comparison src/fftw-3.3.8/dft/scalar/codelets/n1_32.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:11 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 372 FP additions, 136 FP multiplications,
32 * (or, 236 additions, 0 multiplications, 136 fused multiply/add),
33 * 100 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
41 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
45 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46 {
47 INT i;
48 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
49 E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
50 E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
51 E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5k, T2E;
52 E T3M, T4W, T5j, T2N, T3P, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
53 E T4G, T5h, T2d, T3F, T4L, T5g, T2m, T3I;
54 {
55 E T3, T1x, T14, T2R, T6, T2S, T17, T1y;
56 {
57 E T1, T2, T12, T13;
58 T1 = ri[0];
59 T2 = ri[WS(is, 16)];
60 T3 = T1 + T2;
61 T1x = T1 - T2;
62 T12 = ii[0];
63 T13 = ii[WS(is, 16)];
64 T14 = T12 + T13;
65 T2R = T12 - T13;
66 }
67 {
68 E T4, T5, T15, T16;
69 T4 = ri[WS(is, 8)];
70 T5 = ri[WS(is, 24)];
71 T6 = T4 + T5;
72 T2S = T4 - T5;
73 T15 = ii[WS(is, 8)];
74 T16 = ii[WS(is, 24)];
75 T17 = T15 + T16;
76 T1y = T15 - T16;
77 }
78 T7 = T3 + T6;
79 T4r = T3 - T6;
80 T4Z = T14 - T17;
81 T18 = T14 + T17;
82 T1z = T1x + T1y;
83 T3t = T1x - T1y;
84 T3T = T2S + T2R;
85 T2T = T2R - T2S;
86 }
87 {
88 E Ta, T1A, T1b, T1B, Td, T1D, T1e, T1E;
89 {
90 E T8, T9, T19, T1a;
91 T8 = ri[WS(is, 4)];
92 T9 = ri[WS(is, 20)];
93 Ta = T8 + T9;
94 T1A = T8 - T9;
95 T19 = ii[WS(is, 4)];
96 T1a = ii[WS(is, 20)];
97 T1b = T19 + T1a;
98 T1B = T19 - T1a;
99 }
100 {
101 E Tb, Tc, T1c, T1d;
102 Tb = ri[WS(is, 28)];
103 Tc = ri[WS(is, 12)];
104 Td = Tb + Tc;
105 T1D = Tb - Tc;
106 T1c = ii[WS(is, 28)];
107 T1d = ii[WS(is, 12)];
108 T1e = T1c + T1d;
109 T1E = T1c - T1d;
110 }
111 Te = Ta + Td;
112 T1f = T1b + T1e;
113 T50 = Td - Ta;
114 T4s = T1b - T1e;
115 {
116 E T2U, T2V, T1C, T1F;
117 T2U = T1B - T1A;
118 T2V = T1D + T1E;
119 T2W = T2U + T2V;
120 T3u = T2U - T2V;
121 T1C = T1A + T1B;
122 T1F = T1D - T1E;
123 T1G = T1C + T1F;
124 T3U = T1F - T1C;
125 }
126 }
127 {
128 E Ti, T1L, T1j, T1I, Tl, T1J, T1m, T1M, T1K, T1N;
129 {
130 E Tg, Th, T1h, T1i;
131 Tg = ri[WS(is, 2)];
132 Th = ri[WS(is, 18)];
133 Ti = Tg + Th;
134 T1L = Tg - Th;
135 T1h = ii[WS(is, 2)];
136 T1i = ii[WS(is, 18)];
137 T1j = T1h + T1i;
138 T1I = T1h - T1i;
139 }
140 {
141 E Tj, Tk, T1k, T1l;
142 Tj = ri[WS(is, 10)];
143 Tk = ri[WS(is, 26)];
144 Tl = Tj + Tk;
145 T1J = Tj - Tk;
146 T1k = ii[WS(is, 10)];
147 T1l = ii[WS(is, 26)];
148 T1m = T1k + T1l;
149 T1M = T1k - T1l;
150 }
151 Tm = Ti + Tl;
152 T1n = T1j + T1m;
153 T1K = T1I - T1J;
154 T1N = T1L + T1M;
155 T1O = FNMS(KP414213562, T1N, T1K);
156 T2Z = FMA(KP414213562, T1K, T1N);
157 {
158 E T3w, T3x, T4u, T4v;
159 T3w = T1J + T1I;
160 T3x = T1L - T1M;
161 T3y = FMA(KP414213562, T3x, T3w);
162 T3X = FNMS(KP414213562, T3w, T3x);
163 T4u = T1j - T1m;
164 T4v = Ti - Tl;
165 T4w = T4u - T4v;
166 T53 = T4v + T4u;
167 }
168 }
169 {
170 E Tp, T1S, T1q, T1P, Ts, T1Q, T1t, T1T, T1R, T1U;
171 {
172 E Tn, To, T1o, T1p;
173 Tn = ri[WS(is, 30)];
174 To = ri[WS(is, 14)];
175 Tp = Tn + To;
176 T1S = Tn - To;
177 T1o = ii[WS(is, 30)];
178 T1p = ii[WS(is, 14)];
179 T1q = T1o + T1p;
180 T1P = T1o - T1p;
181 }
182 {
183 E Tq, Tr, T1r, T1s;
184 Tq = ri[WS(is, 6)];
185 Tr = ri[WS(is, 22)];
186 Ts = Tq + Tr;
187 T1Q = Tq - Tr;
188 T1r = ii[WS(is, 6)];
189 T1s = ii[WS(is, 22)];
190 T1t = T1r + T1s;
191 T1T = T1r - T1s;
192 }
193 Tt = Tp + Ts;
194 T1u = T1q + T1t;
195 T1R = T1P - T1Q;
196 T1U = T1S + T1T;
197 T1V = FMA(KP414213562, T1U, T1R);
198 T2Y = FNMS(KP414213562, T1R, T1U);
199 {
200 E T3z, T3A, T4x, T4y;
201 T3z = T1Q + T1P;
202 T3A = T1S - T1T;
203 T3B = FNMS(KP414213562, T3A, T3z);
204 T3W = FMA(KP414213562, T3z, T3A);
205 T4x = Tp - Ts;
206 T4y = T1q - T1t;
207 T4z = T4x + T4y;
208 T52 = T4x - T4y;
209 }
210 }
211 {
212 E TN, T2G, T2r, T4N, TQ, T2s, T2J, T4O, TU, T2x, T2w, T4T, TX, T2z, T2C;
213 E T4U;
214 {
215 E TL, TM, T2p, T2q;
216 TL = ri[WS(is, 31)];
217 TM = ri[WS(is, 15)];
218 TN = TL + TM;
219 T2G = TL - TM;
220 T2p = ii[WS(is, 31)];
221 T2q = ii[WS(is, 15)];
222 T2r = T2p - T2q;
223 T4N = T2p + T2q;
224 }
225 {
226 E TO, TP, T2H, T2I;
227 TO = ri[WS(is, 7)];
228 TP = ri[WS(is, 23)];
229 TQ = TO + TP;
230 T2s = TO - TP;
231 T2H = ii[WS(is, 7)];
232 T2I = ii[WS(is, 23)];
233 T2J = T2H - T2I;
234 T4O = T2H + T2I;
235 }
236 {
237 E TS, TT, T2u, T2v;
238 TS = ri[WS(is, 3)];
239 TT = ri[WS(is, 19)];
240 TU = TS + TT;
241 T2x = TS - TT;
242 T2u = ii[WS(is, 3)];
243 T2v = ii[WS(is, 19)];
244 T2w = T2u - T2v;
245 T4T = T2u + T2v;
246 }
247 {
248 E TV, TW, T2A, T2B;
249 TV = ri[WS(is, 27)];
250 TW = ri[WS(is, 11)];
251 TX = TV + TW;
252 T2z = TV - TW;
253 T2A = ii[WS(is, 27)];
254 T2B = ii[WS(is, 11)];
255 T2C = T2A - T2B;
256 T4U = T2A + T2B;
257 }
258 T2t = T2r - T2s;
259 T3L = T2G - T2J;
260 T3O = T2s + T2r;
261 T2K = T2G + T2J;
262 TR = TN + TQ;
263 TY = TU + TX;
264 T5F = TR - TY;
265 {
266 E T4P, T4Q, T2y, T2D;
267 T5G = T4N + T4O;
268 T5H = T4T + T4U;
269 T5I = T5G - T5H;
270 T4P = T4N - T4O;
271 T4Q = TX - TU;
272 T4R = T4P - T4Q;
273 T5k = T4Q + T4P;
274 T2y = T2w - T2x;
275 T2D = T2z + T2C;
276 T2E = T2y + T2D;
277 T3M = T2D - T2y;
278 {
279 E T4S, T4V, T2L, T2M;
280 T4S = TN - TQ;
281 T4V = T4T - T4U;
282 T4W = T4S - T4V;
283 T5j = T4S + T4V;
284 T2L = T2x + T2w;
285 T2M = T2z - T2C;
286 T2N = T2L + T2M;
287 T3P = T2L - T2M;
288 }
289 }
290 }
291 {
292 E Ty, T2f, T20, T4C, TB, T21, T2i, T4D, TF, T26, T25, T4I, TI, T28, T2b;
293 E T4J;
294 {
295 E Tw, Tx, T1Y, T1Z;
296 Tw = ri[WS(is, 1)];
297 Tx = ri[WS(is, 17)];
298 Ty = Tw + Tx;
299 T2f = Tw - Tx;
300 T1Y = ii[WS(is, 1)];
301 T1Z = ii[WS(is, 17)];
302 T20 = T1Y - T1Z;
303 T4C = T1Y + T1Z;
304 }
305 {
306 E Tz, TA, T2g, T2h;
307 Tz = ri[WS(is, 9)];
308 TA = ri[WS(is, 25)];
309 TB = Tz + TA;
310 T21 = Tz - TA;
311 T2g = ii[WS(is, 9)];
312 T2h = ii[WS(is, 25)];
313 T2i = T2g - T2h;
314 T4D = T2g + T2h;
315 }
316 {
317 E TD, TE, T23, T24;
318 TD = ri[WS(is, 5)];
319 TE = ri[WS(is, 21)];
320 TF = TD + TE;
321 T26 = TD - TE;
322 T23 = ii[WS(is, 5)];
323 T24 = ii[WS(is, 21)];
324 T25 = T23 - T24;
325 T4I = T23 + T24;
326 }
327 {
328 E TG, TH, T29, T2a;
329 TG = ri[WS(is, 29)];
330 TH = ri[WS(is, 13)];
331 TI = TG + TH;
332 T28 = TG - TH;
333 T29 = ii[WS(is, 29)];
334 T2a = ii[WS(is, 13)];
335 T2b = T29 - T2a;
336 T4J = T29 + T2a;
337 }
338 T22 = T20 - T21;
339 T3E = T2f - T2i;
340 T3H = T21 + T20;
341 T2j = T2f + T2i;
342 TC = Ty + TB;
343 TJ = TF + TI;
344 T5A = TC - TJ;
345 {
346 E T4E, T4F, T27, T2c;
347 T5B = T4C + T4D;
348 T5C = T4I + T4J;
349 T5D = T5B - T5C;
350 T4E = T4C - T4D;
351 T4F = TI - TF;
352 T4G = T4E - T4F;
353 T5h = T4F + T4E;
354 T27 = T25 - T26;
355 T2c = T28 + T2b;
356 T2d = T27 + T2c;
357 T3F = T2c - T27;
358 {
359 E T4H, T4K, T2k, T2l;
360 T4H = Ty - TB;
361 T4K = T4I - T4J;
362 T4L = T4H - T4K;
363 T5g = T4H + T4K;
364 T2k = T26 + T25;
365 T2l = T28 - T2b;
366 T2m = T2k + T2l;
367 T3I = T2k - T2l;
368 }
369 }
370 }
371 {
372 E T4B, T5b, T5a, T5c, T4Y, T56, T55, T57;
373 {
374 E T4t, T4A, T58, T59;
375 T4t = T4r - T4s;
376 T4A = T4w - T4z;
377 T4B = FMA(KP707106781, T4A, T4t);
378 T5b = FNMS(KP707106781, T4A, T4t);
379 T58 = FMA(KP414213562, T4R, T4W);
380 T59 = FNMS(KP414213562, T4G, T4L);
381 T5a = T58 - T59;
382 T5c = T59 + T58;
383 }
384 {
385 E T4M, T4X, T51, T54;
386 T4M = FMA(KP414213562, T4L, T4G);
387 T4X = FNMS(KP414213562, T4W, T4R);
388 T4Y = T4M - T4X;
389 T56 = T4M + T4X;
390 T51 = T4Z - T50;
391 T54 = T52 - T53;
392 T55 = FNMS(KP707106781, T54, T51);
393 T57 = FMA(KP707106781, T54, T51);
394 }
395 ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
396 io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
397 ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
398 io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
399 io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
400 ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
401 io[WS(os, 30)] = FMA(KP923879532, T56, T55);
402 ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
403 }
404 {
405 E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
406 {
407 E T5d, T5e, T5s, T5t;
408 T5d = T4r + T4s;
409 T5e = T53 + T52;
410 T5f = FMA(KP707106781, T5e, T5d);
411 T5r = FNMS(KP707106781, T5e, T5d);
412 T5s = FNMS(KP414213562, T5g, T5h);
413 T5t = FMA(KP414213562, T5j, T5k);
414 T5u = T5s - T5t;
415 T5w = T5s + T5t;
416 }
417 {
418 E T5i, T5l, T5n, T5o;
419 T5i = FMA(KP414213562, T5h, T5g);
420 T5l = FNMS(KP414213562, T5k, T5j);
421 T5m = T5i + T5l;
422 T5q = T5l - T5i;
423 T5n = T50 + T4Z;
424 T5o = T4w + T4z;
425 T5p = FNMS(KP707106781, T5o, T5n);
426 T5v = FMA(KP707106781, T5o, T5n);
427 }
428 ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
429 io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
430 ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
431 io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
432 io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
433 ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
434 io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
435 ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
436 }
437 {
438 E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
439 {
440 E T5x, T5y, T5Q, T5R;
441 T5x = T7 - Te;
442 T5y = T1n - T1u;
443 T5z = T5x + T5y;
444 T5P = T5x - T5y;
445 T5Q = T5D - T5A;
446 T5R = T5F + T5I;
447 T5S = T5Q - T5R;
448 T5U = T5Q + T5R;
449 }
450 {
451 E T5E, T5J, T5L, T5M;
452 T5E = T5A + T5D;
453 T5J = T5F - T5I;
454 T5K = T5E + T5J;
455 T5O = T5J - T5E;
456 T5L = T18 - T1f;
457 T5M = Tt - Tm;
458 T5N = T5L - T5M;
459 T5T = T5M + T5L;
460 }
461 ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
462 io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
463 ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
464 io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
465 io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
466 ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
467 io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
468 ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
469 }
470 {
471 E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
472 {
473 E Tf, Tu, T5W, T5X;
474 Tf = T7 + Te;
475 Tu = Tm + Tt;
476 Tv = Tf + Tu;
477 T5V = Tf - Tu;
478 T5W = T5B + T5C;
479 T5X = T5G + T5H;
480 T5Y = T5W - T5X;
481 T60 = T5W + T5X;
482 }
483 {
484 E TK, TZ, T1g, T1v;
485 TK = TC + TJ;
486 TZ = TR + TY;
487 T10 = TK + TZ;
488 T11 = TZ - TK;
489 T1g = T18 + T1f;
490 T1v = T1n + T1u;
491 T1w = T1g - T1v;
492 T5Z = T1g + T1v;
493 }
494 ro[WS(os, 16)] = Tv - T10;
495 io[WS(os, 16)] = T5Z - T60;
496 ro[0] = Tv + T10;
497 io[0] = T5Z + T60;
498 io[WS(os, 8)] = T11 + T1w;
499 ro[WS(os, 8)] = T5V + T5Y;
500 io[WS(os, 24)] = T1w - T11;
501 ro[WS(os, 24)] = T5V - T5Y;
502 }
503 {
504 E T1X, T37, T31, T33, T2o, T35, T2P, T34;
505 {
506 E T1H, T1W, T2X, T30;
507 T1H = FNMS(KP707106781, T1G, T1z);
508 T1W = T1O - T1V;
509 T1X = FMA(KP923879532, T1W, T1H);
510 T37 = FNMS(KP923879532, T1W, T1H);
511 T2X = FNMS(KP707106781, T2W, T2T);
512 T30 = T2Y - T2Z;
513 T31 = FNMS(KP923879532, T30, T2X);
514 T33 = FMA(KP923879532, T30, T2X);
515 }
516 {
517 E T2e, T2n, T2F, T2O;
518 T2e = FNMS(KP707106781, T2d, T22);
519 T2n = FNMS(KP707106781, T2m, T2j);
520 T2o = FMA(KP668178637, T2n, T2e);
521 T35 = FNMS(KP668178637, T2e, T2n);
522 T2F = FNMS(KP707106781, T2E, T2t);
523 T2O = FNMS(KP707106781, T2N, T2K);
524 T2P = FNMS(KP668178637, T2O, T2F);
525 T34 = FMA(KP668178637, T2F, T2O);
526 }
527 {
528 E T2Q, T36, T32, T38;
529 T2Q = T2o - T2P;
530 ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
531 ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
532 T36 = T34 - T35;
533 io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
534 io[WS(os, 5)] = FMA(KP831469612, T36, T33);
535 T32 = T2o + T2P;
536 io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
537 io[WS(os, 29)] = FMA(KP831469612, T32, T31);
538 T38 = T35 + T34;
539 ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
540 ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
541 }
542 }
543 {
544 E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
545 {
546 E T3v, T3C, T3V, T3Y;
547 T3v = FMA(KP707106781, T3u, T3t);
548 T3C = T3y - T3B;
549 T3D = FMA(KP923879532, T3C, T3v);
550 T41 = FNMS(KP923879532, T3C, T3v);
551 T3V = FMA(KP707106781, T3U, T3T);
552 T3Y = T3W - T3X;
553 T3Z = FNMS(KP923879532, T3Y, T3V);
554 T45 = FMA(KP923879532, T3Y, T3V);
555 }
556 {
557 E T3G, T3J, T3N, T3Q;
558 T3G = FNMS(KP707106781, T3F, T3E);
559 T3J = FNMS(KP707106781, T3I, T3H);
560 T3K = FMA(KP668178637, T3J, T3G);
561 T42 = FNMS(KP668178637, T3G, T3J);
562 T3N = FNMS(KP707106781, T3M, T3L);
563 T3Q = FNMS(KP707106781, T3P, T3O);
564 T3R = FNMS(KP668178637, T3Q, T3N);
565 T43 = FMA(KP668178637, T3N, T3Q);
566 }
567 {
568 E T3S, T46, T40, T44;
569 T3S = T3K + T3R;
570 ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
571 ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
572 T46 = T42 + T43;
573 io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
574 io[WS(os, 3)] = FMA(KP831469612, T46, T45);
575 T40 = T3R - T3K;
576 io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
577 io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
578 T44 = T42 - T43;
579 ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
580 ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
581 }
582 }
583 {
584 E T49, T4p, T4j, T4l, T4c, T4n, T4f, T4m;
585 {
586 E T47, T48, T4h, T4i;
587 T47 = FNMS(KP707106781, T3u, T3t);
588 T48 = T3X + T3W;
589 T49 = FNMS(KP923879532, T48, T47);
590 T4p = FMA(KP923879532, T48, T47);
591 T4h = FNMS(KP707106781, T3U, T3T);
592 T4i = T3y + T3B;
593 T4j = FMA(KP923879532, T4i, T4h);
594 T4l = FNMS(KP923879532, T4i, T4h);
595 }
596 {
597 E T4a, T4b, T4d, T4e;
598 T4a = FMA(KP707106781, T3I, T3H);
599 T4b = FMA(KP707106781, T3F, T3E);
600 T4c = FMA(KP198912367, T4b, T4a);
601 T4n = FNMS(KP198912367, T4a, T4b);
602 T4d = FMA(KP707106781, T3P, T3O);
603 T4e = FMA(KP707106781, T3M, T3L);
604 T4f = FNMS(KP198912367, T4e, T4d);
605 T4m = FMA(KP198912367, T4d, T4e);
606 }
607 {
608 E T4g, T4o, T4k, T4q;
609 T4g = T4c - T4f;
610 ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
611 ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
612 T4o = T4m - T4n;
613 io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
614 io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
615 T4k = T4c + T4f;
616 io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
617 io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
618 T4q = T4n + T4m;
619 ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
620 ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
621 }
622 }
623 {
624 E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
625 {
626 E T39, T3a, T3j, T3k;
627 T39 = FMA(KP707106781, T1G, T1z);
628 T3a = T2Z + T2Y;
629 T3b = FMA(KP923879532, T3a, T39);
630 T3n = FNMS(KP923879532, T3a, T39);
631 T3j = FMA(KP707106781, T2W, T2T);
632 T3k = T1O + T1V;
633 T3l = FNMS(KP923879532, T3k, T3j);
634 T3r = FMA(KP923879532, T3k, T3j);
635 }
636 {
637 E T3c, T3d, T3f, T3g;
638 T3c = FMA(KP707106781, T2m, T2j);
639 T3d = FMA(KP707106781, T2d, T22);
640 T3e = FMA(KP198912367, T3d, T3c);
641 T3o = FNMS(KP198912367, T3c, T3d);
642 T3f = FMA(KP707106781, T2N, T2K);
643 T3g = FMA(KP707106781, T2E, T2t);
644 T3h = FNMS(KP198912367, T3g, T3f);
645 T3p = FMA(KP198912367, T3f, T3g);
646 }
647 {
648 E T3i, T3s, T3m, T3q;
649 T3i = T3e + T3h;
650 ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
651 ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
652 T3s = T3o + T3p;
653 io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
654 io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
655 T3m = T3h - T3e;
656 io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
657 io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
658 T3q = T3o - T3p;
659 ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
660 ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
661 }
662 }
663 }
664 }
665 }
666
667 static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 };
668
669 void X(codelet_n1_32) (planner *p) {
670 X(kdft_register) (p, n1_32, &desc);
671 }
672
673 #else
674
675 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
676
677 /*
678 * This function contains 372 FP additions, 84 FP multiplications,
679 * (or, 340 additions, 52 multiplications, 32 fused multiply/add),
680 * 100 stack variables, 7 constants, and 128 memory accesses
681 */
682 #include "dft/scalar/n.h"
683
684 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
685 {
686 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
687 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
688 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
689 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
690 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
691 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
692 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
693 {
694 INT i;
695 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
696 E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
697 E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
698 E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;
699 E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
700 E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;
701 {
702 E T3, T1x, T14, T2S, T6, T2R, T17, T1y;
703 {
704 E T1, T2, T12, T13;
705 T1 = ri[0];
706 T2 = ri[WS(is, 16)];
707 T3 = T1 + T2;
708 T1x = T1 - T2;
709 T12 = ii[0];
710 T13 = ii[WS(is, 16)];
711 T14 = T12 + T13;
712 T2S = T12 - T13;
713 }
714 {
715 E T4, T5, T15, T16;
716 T4 = ri[WS(is, 8)];
717 T5 = ri[WS(is, 24)];
718 T6 = T4 + T5;
719 T2R = T4 - T5;
720 T15 = ii[WS(is, 8)];
721 T16 = ii[WS(is, 24)];
722 T17 = T15 + T16;
723 T1y = T15 - T16;
724 }
725 T7 = T3 + T6;
726 T4r = T3 - T6;
727 T4Z = T14 - T17;
728 T18 = T14 + T17;
729 T1z = T1x - T1y;
730 T3t = T1x + T1y;
731 T3T = T2S - T2R;
732 T2T = T2R + T2S;
733 }
734 {
735 E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;
736 {
737 E T8, T9, T19, T1a;
738 T8 = ri[WS(is, 4)];
739 T9 = ri[WS(is, 20)];
740 Ta = T8 + T9;
741 T1B = T8 - T9;
742 T19 = ii[WS(is, 4)];
743 T1a = ii[WS(is, 20)];
744 T1b = T19 + T1a;
745 T1A = T19 - T1a;
746 }
747 {
748 E Tb, Tc, T1c, T1d;
749 Tb = ri[WS(is, 28)];
750 Tc = ri[WS(is, 12)];
751 Td = Tb + Tc;
752 T1D = Tb - Tc;
753 T1c = ii[WS(is, 28)];
754 T1d = ii[WS(is, 12)];
755 T1e = T1c + T1d;
756 T1E = T1c - T1d;
757 }
758 Te = Ta + Td;
759 T1f = T1b + T1e;
760 T50 = Td - Ta;
761 T4s = T1b - T1e;
762 {
763 E T2U, T2V, T1C, T1F;
764 T2U = T1D - T1E;
765 T2V = T1B + T1A;
766 T2W = KP707106781 * (T2U - T2V);
767 T3u = KP707106781 * (T2V + T2U);
768 T1C = T1A - T1B;
769 T1F = T1D + T1E;
770 T1G = KP707106781 * (T1C - T1F);
771 T3U = KP707106781 * (T1C + T1F);
772 }
773 }
774 {
775 E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;
776 {
777 E Tg, Th, T1h, T1i;
778 Tg = ri[WS(is, 2)];
779 Th = ri[WS(is, 18)];
780 Ti = Tg + Th;
781 T1L = Tg - Th;
782 T1h = ii[WS(is, 2)];
783 T1i = ii[WS(is, 18)];
784 T1j = T1h + T1i;
785 T1J = T1h - T1i;
786 }
787 {
788 E Tj, Tk, T1k, T1l;
789 Tj = ri[WS(is, 10)];
790 Tk = ri[WS(is, 26)];
791 Tl = Tj + Tk;
792 T1I = Tj - Tk;
793 T1k = ii[WS(is, 10)];
794 T1l = ii[WS(is, 26)];
795 T1m = T1k + T1l;
796 T1M = T1k - T1l;
797 }
798 Tm = Ti + Tl;
799 T1n = T1j + T1m;
800 T1K = T1I + T1J;
801 T1N = T1L - T1M;
802 T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);
803 T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);
804 {
805 E T3w, T3x, T4u, T4v;
806 T3w = T1J - T1I;
807 T3x = T1L + T1M;
808 T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);
809 T3X = FMA(KP382683432, T3w, KP923879532 * T3x);
810 T4u = T1j - T1m;
811 T4v = Ti - Tl;
812 T4w = T4u - T4v;
813 T53 = T4v + T4u;
814 }
815 }
816 {
817 E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;
818 {
819 E Tn, To, T1o, T1p;
820 Tn = ri[WS(is, 30)];
821 To = ri[WS(is, 14)];
822 Tp = Tn + To;
823 T1S = Tn - To;
824 T1o = ii[WS(is, 30)];
825 T1p = ii[WS(is, 14)];
826 T1q = T1o + T1p;
827 T1Q = T1o - T1p;
828 }
829 {
830 E Tq, Tr, T1r, T1s;
831 Tq = ri[WS(is, 6)];
832 Tr = ri[WS(is, 22)];
833 Ts = Tq + Tr;
834 T1P = Tq - Tr;
835 T1r = ii[WS(is, 6)];
836 T1s = ii[WS(is, 22)];
837 T1t = T1r + T1s;
838 T1T = T1r - T1s;
839 }
840 Tt = Tp + Ts;
841 T1u = T1q + T1t;
842 T1R = T1P + T1Q;
843 T1U = T1S - T1T;
844 T1V = FMA(KP382683432, T1R, KP923879532 * T1U);
845 T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);
846 {
847 E T3z, T3A, T4x, T4y;
848 T3z = T1Q - T1P;
849 T3A = T1S + T1T;
850 T3B = FMA(KP923879532, T3z, KP382683432 * T3A);
851 T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);
852 T4x = Tp - Ts;
853 T4y = T1q - T1t;
854 T4z = T4x + T4y;
855 T52 = T4x - T4y;
856 }
857 }
858 {
859 E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;
860 E T4P;
861 {
862 E TL, TM, T2H, T2I;
863 TL = ri[WS(is, 31)];
864 TM = ri[WS(is, 15)];
865 TN = TL + TM;
866 T2p = TL - TM;
867 T2H = ii[WS(is, 31)];
868 T2I = ii[WS(is, 15)];
869 T2J = T2H - T2I;
870 T4S = T2H + T2I;
871 }
872 {
873 E TO, TP, T2q, T2r;
874 TO = ri[WS(is, 7)];
875 TP = ri[WS(is, 23)];
876 TQ = TO + TP;
877 T2G = TO - TP;
878 T2q = ii[WS(is, 7)];
879 T2r = ii[WS(is, 23)];
880 T2s = T2q - T2r;
881 T4T = T2q + T2r;
882 }
883 {
884 E TS, TT, T2u, T2v;
885 TS = ri[WS(is, 3)];
886 TT = ri[WS(is, 19)];
887 TU = TS + TT;
888 T2x = TS - TT;
889 T2u = ii[WS(is, 3)];
890 T2v = ii[WS(is, 19)];
891 T2w = T2u - T2v;
892 T4O = T2u + T2v;
893 }
894 {
895 E TV, TW, T2A, T2B;
896 TV = ri[WS(is, 27)];
897 TW = ri[WS(is, 11)];
898 TX = TV + TW;
899 T2z = TV - TW;
900 T2A = ii[WS(is, 27)];
901 T2B = ii[WS(is, 11)];
902 T2C = T2A - T2B;
903 T4P = T2A + T2B;
904 }
905 T2t = T2p - T2s;
906 T3L = T2p + T2s;
907 T3O = T2J - T2G;
908 T2K = T2G + T2J;
909 TR = TN + TQ;
910 TY = TU + TX;
911 T5F = TR - TY;
912 {
913 E T4N, T4Q, T2y, T2D;
914 T5G = T4S + T4T;
915 T5H = T4O + T4P;
916 T5I = T5G - T5H;
917 T4N = TN - TQ;
918 T4Q = T4O - T4P;
919 T4R = T4N - T4Q;
920 T5j = T4N + T4Q;
921 T2y = T2w - T2x;
922 T2D = T2z + T2C;
923 T2E = KP707106781 * (T2y - T2D);
924 T3P = KP707106781 * (T2y + T2D);
925 {
926 E T4U, T4V, T2L, T2M;
927 T4U = T4S - T4T;
928 T4V = TX - TU;
929 T4W = T4U - T4V;
930 T5k = T4V + T4U;
931 T2L = T2z - T2C;
932 T2M = T2x + T2w;
933 T2N = KP707106781 * (T2L - T2M);
934 T3M = KP707106781 * (T2M + T2L);
935 }
936 }
937 }
938 {
939 E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;
940 E T4J;
941 {
942 E Tw, Tx, T1Z, T20;
943 Tw = ri[WS(is, 1)];
944 Tx = ri[WS(is, 17)];
945 Ty = Tw + Tx;
946 T2f = Tw - Tx;
947 T1Z = ii[WS(is, 1)];
948 T20 = ii[WS(is, 17)];
949 T21 = T1Z - T20;
950 T4C = T1Z + T20;
951 }
952 {
953 E Tz, TA, T2g, T2h;
954 Tz = ri[WS(is, 9)];
955 TA = ri[WS(is, 25)];
956 TB = Tz + TA;
957 T1Y = Tz - TA;
958 T2g = ii[WS(is, 9)];
959 T2h = ii[WS(is, 25)];
960 T2i = T2g - T2h;
961 T4D = T2g + T2h;
962 }
963 {
964 E TD, TE, T29, T2a;
965 TD = ri[WS(is, 5)];
966 TE = ri[WS(is, 21)];
967 TF = TD + TE;
968 T28 = TD - TE;
969 T29 = ii[WS(is, 5)];
970 T2a = ii[WS(is, 21)];
971 T2b = T29 - T2a;
972 T4I = T29 + T2a;
973 }
974 {
975 E TG, TH, T24, T25;
976 TG = ri[WS(is, 29)];
977 TH = ri[WS(is, 13)];
978 TI = TG + TH;
979 T23 = TG - TH;
980 T24 = ii[WS(is, 29)];
981 T25 = ii[WS(is, 13)];
982 T26 = T24 - T25;
983 T4J = T24 + T25;
984 }
985 T22 = T1Y + T21;
986 T3E = T2f + T2i;
987 T3H = T21 - T1Y;
988 T2j = T2f - T2i;
989 TC = Ty + TB;
990 TJ = TF + TI;
991 T5A = TC - TJ;
992 {
993 E T4E, T4F, T27, T2c;
994 T5B = T4C + T4D;
995 T5C = T4I + T4J;
996 T5D = T5B - T5C;
997 T4E = T4C - T4D;
998 T4F = TI - TF;
999 T4G = T4E - T4F;
1000 T5g = T4F + T4E;
1001 T27 = T23 - T26;
1002 T2c = T28 + T2b;
1003 T2d = KP707106781 * (T27 - T2c);
1004 T3F = KP707106781 * (T2c + T27);
1005 {
1006 E T4H, T4K, T2k, T2l;
1007 T4H = Ty - TB;
1008 T4K = T4I - T4J;
1009 T4L = T4H - T4K;
1010 T5h = T4H + T4K;
1011 T2k = T2b - T28;
1012 T2l = T23 + T26;
1013 T2m = KP707106781 * (T2k - T2l);
1014 T3I = KP707106781 * (T2k + T2l);
1015 }
1016 }
1017 }
1018 {
1019 E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b;
1020 {
1021 E T4t, T4A, T58, T59;
1022 T4t = T4r - T4s;
1023 T4A = KP707106781 * (T4w - T4z);
1024 T4B = T4t + T4A;
1025 T57 = T4t - T4A;
1026 T58 = FNMS(KP923879532, T4L, KP382683432 * T4G);
1027 T59 = FMA(KP382683432, T4W, KP923879532 * T4R);
1028 T5a = T58 - T59;
1029 T5c = T58 + T59;
1030 }
1031 {
1032 E T4M, T4X, T51, T54;
1033 T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
1034 T4X = FNMS(KP923879532, T4W, KP382683432 * T4R);
1035 T4Y = T4M + T4X;
1036 T56 = T4X - T4M;
1037 T51 = T4Z - T50;
1038 T54 = KP707106781 * (T52 - T53);
1039 T55 = T51 - T54;
1040 T5b = T51 + T54;
1041 }
1042 ro[WS(os, 22)] = T4B - T4Y;
1043 io[WS(os, 22)] = T5b - T5c;
1044 ro[WS(os, 6)] = T4B + T4Y;
1045 io[WS(os, 6)] = T5b + T5c;
1046 io[WS(os, 30)] = T55 - T56;
1047 ro[WS(os, 30)] = T57 - T5a;
1048 io[WS(os, 14)] = T55 + T56;
1049 ro[WS(os, 14)] = T57 + T5a;
1050 }
1051 {
1052 E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
1053 {
1054 E T5d, T5e, T5s, T5t;
1055 T5d = T4r + T4s;
1056 T5e = KP707106781 * (T53 + T52);
1057 T5f = T5d + T5e;
1058 T5r = T5d - T5e;
1059 T5s = FNMS(KP382683432, T5h, KP923879532 * T5g);
1060 T5t = FMA(KP923879532, T5k, KP382683432 * T5j);
1061 T5u = T5s - T5t;
1062 T5w = T5s + T5t;
1063 }
1064 {
1065 E T5i, T5l, T5n, T5o;
1066 T5i = FMA(KP382683432, T5g, KP923879532 * T5h);
1067 T5l = FNMS(KP382683432, T5k, KP923879532 * T5j);
1068 T5m = T5i + T5l;
1069 T5q = T5l - T5i;
1070 T5n = T50 + T4Z;
1071 T5o = KP707106781 * (T4w + T4z);
1072 T5p = T5n - T5o;
1073 T5v = T5n + T5o;
1074 }
1075 ro[WS(os, 18)] = T5f - T5m;
1076 io[WS(os, 18)] = T5v - T5w;
1077 ro[WS(os, 2)] = T5f + T5m;
1078 io[WS(os, 2)] = T5v + T5w;
1079 io[WS(os, 26)] = T5p - T5q;
1080 ro[WS(os, 26)] = T5r - T5u;
1081 io[WS(os, 10)] = T5p + T5q;
1082 ro[WS(os, 10)] = T5r + T5u;
1083 }
1084 {
1085 E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
1086 {
1087 E T5x, T5y, T5Q, T5R;
1088 T5x = T7 - Te;
1089 T5y = T1n - T1u;
1090 T5z = T5x + T5y;
1091 T5P = T5x - T5y;
1092 T5Q = T5D - T5A;
1093 T5R = T5F + T5I;
1094 T5S = KP707106781 * (T5Q - T5R);
1095 T5U = KP707106781 * (T5Q + T5R);
1096 }
1097 {
1098 E T5E, T5J, T5L, T5M;
1099 T5E = T5A + T5D;
1100 T5J = T5F - T5I;
1101 T5K = KP707106781 * (T5E + T5J);
1102 T5O = KP707106781 * (T5J - T5E);
1103 T5L = T18 - T1f;
1104 T5M = Tt - Tm;
1105 T5N = T5L - T5M;
1106 T5T = T5M + T5L;
1107 }
1108 ro[WS(os, 20)] = T5z - T5K;
1109 io[WS(os, 20)] = T5T - T5U;
1110 ro[WS(os, 4)] = T5z + T5K;
1111 io[WS(os, 4)] = T5T + T5U;
1112 io[WS(os, 28)] = T5N - T5O;
1113 ro[WS(os, 28)] = T5P - T5S;
1114 io[WS(os, 12)] = T5N + T5O;
1115 ro[WS(os, 12)] = T5P + T5S;
1116 }
1117 {
1118 E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
1119 {
1120 E Tf, Tu, T5W, T5X;
1121 Tf = T7 + Te;
1122 Tu = Tm + Tt;
1123 Tv = Tf + Tu;
1124 T5V = Tf - Tu;
1125 T5W = T5B + T5C;
1126 T5X = T5G + T5H;
1127 T5Y = T5W - T5X;
1128 T60 = T5W + T5X;
1129 }
1130 {
1131 E TK, TZ, T1g, T1v;
1132 TK = TC + TJ;
1133 TZ = TR + TY;
1134 T10 = TK + TZ;
1135 T11 = TZ - TK;
1136 T1g = T18 + T1f;
1137 T1v = T1n + T1u;
1138 T1w = T1g - T1v;
1139 T5Z = T1g + T1v;
1140 }
1141 ro[WS(os, 16)] = Tv - T10;
1142 io[WS(os, 16)] = T5Z - T60;
1143 ro[0] = Tv + T10;
1144 io[0] = T5Z + T60;
1145 io[WS(os, 8)] = T11 + T1w;
1146 ro[WS(os, 8)] = T5V + T5Y;
1147 io[WS(os, 24)] = T1w - T11;
1148 ro[WS(os, 24)] = T5V - T5Y;
1149 }
1150 {
1151 E T1X, T33, T31, T37, T2o, T34, T2P, T35;
1152 {
1153 E T1H, T1W, T2X, T30;
1154 T1H = T1z - T1G;
1155 T1W = T1O - T1V;
1156 T1X = T1H + T1W;
1157 T33 = T1H - T1W;
1158 T2X = T2T - T2W;
1159 T30 = T2Y - T2Z;
1160 T31 = T2X - T30;
1161 T37 = T2X + T30;
1162 }
1163 {
1164 E T2e, T2n, T2F, T2O;
1165 T2e = T22 - T2d;
1166 T2n = T2j - T2m;
1167 T2o = FMA(KP980785280, T2e, KP195090322 * T2n);
1168 T34 = FNMS(KP980785280, T2n, KP195090322 * T2e);
1169 T2F = T2t - T2E;
1170 T2O = T2K - T2N;
1171 T2P = FNMS(KP980785280, T2O, KP195090322 * T2F);
1172 T35 = FMA(KP195090322, T2O, KP980785280 * T2F);
1173 }
1174 {
1175 E T2Q, T38, T32, T36;
1176 T2Q = T2o + T2P;
1177 ro[WS(os, 23)] = T1X - T2Q;
1178 ro[WS(os, 7)] = T1X + T2Q;
1179 T38 = T34 + T35;
1180 io[WS(os, 23)] = T37 - T38;
1181 io[WS(os, 7)] = T37 + T38;
1182 T32 = T2P - T2o;
1183 io[WS(os, 31)] = T31 - T32;
1184 io[WS(os, 15)] = T31 + T32;
1185 T36 = T34 - T35;
1186 ro[WS(os, 31)] = T33 - T36;
1187 ro[WS(os, 15)] = T33 + T36;
1188 }
1189 }
1190 {
1191 E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
1192 {
1193 E T3v, T3C, T3V, T3Y;
1194 T3v = T3t - T3u;
1195 T3C = T3y - T3B;
1196 T3D = T3v + T3C;
1197 T41 = T3v - T3C;
1198 T3V = T3T - T3U;
1199 T3Y = T3W - T3X;
1200 T3Z = T3V - T3Y;
1201 T45 = T3V + T3Y;
1202 }
1203 {
1204 E T3G, T3J, T3N, T3Q;
1205 T3G = T3E - T3F;
1206 T3J = T3H - T3I;
1207 T3K = FMA(KP555570233, T3G, KP831469612 * T3J);
1208 T42 = FNMS(KP831469612, T3G, KP555570233 * T3J);
1209 T3N = T3L - T3M;
1210 T3Q = T3O - T3P;
1211 T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N);
1212 T43 = FMA(KP831469612, T3N, KP555570233 * T3Q);
1213 }
1214 {
1215 E T3S, T46, T40, T44;
1216 T3S = T3K + T3R;
1217 ro[WS(os, 21)] = T3D - T3S;
1218 ro[WS(os, 5)] = T3D + T3S;
1219 T46 = T42 + T43;
1220 io[WS(os, 21)] = T45 - T46;
1221 io[WS(os, 5)] = T45 + T46;
1222 T40 = T3R - T3K;
1223 io[WS(os, 29)] = T3Z - T40;
1224 io[WS(os, 13)] = T3Z + T40;
1225 T44 = T42 - T43;
1226 ro[WS(os, 29)] = T41 - T44;
1227 ro[WS(os, 13)] = T41 + T44;
1228 }
1229 }
1230 {
1231 E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n;
1232 {
1233 E T47, T48, T4h, T4i;
1234 T47 = T3t + T3u;
1235 T48 = T3X + T3W;
1236 T49 = T47 + T48;
1237 T4l = T47 - T48;
1238 T4h = T3T + T3U;
1239 T4i = T3y + T3B;
1240 T4j = T4h - T4i;
1241 T4p = T4h + T4i;
1242 }
1243 {
1244 E T4a, T4b, T4d, T4e;
1245 T4a = T3E + T3F;
1246 T4b = T3H + T3I;
1247 T4c = FMA(KP980785280, T4a, KP195090322 * T4b);
1248 T4m = FNMS(KP195090322, T4a, KP980785280 * T4b);
1249 T4d = T3L + T3M;
1250 T4e = T3O + T3P;
1251 T4f = FNMS(KP195090322, T4e, KP980785280 * T4d);
1252 T4n = FMA(KP195090322, T4d, KP980785280 * T4e);
1253 }
1254 {
1255 E T4g, T4q, T4k, T4o;
1256 T4g = T4c + T4f;
1257 ro[WS(os, 17)] = T49 - T4g;
1258 ro[WS(os, 1)] = T49 + T4g;
1259 T4q = T4m + T4n;
1260 io[WS(os, 17)] = T4p - T4q;
1261 io[WS(os, 1)] = T4p + T4q;
1262 T4k = T4f - T4c;
1263 io[WS(os, 25)] = T4j - T4k;
1264 io[WS(os, 9)] = T4j + T4k;
1265 T4o = T4m - T4n;
1266 ro[WS(os, 25)] = T4l - T4o;
1267 ro[WS(os, 9)] = T4l + T4o;
1268 }
1269 }
1270 {
1271 E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
1272 {
1273 E T39, T3a, T3j, T3k;
1274 T39 = T1z + T1G;
1275 T3a = T2Z + T2Y;
1276 T3b = T39 + T3a;
1277 T3n = T39 - T3a;
1278 T3j = T2T + T2W;
1279 T3k = T1O + T1V;
1280 T3l = T3j - T3k;
1281 T3r = T3j + T3k;
1282 }
1283 {
1284 E T3c, T3d, T3f, T3g;
1285 T3c = T22 + T2d;
1286 T3d = T2j + T2m;
1287 T3e = FMA(KP555570233, T3c, KP831469612 * T3d);
1288 T3o = FNMS(KP555570233, T3d, KP831469612 * T3c);
1289 T3f = T2t + T2E;
1290 T3g = T2K + T2N;
1291 T3h = FNMS(KP555570233, T3g, KP831469612 * T3f);
1292 T3p = FMA(KP831469612, T3g, KP555570233 * T3f);
1293 }
1294 {
1295 E T3i, T3s, T3m, T3q;
1296 T3i = T3e + T3h;
1297 ro[WS(os, 19)] = T3b - T3i;
1298 ro[WS(os, 3)] = T3b + T3i;
1299 T3s = T3o + T3p;
1300 io[WS(os, 19)] = T3r - T3s;
1301 io[WS(os, 3)] = T3r + T3s;
1302 T3m = T3h - T3e;
1303 io[WS(os, 27)] = T3l - T3m;
1304 io[WS(os, 11)] = T3l + T3m;
1305 T3q = T3o - T3p;
1306 ro[WS(os, 27)] = T3n - T3q;
1307 ro[WS(os, 11)] = T3n + T3q;
1308 }
1309 }
1310 }
1311 }
1312 }
1313
1314 static const kdft_desc desc = { 32, "n1_32", {340, 52, 32, 0}, &GENUS, 0, 0, 0, 0 };
1315
1316 void X(codelet_n1_32) (planner *p) {
1317 X(kdft_register) (p, n1_32, &desc);
1318 }
1319
1320 #endif