KP382683432 * Te1); | |
2470 TdK = Tdf - Tdg; | |
2471 TdL = Tdd + Tdc; | |
2472 TdM = KP707106781 * (TdK - TdL); | |
2473 TdW = KP707106781 * (TdL + TdK); | |
2474 } | |
2475 Tdo = Tdm - Tdn; | |
2476 Tdt = Tdp - Tds; | |
2477 Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); | |
2478 TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); | |
2479 { | |
2480 E TdY, TdZ, Tdz, TdE; | |
2481 TdY = Tdn + Tdm; | |
2482 TdZ = Tdp + Tds; | |
2483 Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); | |
2484 Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); | |
2485 Tdz = Tdv - Tdy; | |
2486 TdE = TdC - TdD; | |
2487 TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); | |
2488 TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); | |
2489 } | |
2490 } | |
2491 { | |
2492 E Tdj, TdG, TdT, TdU; | |
2493 Tdj = Tdb + Tdi; | |
2494 TdG = Tdu + TdF; | |
2495 ro[WS(os, 44)] = Tdj - TdG; | |
2496 ro[WS(os, 12)] = Tdj + TdG; | |
2497 TdT = TdJ + TdM; | |
2498 TdU = TdQ + TdR; | |
2499 io[WS(os, 44)] = TdT - TdU; | |
2500 io[WS(os, 12)] = TdT + TdU; | |
2501 } | |
2502 { | |
2503 E TdN, TdO, TdP, TdS; | |
2504 TdN = TdJ - TdM; | |
2505 TdO = TdF - Tdu; | |
2506 io[WS(os, 60)] = TdN - TdO; | |
2507 io[WS(os, 28)] = TdN + TdO; | |
2508 TdP = Tdb - Tdi; | |
2509 TdS = TdQ - TdR; | |
2510 ro[WS(os, 60)] = TdP - TdS; | |
2511 ro[WS(os, 28)] = TdP + TdS; | |
2512 } | |
2513 { | |
2514 E TdX, Te4, Ted, Tee; | |
2515 TdX = TdV + TdW; | |
2516 Te4 = Te0 + Te3; | |
2517 ro[WS(os, 36)] = TdX - Te4; | |
2518 ro[WS(os, 4)] = TdX + Te4; | |
2519 Ted = Te5 + Te6; | |
2520 Tee = Tea + Teb; | |
2521 io[WS(os, 36)] = Ted - Tee; | |
2522 io[WS(os, 4)] = Ted + Tee; | |
2523 } | |
2524 { | |
2525 E Te7, Te8, Te9, Tec; | |
2526 Te7 = Te5 - Te6; | |
2527 Te8 = Te3 - Te0; | |
2528 io[WS(os, 52)] = Te7 - Te8; | |
2529 io[WS(os, 20)] = Te7 + Te8; | |
2530 Te9 = TdV - TdW; | |
2531 Tec = Tea - Teb; | |
2532 ro[WS(os, 52)] = Te9 - Tec; | |
2533 ro[WS(os, 20)] = Te9 + Tec; | |
2534 } | |
2535 } | |
2536 { | |
2537 E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; | |
2538 E TcL, Tcc, TcC; | |
2539 Tcc = KP707106781 * (TbD + TbC); | |
2540 Tcd = Tcb - Tcc; | |
2541 TcP = Tcb + Tcc; | |
2542 TcC = KP707106781 * (Tak + Tan); | |
2543 TcD = TcB - TcC; | |
2544 TcZ = TcB + TcC; | |
2545 { | |
2546 E Tcg, Tcj, TcV, TcW; | |
2547 Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); | |
2548 Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); | |
2549 Tck = Tcg - Tcj; | |
2550 Td0 = Tcg + Tcj; | |
2551 TcV = Tct + Tcu; | |
2552 TcW = Tcw + Tcx; | |
2553 TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); | |
2554 Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); | |
2555 } | |
2556 { | |
2557 E Tco, Tcr, TcE, TcF; | |
2558 Tco = Tcm - Tcn; | |
2559 Tcr = Tcp - Tcq; | |
2560 Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); | |
2561 TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); | |
2562 TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); | |
2563 TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); | |
2564 TcG = TcE - TcF; | |
2565 TcQ = TcF + TcE; | |
2566 } | |
2567 { | |
2568 E TcS, TcT, Tcv, Tcy; | |
2569 TcS = Tcm + Tcn; | |
2570 TcT = Tcp + Tcq; | |
2571 TcU = FMA(KP980785280, TcS, KP195090322 * TcT); | |
2572 Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); | |
2573 Tcv = Tct - Tcu; | |
2574 Tcy = Tcw - Tcx; | |
2575 Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); | |
2576 TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); | |
2577 } | |
2578 { | |
2579 E Tcl, TcA, TcN, TcO; | |
2580 Tcl = Tcd + Tck; | |
2581 TcA = Tcs + Tcz; | |
2582 ro[WS(os, 42)] = Tcl - TcA; | |
2583 ro[WS(os, 10)] = Tcl + TcA; | |
2584 TcN = TcD + TcG; | |
2585 TcO = TcK + TcL; | |
2586 io[WS(os, 42)] = TcN - TcO; | |
2587 io[WS(os, 10)] = TcN + TcO; | |
2588 } | |
2589 { | |
2590 E TcH, TcI, TcJ, TcM; | |
2591 TcH = TcD - TcG; | |
2592 TcI = Tcz - Tcs; | |
2593 io[WS(os, 58)] = TcH - TcI; | |
2594 io[WS(os, 26)] = TcH + TcI; | |
2595 TcJ = Tcd - Tck; | |
2596 TcM = TcK - TcL; | |
2597 ro[WS(os, 58)] = TcJ - TcM; | |
2598 ro[WS(os, 26)] = TcJ + TcM; | |
2599 } | |
2600 { | |
2601 E TcR, TcY, Td7, Td8; | |
2602 TcR = TcP + TcQ; | |
2603 TcY = TcU + TcX; | |
2604 ro[WS(os, 34)] = TcR - TcY; | |
2605 ro[WS(os, 2)] = TcR + TcY; | |
2606 Td7 = TcZ + Td0; | |
2607 Td8 = Td4 + Td5; | |
2608 io[WS(os, 34)] = Td7 - Td8; | |
2609 io[WS(os, 2)] = Td7 + Td8; | |
2610 } | |
2611 { | |
2612 E Td1, Td2, Td3, Td6; | |
2613 Td1 = TcZ - Td0; | |
2614 Td2 = TcX - TcU; | |
2615 io[WS(os, 50)] = Td1 - Td2; | |
2616 io[WS(os, 18)] = Td1 + Td2; | |
2617 Td3 = TcP - TcQ; | |
2618 Td6 = Td4 - Td5; | |
2619 ro[WS(os, 50)] = Td3 - Td6; | |
2620 ro[WS(os, 18)] = Td3 + Td6; | |
2621 } | |
2622 } | |
2623 { | |
2624 E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; | |
2625 E TbN, Tao, TbE; | |
2626 Tao = KP707106781 * (Tak - Tan); | |
2627 Tap = Tah - Tao; | |
2628 TbR = Tah + Tao; | |
2629 TbE = KP707106781 * (TbC - TbD); | |
2630 TbF = TbB - TbE; | |
2631 Tc1 = TbB + TbE; | |
2632 { | |
2633 E Taw, TaD, TbX, TbY; | |
2634 Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); | |
2635 TaD = FMA(KP382683432, Taz, KP923879532 * TaC); | |
2636 TaE = Taw - TaD; | |
2637 Tc2 = Taw + TaD; | |
2638 TbX = Tbb + Tbm; | |
2639 TbY = Tbs + Tbv; | |
2640 TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); | |
2641 Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); | |
2642 } | |
2643 { | |
2644 E TaW, Tb5, TbG, TbH; | |
2645 TaW = TaK - TaV; | |
2646 Tb5 = Tb1 - Tb4; | |
2647 Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); | |
2648 TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); | |
2649 TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); | |
2650 TbH = FMA(KP923879532, Tas, KP382683432 * Tav); | |
2651 TbI = TbG - TbH; | |
2652 TbS = TbH + TbG; | |
2653 } | |
2654 { | |
2655 E TbU, TbV, Tbn, Tbw; | |
2656 TbU = TaK + TaV; | |
2657 TbV = Tb1 + Tb4; | |
2658 TbW = FMA(KP555570233, TbU, KP831469612 * TbV); | |
2659 Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); | |
2660 Tbn = Tbb - Tbm; | |
2661 Tbw = Tbs - Tbv; | |
2662 Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); | |
2663 TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); | |
2664 } | |
2665 { | |
2666 E TaF, Tby, TbP, TbQ; | |
2667 TaF = Tap + TaE; | |
2668 Tby = Tb6 + Tbx; | |
2669 ro[WS(os, 46)] = TaF - Tby; | |
2670 ro[WS(os, 14)] = TaF + Tby; | |
2671 TbP = TbF + TbI; | |
2672 TbQ = TbM + TbN; | |
2673 io[WS(os, 46)] = TbP - TbQ; | |
2674 io[WS(os, 14)] = TbP + TbQ; | |
2675 } | |
2676 { | |
2677 E TbJ, TbK, TbL, TbO; | |
2678 TbJ = TbF - TbI; | |
2679 TbK = Tbx - Tb6; | |
2680 io[WS(os, 62)] = TbJ - TbK; | |
2681 io[WS(os, 30)] = TbJ + TbK; | |
2682 TbL = Tap - TaE; | |
2683 TbO = TbM - TbN; | |
2684 ro[WS(os, 62)] = TbL - TbO; | |
2685 ro[WS(os, 30)] = TbL + TbO; | |
2686 } | |
2687 { | |
2688 E TbT, Tc0, Tc9, Tca; | |
2689 TbT = TbR + TbS; | |
2690 Tc0 = TbW + TbZ; | |
2691 ro[WS(os, 38)] = TbT - Tc0; | |
2692 ro[WS(os, 6)] = TbT + Tc0; | |
2693 Tc9 = Tc1 + Tc2; | |
2694 Tca = Tc6 + Tc7; | |
2695 io[WS(os, 38)] = Tc9 - Tca; | |
2696 io[WS(os, 6)] = Tc9 + Tca; | |
2697 } | |
2698 { | |
2699 E Tc3, Tc4, Tc5, Tc8; | |
2700 Tc3 = Tc1 - Tc2; | |
2701 Tc4 = TbZ - TbW; | |
2702 io[WS(os, 54)] = Tc3 - Tc4; | |
2703 io[WS(os, 22)] = Tc3 + Tc4; | |
2704 Tc5 = TbR - TbS; | |
2705 Tc8 = Tc6 - Tc7; | |
2706 ro[WS(os, 54)] = Tc5 - Tc8; | |
2707 ro[WS(os, 22)] = Tc5 + Tc8; | |
2708 } | |
2709 } | |
2710 { | |
2711 E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; | |
2712 E T7d; | |
2713 { | |
2714 E T6D, T6E, T7k, T7l; | |
2715 T6D = T37 + T3e; | |
2716 T6E = T65 + T64; | |
2717 T6F = T6D - T6E; | |
2718 T7h = T6D + T6E; | |
2719 T7k = T6O + T6P; | |
2720 T7l = T6R + T6S; | |
2721 T7m = FMA(KP956940335, T7k, KP290284677 * T7l); | |
2722 T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); | |
2723 } | |
2724 { | |
2725 E T7n, T7o, T6I, T6L; | |
2726 T7n = T6V + T6W; | |
2727 T7o = T6Y + T6Z; | |
2728 T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); | |
2729 T7x = FMA(KP290284677, T7n, KP956940335 * T7o); | |
2730 T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); | |
2731 T6L = FMA(KP831469612, T6J, KP555570233 * T6K); | |
2732 T6M = T6I - T6L; | |
2733 T7s = T6I + T6L; | |
2734 } | |
2735 { | |
2736 E T6Q, T6T, T73, T74; | |
2737 T6Q = T6O - T6P; | |
2738 T6T = T6R - T6S; | |
2739 T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); | |
2740 T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); | |
2741 T73 = T5Z + T62; | |
2742 T74 = T3m + T3t; | |
2743 T75 = T73 - T74; | |
2744 T7r = T73 + T74; | |
2745 } | |
2746 { | |
2747 E T76, T77, T6X, T70; | |
2748 T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); | |
2749 T77 = FMA(KP555570233, T6G, KP831469612 * T6H); | |
2750 T78 = T76 - T77; | |
2751 T7i = T77 + T76; | |
2752 T6X = T6V - T6W; | |
2753 T70 = T6Y - T6Z; | |
2754 T71 = FNMS(KP881921264, T70, KP471396736 * T6X); | |
2755 T7d = FMA(KP881921264, T6X, KP471396736 * T70); | |
2756 } | |
2757 { | |
2758 E T6N, T72, T7f, T7g; | |
2759 T6N = T6F + T6M; | |
2760 T72 = T6U + T71; | |
2761 ro[WS(os, 43)] = T6N - T72; | |
2762 ro[WS(os, 11)] = T6N + T72; | |
2763 T7f = T75 + T78; | |
2764 T7g = T7c + T7d; | |
2765 io[WS(os, 43)] = T7f - T7g; | |
2766 io[WS(os, 11)] = T7f + T7g; | |
2767 } | |
2768 { | |
2769 E T79, T7a, T7b, T7e; | |
2770 T79 = T75 - T78; | |
2771 T7a = T71 - T6U; | |
2772 io[WS(os, 59)] = T79 - T7a; | |
2773 io[WS(os, 27)] = T79 + T7a; | |
2774 T7b = T6F - T6M; | |
2775 T7e = T7c - T7d; | |
2776 ro[WS(os, 59)] = T7b - T7e; | |
2777 ro[WS(os, 27)] = T7b + T7e; | |
2778 } | |
2779 { | |
2780 E T7j, T7q, T7z, T7A; | |
2781 T7j = T7h + T7i; | |
2782 T7q = T7m + T7p; | |
2783 ro[WS(os, 35)] = T7j - T7q; | |
2784 ro[WS(os, 3)] = T7j + T7q; | |
2785 T7z = T7r + T7s; | |
2786 T7A = T7w + T7x; | |
2787 io[WS(os, 35)] = T7z - T7A; | |
2788 io[WS(os, 3)] = T7z + T7A; | |
2789 } | |
2790 { | |
2791 E T7t, T7u, T7v, T7y; | |
2792 T7t = T7r - T7s; | |
2793 T7u = T7p - T7m; | |
2794 io[WS(os, 51)] = T7t - T7u; | |
2795 io[WS(os, 19)] = T7t + T7u; | |
2796 T7v = T7h - T7i; | |
2797 T7y = T7w - T7x; | |
2798 ro[WS(os, 51)] = T7v - T7y; | |
2799 ro[WS(os, 19)] = T7v + T7y; | |
2800 } | |
2801 } | |
2802 { | |
2803 E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; | |
2804 E T9R; | |
2805 { | |
2806 E T9h, T9i, T9Y, T9Z; | |
2807 T9h = T7B + T7C; | |
2808 T9i = T8J + T8I; | |
2809 T9j = T9h - T9i; | |
2810 T9V = T9h + T9i; | |
2811 T9Y = T9s + T9t; | |
2812 T9Z = T9v + T9w; | |
2813 Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); | |
2814 Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); | |
2815 } | |
2816 { | |
2817 E Ta1, Ta2, T9m, T9p; | |
2818 Ta1 = T9z + T9A; | |
2819 Ta2 = T9C + T9D; | |
2820 Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); | |
2821 Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); | |
2822 T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); | |
2823 T9p = FMA(KP195090322, T9n, KP980785280 * T9o); | |
2824 T9q = T9m - T9p; | |
2825 Ta6 = T9m + T9p; | |
2826 } | |
2827 { | |
2828 E T9u, T9x, T9H, T9I; | |
2829 T9u = T9s - T9t; | |
2830 T9x = T9v - T9w; | |
2831 T9y = FMA(KP634393284, T9u, KP773010453 * T9x); | |
2832 T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); | |
2833 T9H = T8F + T8G; | |
2834 T9I = T7G + T7J; | |
2835 T9J = T9H - T9I; | |
2836 Ta5 = T9H + T9I; | |
2837 } | |
2838 { | |
2839 E T9K, T9L, T9B, T9E; | |
2840 T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); | |
2841 T9L = FMA(KP980785280, T9l, KP195090322 * T9k); | |
2842 T9M = T9K - T9L; | |
2843 T9W = T9L + T9K; | |
2844 T9B = T9z - T9A; | |
2845 T9E = T9C - T9D; | |
2846 T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); | |
2847 T9R = FMA(KP773010453, T9B, KP634393284 * T9E); | |
2848 } | |
2849 { | |
2850 E T9r, T9G, T9T, T9U; | |
2851 T9r = T9j + T9q; | |
2852 T9G = T9y + T9F; | |
2853 ro[WS(os, 41)] = T9r - T9G; | |
2854 ro[WS(os, 9)] = T9r + T9G; | |
2855 T9T = T9J + T9M; | |
2856 T9U = T9Q + T9R; | |
2857 io[WS(os, 41)] = T9T - T9U; | |
2858 io[WS(os, 9)] = T9T + T9U; | |
2859 } | |
2860 { | |
2861 E T9N, T9O, T9P, T9S; | |
2862 T9N = T9J - T9M; | |
2863 T9O = T9F - T9y; | |
2864 io[WS(os, 57)] = T9N - T9O; | |
2865 io[WS(os, 25)] = T9N + T9O; | |
2866 T9P = T9j - T9q; | |
2867 T9S = T9Q - T9R; | |
2868 ro[WS(os, 57)] = T9P - T9S; | |
2869 ro[WS(os, 25)] = T9P + T9S; | |
2870 } | |
2871 { | |
2872 E T9X, Ta4, Tad, Tae; | |
2873 T9X = T9V + T9W; | |
2874 Ta4 = Ta0 + Ta3; | |
2875 ro[WS(os, 33)] = T9X - Ta4; | |
2876 ro[WS(os, 1)] = T9X + Ta4; | |
2877 Tad = Ta5 + Ta6; | |
2878 Tae = Taa + Tab; | |
2879 io[WS(os, 33)] = Tad - Tae; | |
2880 io[WS(os, 1)] = Tad + Tae; | |
2881 } | |
2882 { | |
2883 E Ta7, Ta8, Ta9, Tac; | |
2884 Ta7 = Ta5 - Ta6; | |
2885 Ta8 = Ta3 - Ta0; | |
2886 io[WS(os, 49)] = Ta7 - Ta8; | |
2887 io[WS(os, 17)] = Ta7 + Ta8; | |
2888 Ta9 = T9V - T9W; | |
2889 Tac = Taa - Tab; | |
2890 ro[WS(os, 49)] = Ta9 - Tac; | |
2891 ro[WS(os, 17)] = Ta9 + Tac; | |
2892 } | |
2893 } | |
2894 { | |
2895 E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; | |
2896 E T6f; | |
2897 { | |
2898 E T3f, T3u, T6m, T6n; | |
2899 T3f = T37 - T3e; | |
2900 T3u = T3m - T3t; | |
2901 T3v = T3f - T3u; | |
2902 T6j = T3f + T3u; | |
2903 T6m = T4q + T4N; | |
2904 T6n = T4X + T50; | |
2905 T6o = FMA(KP634393284, T6m, KP773010453 * T6n); | |
2906 T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); | |
2907 } | |
2908 { | |
2909 E T6p, T6q, T3O, T47; | |
2910 T6p = T5j + T5G; | |
2911 T6q = T5Q + T5T; | |
2912 T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); | |
2913 T6z = FMA(KP773010453, T6q, KP634393284 * T6p); | |
2914 T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); | |
2915 T47 = FMA(KP195090322, T3Z, KP980785280 * T46); | |
2916 T48 = T3O - T47; | |
2917 T6u = T3O + T47; | |
2918 } | |
2919 { | |
2920 E T4O, T51, T63, T66; | |
2921 T4O = T4q - T4N; | |
2922 T51 = T4X - T50; | |
2923 T52 = FMA(KP995184726, T4O, KP098017140 * T51); | |
2924 T6e = FNMS(KP995184726, T51, KP098017140 * T4O); | |
2925 T63 = T5Z - T62; | |
2926 T66 = T64 - T65; | |
2927 T67 = T63 - T66; | |
2928 T6t = T63 + T66; | |
2929 } | |
2930 { | |
2931 E T68, T69, T5H, T5U; | |
2932 T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); | |
2933 T69 = FMA(KP980785280, T3G, KP195090322 * T3N); | |
2934 T6a = T68 - T69; | |
2935 T6k = T69 + T68; | |
2936 T5H = T5j - T5G; | |
2937 T5U = T5Q - T5T; | |
2938 T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); | |
2939 T6f = FMA(KP098017140, T5U, KP995184726 * T5H); | |
2940 } | |
2941 { | |
2942 E T49, T5W, T6h, T6i; | |
2943 T49 = T3v + T48; | |
2944 T5W = T52 + T5V; | |
2945 ro[WS(os, 47)] = T49 - T5W; | |
2946 ro[WS(os, 15)] = T49 + T5W; | |
2947 T6h = T67 + T6a; | |
2948 T6i = T6e + T6f; | |
2949 io[WS(os, 47)] = T6h - T6i; | |
2950 io[WS(os, 15)] = T6h + T6i; | |
2951 } | |
2952 { | |
2953 E T6b, T6c, T6d, T6g; | |
2954 T6b = T67 - T6a; | |
2955 T6c = T5V - T52; | |
2956 io[WS(os, 63)] = T6b - T6c; | |
2957 io[WS(os, 31)] = T6b + T6c; | |
2958 T6d = T3v - T48; | |
2959 T6g = T6e - T6f; | |
2960 ro[WS(os, 63)] = T6d - T6g; | |
2961 ro[WS(os, 31)] = T6d + T6g; | |
2962 } | |
2963 { | |
2964 E T6l, T6s, T6B, T6C; | |
2965 T6l = T6j + T6k; | |
2966 T6s = T6o + T6r; | |
2967 ro[WS(os, 39)] = T6l - T6s; | |
2968 ro[WS(os, 7)] = T6l + T6s; | |
2969 T6B = T6t + T6u; | |
2970 T6C = T6y + T6z; | |
2971 io[WS(os, 39)] = T6B - T6C; | |
2972 io[WS(os, 7)] = T6B + T6C; | |
2973 } | |
2974 { | |
2975 E T6v, T6w, T6x, T6A; | |
2976 T6v = T6t - T6u; | |
2977 T6w = T6r - T6o; | |
2978 io[WS(os, 55)] = T6v - T6w; | |
2979 io[WS(os, 23)] = T6v + T6w; | |
2980 T6x = T6j - T6k; | |
2981 T6A = T6y - T6z; | |
2982 ro[WS(os, 55)] = T6x - T6A; | |
2983 ro[WS(os, 23)] = T6x + T6A; | |
2984 } | |
2985 } | |
2986 { | |
2987 E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; | |
2988 E T8T; | |
2989 { | |
2990 E T7D, T7K, T90, T91; | |
2991 T7D = T7B - T7C; | |
2992 T7K = T7G - T7J; | |
2993 T7L = T7D - T7K; | |
2994 T8X = T7D + T7K; | |
2995 T90 = T84 + T8b; | |
2996 T91 = T8f + T8i; | |
2997 T92 = FMA(KP471396736, T90, KP881921264 * T91); | |
2998 T9c = FNMS(KP471396736, T91, KP881921264 * T90); | |
2999 } | |
3000 { | |
3001 E T93, T94, T7S, T7Z; | |
3002 T93 = T8n + T8u; | |
3003 T94 = T8y + T8B; | |
3004 T95 = FNMS(KP471396736, T94, KP881921264 * T93); | |
3005 T9d = FMA(KP881921264, T94, KP471396736 * T93); | |
3006 T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); | |
3007 T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); | |
3008 T80 = T7S - T7Z; | |
3009 T98 = T7S + T7Z; | |
3010 } | |
3011 { | |
3012 E T8c, T8j, T8H, T8K; | |
3013 T8c = T84 - T8b; | |
3014 T8j = T8f - T8i; | |
3015 T8k = FMA(KP956940335, T8c, KP290284677 * T8j); | |
3016 T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); | |
3017 T8H = T8F - T8G; | |
3018 T8K = T8I - T8J; | |
3019 T8L = T8H - T8K; | |
3020 T97 = T8H + T8K; | |
3021 } | |
3022 { | |
3023 E T8M, T8N, T8v, T8C; | |
3024 T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); | |
3025 T8N = FMA(KP555570233, T7R, KP831469612 * T7O); | |
3026 T8O = T8M - T8N; | |
3027 T8Y = T8N + T8M; | |
3028 T8v = T8n - T8u; | |
3029 T8C = T8y - T8B; | |
3030 T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); | |
3031 T8T = FMA(KP290284677, T8C, KP956940335 * T8v); | |
3032 } | |
3033 { | |
3034 E T81, T8E, T8V, T8W; | |
3035 T81 = T7L + T80; | |
3036 T8E = T8k + T8D; | |
3037 ro[WS(os, 45)] = T81 - T8E; | |
3038 ro[WS(os, 13)] = T81 + T8E; | |
3039 T8V = T8L + T8O; | |
3040 T8W = T8S + T8T; | |
3041 io[WS(os, 45)] = T8V - T8W; | |
3042 io[WS(os, 13)] = T8V + T8W; | |
3043 } | |
3044 { | |
3045 E T8P, T8Q, T8R, T8U; | |
3046 T8P = T8L - T8O; | |
3047 T8Q = T8D - T8k; | |
3048 io[WS(os, 61)] = T8P - T8Q; | |
3049 io[WS(os, 29)] = T8P + T8Q; | |
3050 T8R = T7L - T80; | |
3051 T8U = T8S - T8T; | |
3052 ro[WS(os, 61)] = T8R - T8U; | |
3053 ro[WS(os, 29)] = T8R + T8U; | |
3054 } | |
3055 { | |
3056 E T8Z, T96, T9f, T9g; | |
3057 T8Z = T8X + T8Y; | |
3058 T96 = T92 + T95; | |
3059 ro[WS(os, 37)] = T8Z - T96; | |
3060 ro[WS(os, 5)] = T8Z + T96; | |
3061 T9f = T97 + T98; | |
3062 T9g = T9c + T9d; | |
3063 io[WS(os, 37)] = T9f - T9g; | |
3064 io[WS(os, 5)] = T9f + T9g; | |
3065 } | |
3066 { | |
3067 E T99, T9a, T9b, T9e; | |
3068 T99 = T97 - T98; | |
3069 T9a = T95 - T92; | |
3070 io[WS(os, 53)] = T99 - T9a; | |
3071 io[WS(os, 21)] = T99 + T9a; | |
3072 T9b = T8X - T8Y; | |
3073 T9e = T9c - T9d; | |
3074 ro[WS(os, 53)] = T9b - T9e; | |
3075 ro[WS(os, 21)] = T9b + T9e; | |
3076 } | |
3077 } | |
3078 } | |
3079 } | |
3080 } | |
3081 | |
3082 static const kdft_desc desc = { 64, "n1_64", {808, 144, 104, 0}, &GENUS, 0, 0, 0, 0 }; | |
3083 | |
3084 void X(codelet_n1_64) (planner *p) { | |
3085 X(kdft_register) (p, n1_64, &desc); | |
3086 } | |
3087 | |
3088 #endif |