comparison src/fftw-3.3.8/dft/scalar/codelets/n1_20.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:12 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 208 FP additions, 72 FP multiplications,
32 * (or, 136 additions, 0 multiplications, 72 fused multiply/add),
33 * 81 stack variables, 4 constants, and 80 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 {
44 INT i;
45 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) {
46 E T7, T2N, T3b, TD, TP, T1R, T2f, T1d, Tt, TA, TB, T2w, T2z, T2P, T35;
47 E T36, T3d, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1T, T29, T2a, T2h, T1h;
48 E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2O, T32, T33, T3c, TE, TF, TG, TU;
49 E TZ, T10, T1D, T1I, T1S, T26, T27, T2g, T1e, T1f, T1g;
50 {
51 E T3, T1N, TN, T2L, T6, TO, T1Q, T2M;
52 {
53 E T1, T2, TL, TM;
54 T1 = ri[0];
55 T2 = ri[WS(is, 10)];
56 T3 = T1 + T2;
57 T1N = T1 - T2;
58 TL = ii[0];
59 TM = ii[WS(is, 10)];
60 TN = TL - TM;
61 T2L = TL + TM;
62 }
63 {
64 E T4, T5, T1O, T1P;
65 T4 = ri[WS(is, 5)];
66 T5 = ri[WS(is, 15)];
67 T6 = T4 + T5;
68 TO = T4 - T5;
69 T1O = ii[WS(is, 5)];
70 T1P = ii[WS(is, 15)];
71 T1Q = T1O - T1P;
72 T2M = T1O + T1P;
73 }
74 T7 = T3 - T6;
75 T2N = T2L - T2M;
76 T3b = T2L + T2M;
77 TD = T3 + T6;
78 TP = TN - TO;
79 T1R = T1N - T1Q;
80 T2f = T1N + T1Q;
81 T1d = TO + TN;
82 }
83 {
84 E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w;
85 E T2y;
86 {
87 E Tn, To, T11, T12;
88 Tn = ri[WS(is, 8)];
89 To = ri[WS(is, 18)];
90 Tp = Tn + To;
91 T1o = Tn - To;
92 T11 = ii[WS(is, 8)];
93 T12 = ii[WS(is, 18)];
94 T13 = T11 - T12;
95 T2u = T11 + T12;
96 }
97 {
98 E Tq, Tr, T1p, T1q;
99 Tq = ri[WS(is, 13)];
100 Tr = ri[WS(is, 3)];
101 Ts = Tq + Tr;
102 T14 = Tq - Tr;
103 T1p = ii[WS(is, 13)];
104 T1q = ii[WS(is, 3)];
105 T1r = T1p - T1q;
106 T2v = T1p + T1q;
107 }
108 {
109 E Tu, Tv, T16, T17;
110 Tu = ri[WS(is, 12)];
111 Tv = ri[WS(is, 2)];
112 Tw = Tu + Tv;
113 T1t = Tu - Tv;
114 T16 = ii[WS(is, 12)];
115 T17 = ii[WS(is, 2)];
116 T18 = T16 - T17;
117 T2x = T16 + T17;
118 }
119 {
120 E Tx, Ty, T1u, T1v;
121 Tx = ri[WS(is, 17)];
122 Ty = ri[WS(is, 7)];
123 Tz = Tx + Ty;
124 T19 = Tx - Ty;
125 T1u = ii[WS(is, 17)];
126 T1v = ii[WS(is, 7)];
127 T1w = T1u - T1v;
128 T2y = T1u + T1v;
129 }
130 Tt = Tp - Ts;
131 TA = Tw - Tz;
132 TB = Tt + TA;
133 T2w = T2u - T2v;
134 T2z = T2x - T2y;
135 T2P = T2w + T2z;
136 T35 = T2u + T2v;
137 T36 = T2x + T2y;
138 T3d = T35 + T36;
139 TH = Tp + Ts;
140 TI = Tw + Tz;
141 TJ = TH + TI;
142 T15 = T13 - T14;
143 T1a = T18 - T19;
144 T1b = T15 + T1a;
145 T1s = T1o - T1r;
146 T1x = T1t - T1w;
147 T1T = T1s + T1x;
148 T29 = T1o + T1r;
149 T2a = T1t + T1w;
150 T2h = T29 + T2a;
151 T1h = T14 + T13;
152 T1i = T19 + T18;
153 T1j = T1h + T1i;
154 }
155 {
156 E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H;
157 E T2F;
158 {
159 E T8, T9, TQ, TR;
160 T8 = ri[WS(is, 4)];
161 T9 = ri[WS(is, 14)];
162 Ta = T8 + T9;
163 T1z = T8 - T9;
164 TQ = ii[WS(is, 4)];
165 TR = ii[WS(is, 14)];
166 TS = TQ - TR;
167 T2B = TQ + TR;
168 }
169 {
170 E Tb, Tc, T1A, T1B;
171 Tb = ri[WS(is, 9)];
172 Tc = ri[WS(is, 19)];
173 Td = Tb + Tc;
174 TT = Tb - Tc;
175 T1A = ii[WS(is, 9)];
176 T1B = ii[WS(is, 19)];
177 T1C = T1A - T1B;
178 T2C = T1A + T1B;
179 }
180 {
181 E Tf, Tg, TV, TW;
182 Tf = ri[WS(is, 16)];
183 Tg = ri[WS(is, 6)];
184 Th = Tf + Tg;
185 T1E = Tf - Tg;
186 TV = ii[WS(is, 16)];
187 TW = ii[WS(is, 6)];
188 TX = TV - TW;
189 T2E = TV + TW;
190 }
191 {
192 E Ti, Tj, T1F, T1G;
193 Ti = ri[WS(is, 1)];
194 Tj = ri[WS(is, 11)];
195 Tk = Ti + Tj;
196 TY = Ti - Tj;
197 T1F = ii[WS(is, 1)];
198 T1G = ii[WS(is, 11)];
199 T1H = T1F - T1G;
200 T2F = T1F + T1G;
201 }
202 Te = Ta - Td;
203 Tl = Th - Tk;
204 Tm = Te + Tl;
205 T2D = T2B - T2C;
206 T2G = T2E - T2F;
207 T2O = T2D + T2G;
208 T32 = T2B + T2C;
209 T33 = T2E + T2F;
210 T3c = T32 + T33;
211 TE = Ta + Td;
212 TF = Th + Tk;
213 TG = TE + TF;
214 TU = TS - TT;
215 TZ = TX - TY;
216 T10 = TU + TZ;
217 T1D = T1z - T1C;
218 T1I = T1E - T1H;
219 T1S = T1D + T1I;
220 T26 = T1z + T1C;
221 T27 = T1E + T1H;
222 T2g = T26 + T27;
223 T1e = TT + TS;
224 T1f = TY + TX;
225 T1g = T1e + T1f;
226 }
227 {
228 E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t;
229 T2s = Tm - TB;
230 TC = Tm + TB;
231 T2r = FNMS(KP250000000, TC, T7);
232 T2A = T2w - T2z;
233 T2H = T2D - T2G;
234 T2I = FNMS(KP618033988, T2H, T2A);
235 T2K = FMA(KP618033988, T2A, T2H);
236 ro[WS(os, 10)] = T7 + TC;
237 T2J = FMA(KP559016994, T2s, T2r);
238 ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J);
239 ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J);
240 T2t = FNMS(KP559016994, T2s, T2r);
241 ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t);
242 ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t);
243 }
244 {
245 E T2S, T2Q, T2R, T2W, T2Y, T2U, T2V, T2X, T2T;
246 T2S = T2O - T2P;
247 T2Q = T2O + T2P;
248 T2R = FNMS(KP250000000, T2Q, T2N);
249 T2U = Tt - TA;
250 T2V = Te - Tl;
251 T2W = FNMS(KP618033988, T2V, T2U);
252 T2Y = FMA(KP618033988, T2U, T2V);
253 io[WS(os, 10)] = T2N + T2Q;
254 T2X = FMA(KP559016994, T2S, T2R);
255 io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X);
256 io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X);
257 T2T = FNMS(KP559016994, T2S, T2R);
258 io[WS(os, 2)] = FMA(KP951056516, T2W, T2T);
259 io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T);
260 }
261 {
262 E T30, TK, T2Z, T38, T3a, T34, T37, T39, T31;
263 T30 = TG - TJ;
264 TK = TG + TJ;
265 T2Z = FNMS(KP250000000, TK, TD);
266 T34 = T32 - T33;
267 T37 = T35 - T36;
268 T38 = FMA(KP618033988, T37, T34);
269 T3a = FNMS(KP618033988, T34, T37);
270 ro[0] = TD + TK;
271 T39 = FNMS(KP559016994, T30, T2Z);
272 ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39);
273 ro[WS(os, 8)] = FMA(KP951056516, T3a, T39);
274 T31 = FMA(KP559016994, T30, T2Z);
275 ro[WS(os, 4)] = FNMS(KP951056516, T38, T31);
276 ro[WS(os, 16)] = FMA(KP951056516, T38, T31);
277 }
278 {
279 E T3g, T3e, T3f, T3k, T3m, T3i, T3j, T3l, T3h;
280 T3g = T3c - T3d;
281 T3e = T3c + T3d;
282 T3f = FNMS(KP250000000, T3e, T3b);
283 T3i = TE - TF;
284 T3j = TH - TI;
285 T3k = FMA(KP618033988, T3j, T3i);
286 T3m = FNMS(KP618033988, T3i, T3j);
287 io[0] = T3b + T3e;
288 T3l = FNMS(KP559016994, T3g, T3f);
289 io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l);
290 io[WS(os, 12)] = FMA(KP951056516, T3m, T3l);
291 T3h = FMA(KP559016994, T3g, T3f);
292 io[WS(os, 4)] = FMA(KP951056516, T3k, T3h);
293 io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h);
294 }
295 {
296 E T24, T1c, T23, T2c, T2e, T28, T2b, T2d, T25;
297 T24 = T10 - T1b;
298 T1c = T10 + T1b;
299 T23 = FNMS(KP250000000, T1c, TP);
300 T28 = T26 - T27;
301 T2b = T29 - T2a;
302 T2c = FMA(KP618033988, T2b, T28);
303 T2e = FNMS(KP618033988, T28, T2b);
304 io[WS(os, 5)] = TP + T1c;
305 T2d = FNMS(KP559016994, T24, T23);
306 io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d);
307 io[WS(os, 17)] = FMA(KP951056516, T2e, T2d);
308 T25 = FMA(KP559016994, T24, T23);
309 io[WS(os, 1)] = FNMS(KP951056516, T2c, T25);
310 io[WS(os, 9)] = FMA(KP951056516, T2c, T25);
311 }
312 {
313 E T2k, T2i, T2j, T2o, T2q, T2m, T2n, T2p, T2l;
314 T2k = T2g - T2h;
315 T2i = T2g + T2h;
316 T2j = FNMS(KP250000000, T2i, T2f);
317 T2m = TU - TZ;
318 T2n = T15 - T1a;
319 T2o = FMA(KP618033988, T2n, T2m);
320 T2q = FNMS(KP618033988, T2m, T2n);
321 ro[WS(os, 5)] = T2f + T2i;
322 T2p = FNMS(KP559016994, T2k, T2j);
323 ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p);
324 ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p);
325 T2l = FMA(KP559016994, T2k, T2j);
326 ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l);
327 ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l);
328 }
329 {
330 E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n;
331 T1m = T1g - T1j;
332 T1k = T1g + T1j;
333 T1l = FNMS(KP250000000, T1k, T1d);
334 T1y = T1s - T1x;
335 T1J = T1D - T1I;
336 T1K = FNMS(KP618033988, T1J, T1y);
337 T1M = FMA(KP618033988, T1y, T1J);
338 io[WS(os, 15)] = T1d + T1k;
339 T1L = FMA(KP559016994, T1m, T1l);
340 io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L);
341 io[WS(os, 19)] = FMA(KP951056516, T1M, T1L);
342 T1n = FNMS(KP559016994, T1m, T1l);
343 io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n);
344 io[WS(os, 7)] = FMA(KP951056516, T1K, T1n);
345 }
346 {
347 E T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X;
348 T1W = T1S - T1T;
349 T1U = T1S + T1T;
350 T1V = FNMS(KP250000000, T1U, T1R);
351 T1Y = T1h - T1i;
352 T1Z = T1e - T1f;
353 T20 = FNMS(KP618033988, T1Z, T1Y);
354 T22 = FMA(KP618033988, T1Y, T1Z);
355 ro[WS(os, 15)] = T1R + T1U;
356 T21 = FMA(KP559016994, T1W, T1V);
357 ro[WS(os, 11)] = FMA(KP951056516, T22, T21);
358 ro[WS(os, 19)] = FNMS(KP951056516, T22, T21);
359 T1X = FNMS(KP559016994, T1W, T1V);
360 ro[WS(os, 3)] = FMA(KP951056516, T20, T1X);
361 ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X);
362 }
363 }
364 }
365 }
366
367 static const kdft_desc desc = { 20, "n1_20", {136, 0, 72, 0}, &GENUS, 0, 0, 0, 0 };
368
369 void X(codelet_n1_20) (planner *p) {
370 X(kdft_register) (p, n1_20, &desc);
371 }
372
373 #else
374
375 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */
376
377 /*
378 * This function contains 208 FP additions, 48 FP multiplications,
379 * (or, 184 additions, 24 multiplications, 24 fused multiply/add),
380 * 81 stack variables, 4 constants, and 80 memory accesses
381 */
382 #include "dft/scalar/n.h"
383
384 static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
385 {
386 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
387 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
388 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
389 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
390 {
391 INT i;
392 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) {
393 E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35;
394 E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h;
395 E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU;
396 E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g;
397 {
398 E T3, T1Q, TN, T2O, T6, TO, T1T, T2P;
399 {
400 E T1, T2, TL, TM;
401 T1 = ri[0];
402 T2 = ri[WS(is, 10)];
403 T3 = T1 + T2;
404 T1Q = T1 - T2;
405 TL = ii[0];
406 TM = ii[WS(is, 10)];
407 TN = TL - TM;
408 T2O = TL + TM;
409 }
410 {
411 E T4, T5, T1R, T1S;
412 T4 = ri[WS(is, 5)];
413 T5 = ri[WS(is, 15)];
414 T6 = T4 + T5;
415 TO = T4 - T5;
416 T1R = ii[WS(is, 5)];
417 T1S = ii[WS(is, 15)];
418 T1T = T1R - T1S;
419 T2P = T1R + T1S;
420 }
421 T7 = T3 - T6;
422 T2Q = T2O - T2P;
423 T3h = T2O + T2P;
424 TD = T3 + T6;
425 TP = TN - TO;
426 T1U = T1Q - T1T;
427 T2l = T1Q + T1T;
428 T1d = TO + TN;
429 }
430 {
431 E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w;
432 E T2y;
433 {
434 E Tn, To, T11, T12;
435 Tn = ri[WS(is, 8)];
436 To = ri[WS(is, 18)];
437 Tp = Tn + To;
438 T1o = Tn - To;
439 T11 = ii[WS(is, 8)];
440 T12 = ii[WS(is, 18)];
441 T13 = T11 - T12;
442 T2u = T11 + T12;
443 }
444 {
445 E Tq, Tr, T1p, T1q;
446 Tq = ri[WS(is, 13)];
447 Tr = ri[WS(is, 3)];
448 Ts = Tq + Tr;
449 T14 = Tq - Tr;
450 T1p = ii[WS(is, 13)];
451 T1q = ii[WS(is, 3)];
452 T1r = T1p - T1q;
453 T2v = T1p + T1q;
454 }
455 {
456 E Tu, Tv, T16, T17;
457 Tu = ri[WS(is, 12)];
458 Tv = ri[WS(is, 2)];
459 Tw = Tu + Tv;
460 T1t = Tu - Tv;
461 T16 = ii[WS(is, 12)];
462 T17 = ii[WS(is, 2)];
463 T18 = T16 - T17;
464 T2x = T16 + T17;
465 }
466 {
467 E Tx, Ty, T1u, T1v;
468 Tx = ri[WS(is, 17)];
469 Ty = ri[WS(is, 7)];
470 Tz = Tx + Ty;
471 T19 = Tx - Ty;
472 T1u = ii[WS(is, 17)];
473 T1v = ii[WS(is, 7)];
474 T1w = T1u - T1v;
475 T2y = T1u + T1v;
476 }
477 Tt = Tp - Ts;
478 TA = Tw - Tz;
479 TB = Tt + TA;
480 T2w = T2u - T2v;
481 T2z = T2x - T2y;
482 T2S = T2w + T2z;
483 T35 = T2u + T2v;
484 T36 = T2x + T2y;
485 T3f = T35 + T36;
486 TH = Tp + Ts;
487 TI = Tw + Tz;
488 TJ = TH + TI;
489 T15 = T13 - T14;
490 T1a = T18 - T19;
491 T1b = T15 + T1a;
492 T1s = T1o - T1r;
493 T1x = T1t - T1w;
494 T1W = T1s + T1x;
495 T29 = T1o + T1r;
496 T2a = T1t + T1w;
497 T2j = T29 + T2a;
498 T1h = T14 + T13;
499 T1i = T19 + T18;
500 T1j = T1h + T1i;
501 }
502 {
503 E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H;
504 E T2F;
505 {
506 E T8, T9, TQ, TR;
507 T8 = ri[WS(is, 4)];
508 T9 = ri[WS(is, 14)];
509 Ta = T8 + T9;
510 T1z = T8 - T9;
511 TQ = ii[WS(is, 4)];
512 TR = ii[WS(is, 14)];
513 TS = TQ - TR;
514 T2B = TQ + TR;
515 }
516 {
517 E Tb, Tc, T1A, T1B;
518 Tb = ri[WS(is, 9)];
519 Tc = ri[WS(is, 19)];
520 Td = Tb + Tc;
521 TT = Tb - Tc;
522 T1A = ii[WS(is, 9)];
523 T1B = ii[WS(is, 19)];
524 T1C = T1A - T1B;
525 T2C = T1A + T1B;
526 }
527 {
528 E Tf, Tg, TV, TW;
529 Tf = ri[WS(is, 16)];
530 Tg = ri[WS(is, 6)];
531 Th = Tf + Tg;
532 T1E = Tf - Tg;
533 TV = ii[WS(is, 16)];
534 TW = ii[WS(is, 6)];
535 TX = TV - TW;
536 T2E = TV + TW;
537 }
538 {
539 E Ti, Tj, T1F, T1G;
540 Ti = ri[WS(is, 1)];
541 Tj = ri[WS(is, 11)];
542 Tk = Ti + Tj;
543 TY = Ti - Tj;
544 T1F = ii[WS(is, 1)];
545 T1G = ii[WS(is, 11)];
546 T1H = T1F - T1G;
547 T2F = T1F + T1G;
548 }
549 Te = Ta - Td;
550 Tl = Th - Tk;
551 Tm = Te + Tl;
552 T2D = T2B - T2C;
553 T2G = T2E - T2F;
554 T2R = T2D + T2G;
555 T32 = T2B + T2C;
556 T33 = T2E + T2F;
557 T3e = T32 + T33;
558 TE = Ta + Td;
559 TF = Th + Tk;
560 TG = TE + TF;
561 TU = TS - TT;
562 TZ = TX - TY;
563 T10 = TU + TZ;
564 T1D = T1z - T1C;
565 T1I = T1E - T1H;
566 T1V = T1D + T1I;
567 T26 = T1z + T1C;
568 T27 = T1E + T1H;
569 T2i = T26 + T27;
570 T1e = TT + TS;
571 T1f = TY + TX;
572 T1g = T1e + T1f;
573 }
574 {
575 E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t;
576 T2s = KP559016994 * (Tm - TB);
577 TC = Tm + TB;
578 T2r = FNMS(KP250000000, TC, T7);
579 T2A = T2w - T2z;
580 T2H = T2D - T2G;
581 T2I = FNMS(KP587785252, T2H, KP951056516 * T2A);
582 T2K = FMA(KP951056516, T2H, KP587785252 * T2A);
583 ro[WS(os, 10)] = T7 + TC;
584 T2J = T2s + T2r;
585 ro[WS(os, 14)] = T2J - T2K;
586 ro[WS(os, 6)] = T2J + T2K;
587 T2t = T2r - T2s;
588 ro[WS(os, 2)] = T2t - T2I;
589 ro[WS(os, 18)] = T2t + T2I;
590 }
591 {
592 E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W;
593 T2V = KP559016994 * (T2R - T2S);
594 T2T = T2R + T2S;
595 T2U = FNMS(KP250000000, T2T, T2Q);
596 T2L = Tt - TA;
597 T2M = Te - Tl;
598 T2N = FNMS(KP587785252, T2M, KP951056516 * T2L);
599 T2Y = FMA(KP951056516, T2M, KP587785252 * T2L);
600 io[WS(os, 10)] = T2Q + T2T;
601 T2X = T2V + T2U;
602 io[WS(os, 6)] = T2X - T2Y;
603 io[WS(os, 14)] = T2Y + T2X;
604 T2W = T2U - T2V;
605 io[WS(os, 2)] = T2N + T2W;
606 io[WS(os, 18)] = T2W - T2N;
607 }
608 {
609 E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31;
610 T2Z = KP559016994 * (TG - TJ);
611 TK = TG + TJ;
612 T30 = FNMS(KP250000000, TK, TD);
613 T34 = T32 - T33;
614 T37 = T35 - T36;
615 T38 = FMA(KP951056516, T34, KP587785252 * T37);
616 T3a = FNMS(KP587785252, T34, KP951056516 * T37);
617 ro[0] = TD + TK;
618 T39 = T30 - T2Z;
619 ro[WS(os, 12)] = T39 - T3a;
620 ro[WS(os, 8)] = T39 + T3a;
621 T31 = T2Z + T30;
622 ro[WS(os, 4)] = T31 - T38;
623 ro[WS(os, 16)] = T31 + T38;
624 }
625 {
626 E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k;
627 T3g = KP559016994 * (T3e - T3f);
628 T3i = T3e + T3f;
629 T3j = FNMS(KP250000000, T3i, T3h);
630 T3b = TE - TF;
631 T3c = TH - TI;
632 T3d = FMA(KP951056516, T3b, KP587785252 * T3c);
633 T3m = FNMS(KP587785252, T3b, KP951056516 * T3c);
634 io[0] = T3h + T3i;
635 T3l = T3j - T3g;
636 io[WS(os, 8)] = T3l - T3m;
637 io[WS(os, 12)] = T3m + T3l;
638 T3k = T3g + T3j;
639 io[WS(os, 4)] = T3d + T3k;
640 io[WS(os, 16)] = T3k - T3d;
641 }
642 {
643 E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25;
644 T23 = KP559016994 * (T10 - T1b);
645 T1c = T10 + T1b;
646 T24 = FNMS(KP250000000, T1c, TP);
647 T28 = T26 - T27;
648 T2b = T29 - T2a;
649 T2c = FMA(KP951056516, T28, KP587785252 * T2b);
650 T2e = FNMS(KP587785252, T28, KP951056516 * T2b);
651 io[WS(os, 5)] = TP + T1c;
652 T2d = T24 - T23;
653 io[WS(os, 13)] = T2d - T2e;
654 io[WS(os, 17)] = T2d + T2e;
655 T25 = T23 + T24;
656 io[WS(os, 1)] = T25 - T2c;
657 io[WS(os, 9)] = T25 + T2c;
658 }
659 {
660 E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o;
661 T2k = KP559016994 * (T2i - T2j);
662 T2m = T2i + T2j;
663 T2n = FNMS(KP250000000, T2m, T2l);
664 T2f = TU - TZ;
665 T2g = T15 - T1a;
666 T2h = FMA(KP951056516, T2f, KP587785252 * T2g);
667 T2p = FNMS(KP587785252, T2f, KP951056516 * T2g);
668 ro[WS(os, 5)] = T2l + T2m;
669 T2q = T2n - T2k;
670 ro[WS(os, 13)] = T2p + T2q;
671 ro[WS(os, 17)] = T2q - T2p;
672 T2o = T2k + T2n;
673 ro[WS(os, 1)] = T2h + T2o;
674 ro[WS(os, 9)] = T2o - T2h;
675 }
676 {
677 E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n;
678 T1m = KP559016994 * (T1g - T1j);
679 T1k = T1g + T1j;
680 T1l = FNMS(KP250000000, T1k, T1d);
681 T1y = T1s - T1x;
682 T1J = T1D - T1I;
683 T1K = FNMS(KP587785252, T1J, KP951056516 * T1y);
684 T1M = FMA(KP951056516, T1J, KP587785252 * T1y);
685 io[WS(os, 15)] = T1d + T1k;
686 T1L = T1m + T1l;
687 io[WS(os, 11)] = T1L - T1M;
688 io[WS(os, 19)] = T1L + T1M;
689 T1n = T1l - T1m;
690 io[WS(os, 3)] = T1n - T1K;
691 io[WS(os, 7)] = T1n + T1K;
692 }
693 {
694 E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20;
695 T1Z = KP559016994 * (T1V - T1W);
696 T1X = T1V + T1W;
697 T1Y = FNMS(KP250000000, T1X, T1U);
698 T1N = T1h - T1i;
699 T1O = T1e - T1f;
700 T1P = FNMS(KP587785252, T1O, KP951056516 * T1N);
701 T21 = FMA(KP951056516, T1O, KP587785252 * T1N);
702 ro[WS(os, 15)] = T1U + T1X;
703 T22 = T1Z + T1Y;
704 ro[WS(os, 11)] = T21 + T22;
705 ro[WS(os, 19)] = T22 - T21;
706 T20 = T1Y - T1Z;
707 ro[WS(os, 3)] = T1P + T20;
708 ro[WS(os, 7)] = T20 - T1P;
709 }
710 }
711 }
712 }
713
714 static const kdft_desc desc = { 20, "n1_20", {184, 24, 24, 0}, &GENUS, 0, 0, 0, 0 };
715
716 void X(codelet_n1_20) (planner *p) {
717 X(kdft_register) (p, n1_20, &desc);
718 }
719
720 #endif