Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/scalar/codelets/n1_5.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:04:10 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */ | |
29 | |
30 /* | |
31 * This function contains 32 FP additions, 18 FP multiplications, | |
32 * (or, 14 additions, 0 multiplications, 18 fused multiply/add), | |
33 * 21 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "dft/scalar/n.h" | |
36 | |
37 static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT i; | |
45 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | |
46 E T1, Tl, T8, Tt, Ta, Ts, Te, Tq, Th, To; | |
47 T1 = ri[0]; | |
48 Tl = ii[0]; | |
49 { | |
50 E T2, T3, T4, T5, T6, T7; | |
51 T2 = ri[WS(is, 1)]; | |
52 T3 = ri[WS(is, 4)]; | |
53 T4 = T2 + T3; | |
54 T5 = ri[WS(is, 2)]; | |
55 T6 = ri[WS(is, 3)]; | |
56 T7 = T5 + T6; | |
57 T8 = T4 + T7; | |
58 Tt = T5 - T6; | |
59 Ta = T4 - T7; | |
60 Ts = T2 - T3; | |
61 } | |
62 { | |
63 E Tc, Td, Tm, Tf, Tg, Tn; | |
64 Tc = ii[WS(is, 1)]; | |
65 Td = ii[WS(is, 4)]; | |
66 Tm = Tc + Td; | |
67 Tf = ii[WS(is, 2)]; | |
68 Tg = ii[WS(is, 3)]; | |
69 Tn = Tf + Tg; | |
70 Te = Tc - Td; | |
71 Tq = Tm - Tn; | |
72 Th = Tf - Tg; | |
73 To = Tm + Tn; | |
74 } | |
75 ro[0] = T1 + T8; | |
76 io[0] = Tl + To; | |
77 { | |
78 E Ti, Tk, Tb, Tj, T9; | |
79 Ti = FMA(KP618033988, Th, Te); | |
80 Tk = FNMS(KP618033988, Te, Th); | |
81 T9 = FNMS(KP250000000, T8, T1); | |
82 Tb = FMA(KP559016994, Ta, T9); | |
83 Tj = FNMS(KP559016994, Ta, T9); | |
84 ro[WS(os, 4)] = FNMS(KP951056516, Ti, Tb); | |
85 ro[WS(os, 3)] = FMA(KP951056516, Tk, Tj); | |
86 ro[WS(os, 1)] = FMA(KP951056516, Ti, Tb); | |
87 ro[WS(os, 2)] = FNMS(KP951056516, Tk, Tj); | |
88 } | |
89 { | |
90 E Tu, Tw, Tr, Tv, Tp; | |
91 Tu = FMA(KP618033988, Tt, Ts); | |
92 Tw = FNMS(KP618033988, Ts, Tt); | |
93 Tp = FNMS(KP250000000, To, Tl); | |
94 Tr = FMA(KP559016994, Tq, Tp); | |
95 Tv = FNMS(KP559016994, Tq, Tp); | |
96 io[WS(os, 1)] = FNMS(KP951056516, Tu, Tr); | |
97 io[WS(os, 3)] = FNMS(KP951056516, Tw, Tv); | |
98 io[WS(os, 4)] = FMA(KP951056516, Tu, Tr); | |
99 io[WS(os, 2)] = FMA(KP951056516, Tw, Tv); | |
100 } | |
101 } | |
102 } | |
103 } | |
104 | |
105 static const kdft_desc desc = { 5, "n1_5", {14, 0, 18, 0}, &GENUS, 0, 0, 0, 0 }; | |
106 | |
107 void X(codelet_n1_5) (planner *p) { | |
108 X(kdft_register) (p, n1_5, &desc); | |
109 } | |
110 | |
111 #else | |
112 | |
113 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */ | |
114 | |
115 /* | |
116 * This function contains 32 FP additions, 12 FP multiplications, | |
117 * (or, 26 additions, 6 multiplications, 6 fused multiply/add), | |
118 * 21 stack variables, 4 constants, and 20 memory accesses | |
119 */ | |
120 #include "dft/scalar/n.h" | |
121 | |
122 static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
123 { | |
124 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
125 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
126 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
127 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
128 { | |
129 INT i; | |
130 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | |
131 E T1, To, T8, Tt, T9, Ts, Te, Tp, Th, Tn; | |
132 T1 = ri[0]; | |
133 To = ii[0]; | |
134 { | |
135 E T2, T3, T4, T5, T6, T7; | |
136 T2 = ri[WS(is, 1)]; | |
137 T3 = ri[WS(is, 4)]; | |
138 T4 = T2 + T3; | |
139 T5 = ri[WS(is, 2)]; | |
140 T6 = ri[WS(is, 3)]; | |
141 T7 = T5 + T6; | |
142 T8 = T4 + T7; | |
143 Tt = T5 - T6; | |
144 T9 = KP559016994 * (T4 - T7); | |
145 Ts = T2 - T3; | |
146 } | |
147 { | |
148 E Tc, Td, Tl, Tf, Tg, Tm; | |
149 Tc = ii[WS(is, 1)]; | |
150 Td = ii[WS(is, 4)]; | |
151 Tl = Tc + Td; | |
152 Tf = ii[WS(is, 2)]; | |
153 Tg = ii[WS(is, 3)]; | |
154 Tm = Tf + Tg; | |
155 Te = Tc - Td; | |
156 Tp = Tl + Tm; | |
157 Th = Tf - Tg; | |
158 Tn = KP559016994 * (Tl - Tm); | |
159 } | |
160 ro[0] = T1 + T8; | |
161 io[0] = To + Tp; | |
162 { | |
163 E Ti, Tk, Tb, Tj, Ta; | |
164 Ti = FMA(KP951056516, Te, KP587785252 * Th); | |
165 Tk = FNMS(KP587785252, Te, KP951056516 * Th); | |
166 Ta = FNMS(KP250000000, T8, T1); | |
167 Tb = T9 + Ta; | |
168 Tj = Ta - T9; | |
169 ro[WS(os, 4)] = Tb - Ti; | |
170 ro[WS(os, 3)] = Tj + Tk; | |
171 ro[WS(os, 1)] = Tb + Ti; | |
172 ro[WS(os, 2)] = Tj - Tk; | |
173 } | |
174 { | |
175 E Tu, Tv, Tr, Tw, Tq; | |
176 Tu = FMA(KP951056516, Ts, KP587785252 * Tt); | |
177 Tv = FNMS(KP587785252, Ts, KP951056516 * Tt); | |
178 Tq = FNMS(KP250000000, Tp, To); | |
179 Tr = Tn + Tq; | |
180 Tw = Tq - Tn; | |
181 io[WS(os, 1)] = Tr - Tu; | |
182 io[WS(os, 3)] = Tw - Tv; | |
183 io[WS(os, 4)] = Tu + Tr; | |
184 io[WS(os, 2)] = Tv + Tw; | |
185 } | |
186 } | |
187 } | |
188 } | |
189 | |
190 static const kdft_desc desc = { 5, "n1_5", {26, 6, 6, 0}, &GENUS, 0, 0, 0, 0 }; | |
191 | |
192 void X(codelet_n1_5) (planner *p) { | |
193 X(kdft_register) (p, n1_5, &desc); | |
194 } | |
195 | |
196 #endif |