comparison src/fftw-3.3.8/dft/scalar/codelets/n1_14.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:10 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 148 FP additions, 84 FP multiplications,
32 * (or, 64 additions, 0 multiplications, 84 fused multiply/add),
33 * 67 stack variables, 6 constants, and 56 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
40 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
41 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
42 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
43 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45 {
46 INT i;
47 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
48 E T3, Tp, T1b, T1x, T1i, T1L, T1M, T1j, T1k, T1K, Ta, To, Th, Tz, T14;
49 E TZ, Ts, Ty, Tv, T1Z, T2c, T27, TI, T23, T24, TP, TW, T22, T1c, T1e;
50 E T1d, T1f, T1s, T1n, T1A, T1G, T1D, T1H, T1U, T1P;
51 {
52 E T1, T2, T19, T1a;
53 T1 = ri[0];
54 T2 = ri[WS(is, 7)];
55 T3 = T1 - T2;
56 Tp = T1 + T2;
57 T19 = ii[0];
58 T1a = ii[WS(is, 7)];
59 T1b = T19 - T1a;
60 T1x = T19 + T1a;
61 }
62 {
63 E T6, Tq, T9, Tr, Tn, Tx, Tk, Tw, Tg, Tu, Td, Tt;
64 {
65 E T4, T5, Ti, Tj;
66 T4 = ri[WS(is, 2)];
67 T5 = ri[WS(is, 9)];
68 T6 = T4 - T5;
69 Tq = T4 + T5;
70 {
71 E T7, T8, Tl, Tm;
72 T7 = ri[WS(is, 12)];
73 T8 = ri[WS(is, 5)];
74 T9 = T7 - T8;
75 Tr = T7 + T8;
76 Tl = ri[WS(is, 8)];
77 Tm = ri[WS(is, 1)];
78 Tn = Tl - Tm;
79 Tx = Tl + Tm;
80 }
81 Ti = ri[WS(is, 6)];
82 Tj = ri[WS(is, 13)];
83 Tk = Ti - Tj;
84 Tw = Ti + Tj;
85 {
86 E Te, Tf, Tb, Tc;
87 Te = ri[WS(is, 10)];
88 Tf = ri[WS(is, 3)];
89 Tg = Te - Tf;
90 Tu = Te + Tf;
91 Tb = ri[WS(is, 4)];
92 Tc = ri[WS(is, 11)];
93 Td = Tb - Tc;
94 Tt = Tb + Tc;
95 }
96 }
97 T1i = Tn - Tk;
98 T1L = Tt - Tu;
99 T1M = Tr - Tq;
100 T1j = Tg - Td;
101 T1k = T9 - T6;
102 T1K = Tw - Tx;
103 Ta = T6 + T9;
104 To = Tk + Tn;
105 Th = Td + Tg;
106 Tz = FNMS(KP356895867, Th, Ta);
107 T14 = FNMS(KP356895867, To, Th);
108 TZ = FNMS(KP356895867, Ta, To);
109 Ts = Tq + Tr;
110 Ty = Tw + Tx;
111 Tv = Tt + Tu;
112 T1Z = FNMS(KP356895867, Ts, Ty);
113 T2c = FNMS(KP356895867, Ty, Tv);
114 T27 = FNMS(KP356895867, Tv, Ts);
115 }
116 {
117 E TE, T1B, TH, T1C, TV, T1F, TS, T1E, TO, T1z, TL, T1y;
118 {
119 E TC, TD, TQ, TR;
120 TC = ii[WS(is, 4)];
121 TD = ii[WS(is, 11)];
122 TE = TC - TD;
123 T1B = TC + TD;
124 {
125 E TF, TG, TT, TU;
126 TF = ii[WS(is, 10)];
127 TG = ii[WS(is, 3)];
128 TH = TF - TG;
129 T1C = TF + TG;
130 TT = ii[WS(is, 8)];
131 TU = ii[WS(is, 1)];
132 TV = TT - TU;
133 T1F = TT + TU;
134 }
135 TQ = ii[WS(is, 6)];
136 TR = ii[WS(is, 13)];
137 TS = TQ - TR;
138 T1E = TQ + TR;
139 {
140 E TM, TN, TJ, TK;
141 TM = ii[WS(is, 12)];
142 TN = ii[WS(is, 5)];
143 TO = TM - TN;
144 T1z = TM + TN;
145 TJ = ii[WS(is, 2)];
146 TK = ii[WS(is, 9)];
147 TL = TJ - TK;
148 T1y = TJ + TK;
149 }
150 }
151 TI = TE - TH;
152 T23 = T1F - T1E;
153 T24 = T1C - T1B;
154 TP = TL - TO;
155 TW = TS - TV;
156 T22 = T1y - T1z;
157 T1c = TL + TO;
158 T1e = TS + TV;
159 T1d = TE + TH;
160 T1f = FNMS(KP356895867, T1e, T1d);
161 T1s = FNMS(KP356895867, T1d, T1c);
162 T1n = FNMS(KP356895867, T1c, T1e);
163 T1A = T1y + T1z;
164 T1G = T1E + T1F;
165 T1D = T1B + T1C;
166 T1H = FNMS(KP356895867, T1G, T1D);
167 T1U = FNMS(KP356895867, T1D, T1A);
168 T1P = FNMS(KP356895867, T1A, T1G);
169 }
170 ro[WS(os, 7)] = T3 + Ta + Th + To;
171 io[WS(os, 7)] = T1b + T1c + T1d + T1e;
172 ro[0] = Tp + Ts + Tv + Ty;
173 io[0] = T1x + T1A + T1D + T1G;
174 {
175 E TB, TY, TA, TX;
176 TA = FNMS(KP692021471, Tz, To);
177 TB = FNMS(KP900968867, TA, T3);
178 TX = FMA(KP554958132, TW, TP);
179 TY = FMA(KP801937735, TX, TI);
180 ro[WS(os, 13)] = FNMS(KP974927912, TY, TB);
181 ro[WS(os, 1)] = FMA(KP974927912, TY, TB);
182 }
183 {
184 E T1u, T1w, T1t, T1v;
185 T1t = FNMS(KP692021471, T1s, T1e);
186 T1u = FNMS(KP900968867, T1t, T1b);
187 T1v = FMA(KP554958132, T1i, T1k);
188 T1w = FMA(KP801937735, T1v, T1j);
189 io[WS(os, 1)] = FMA(KP974927912, T1w, T1u);
190 io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u);
191 }
192 {
193 E T11, T13, T10, T12;
194 T10 = FNMS(KP692021471, TZ, Th);
195 T11 = FNMS(KP900968867, T10, T3);
196 T12 = FMA(KP554958132, TI, TW);
197 T13 = FNMS(KP801937735, T12, TP);
198 ro[WS(os, 5)] = FNMS(KP974927912, T13, T11);
199 ro[WS(os, 9)] = FMA(KP974927912, T13, T11);
200 }
201 {
202 E T1p, T1r, T1o, T1q;
203 T1o = FNMS(KP692021471, T1n, T1d);
204 T1p = FNMS(KP900968867, T1o, T1b);
205 T1q = FMA(KP554958132, T1j, T1i);
206 T1r = FNMS(KP801937735, T1q, T1k);
207 io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p);
208 io[WS(os, 9)] = FMA(KP974927912, T1r, T1p);
209 }
210 {
211 E T16, T18, T15, T17;
212 T15 = FNMS(KP692021471, T14, Ta);
213 T16 = FNMS(KP900968867, T15, T3);
214 T17 = FNMS(KP554958132, TP, TI);
215 T18 = FNMS(KP801937735, T17, TW);
216 ro[WS(os, 11)] = FNMS(KP974927912, T18, T16);
217 ro[WS(os, 3)] = FMA(KP974927912, T18, T16);
218 }
219 {
220 E T1h, T1m, T1g, T1l;
221 T1g = FNMS(KP692021471, T1f, T1c);
222 T1h = FNMS(KP900968867, T1g, T1b);
223 T1l = FNMS(KP554958132, T1k, T1j);
224 T1m = FNMS(KP801937735, T1l, T1i);
225 io[WS(os, 3)] = FMA(KP974927912, T1m, T1h);
226 io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h);
227 }
228 {
229 E T1J, T1O, T1I, T1N;
230 T1I = FNMS(KP692021471, T1H, T1A);
231 T1J = FNMS(KP900968867, T1I, T1x);
232 T1N = FMA(KP554958132, T1M, T1L);
233 T1O = FNMS(KP801937735, T1N, T1K);
234 io[WS(os, 4)] = FMA(KP974927912, T1O, T1J);
235 io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J);
236 }
237 {
238 E T2e, T2g, T2d, T2f;
239 T2d = FNMS(KP692021471, T2c, Ts);
240 T2e = FNMS(KP900968867, T2d, Tp);
241 T2f = FMA(KP554958132, T22, T24);
242 T2g = FNMS(KP801937735, T2f, T23);
243 ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e);
244 ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e);
245 }
246 {
247 E T1R, T1T, T1Q, T1S;
248 T1Q = FNMS(KP692021471, T1P, T1D);
249 T1R = FNMS(KP900968867, T1Q, T1x);
250 T1S = FMA(KP554958132, T1L, T1K);
251 T1T = FMA(KP801937735, T1S, T1M);
252 io[WS(os, 2)] = FMA(KP974927912, T1T, T1R);
253 io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R);
254 }
255 {
256 E T21, T26, T20, T25;
257 T20 = FNMS(KP692021471, T1Z, Tv);
258 T21 = FNMS(KP900968867, T20, Tp);
259 T25 = FMA(KP554958132, T24, T23);
260 T26 = FMA(KP801937735, T25, T22);
261 ro[WS(os, 12)] = FNMS(KP974927912, T26, T21);
262 ro[WS(os, 2)] = FMA(KP974927912, T26, T21);
263 }
264 {
265 E T1W, T1Y, T1V, T1X;
266 T1V = FNMS(KP692021471, T1U, T1G);
267 T1W = FNMS(KP900968867, T1V, T1x);
268 T1X = FNMS(KP554958132, T1K, T1M);
269 T1Y = FNMS(KP801937735, T1X, T1L);
270 io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W);
271 io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W);
272 }
273 {
274 E T29, T2b, T28, T2a;
275 T28 = FNMS(KP692021471, T27, Ty);
276 T29 = FNMS(KP900968867, T28, Tp);
277 T2a = FNMS(KP554958132, T23, T22);
278 T2b = FNMS(KP801937735, T2a, T24);
279 ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29);
280 ro[WS(os, 6)] = FMA(KP974927912, T2b, T29);
281 }
282 }
283 }
284 }
285
286 static const kdft_desc desc = { 14, "n1_14", {64, 0, 84, 0}, &GENUS, 0, 0, 0, 0 };
287
288 void X(codelet_n1_14) (planner *p) {
289 X(kdft_register) (p, n1_14, &desc);
290 }
291
292 #else
293
294 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
295
296 /*
297 * This function contains 148 FP additions, 72 FP multiplications,
298 * (or, 100 additions, 24 multiplications, 48 fused multiply/add),
299 * 43 stack variables, 6 constants, and 56 memory accesses
300 */
301 #include "dft/scalar/n.h"
302
303 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
304 {
305 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
306 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
307 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
308 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
309 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
310 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
311 {
312 INT i;
313 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) {
314 E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv;
315 E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l;
316 {
317 E T1, T2, T14, T15;
318 T1 = ri[0];
319 T2 = ri[WS(is, 7)];
320 T3 = T1 - T2;
321 Tp = T1 + T2;
322 T14 = ii[0];
323 T15 = ii[WS(is, 7)];
324 T16 = T14 - T15;
325 T1f = T14 + T15;
326 }
327 {
328 E T6, Tq, T9, Tr;
329 {
330 E T4, T5, T7, T8;
331 T4 = ri[WS(is, 2)];
332 T5 = ri[WS(is, 9)];
333 T6 = T4 - T5;
334 Tq = T4 + T5;
335 T7 = ri[WS(is, 12)];
336 T8 = ri[WS(is, 5)];
337 T9 = T7 - T8;
338 Tr = T7 + T8;
339 }
340 Ta = T6 + T9;
341 T1q = Tr - Tq;
342 Ts = Tq + Tr;
343 T10 = T9 - T6;
344 }
345 {
346 E TC, T1g, TF, T1h;
347 {
348 E TA, TB, TD, TE;
349 TA = ii[WS(is, 2)];
350 TB = ii[WS(is, 9)];
351 TC = TA - TB;
352 T1g = TA + TB;
353 TD = ii[WS(is, 12)];
354 TE = ii[WS(is, 5)];
355 TF = TD - TE;
356 T1h = TD + TE;
357 }
358 TG = TC - TF;
359 T1z = T1g - T1h;
360 T19 = TC + TF;
361 T1i = T1g + T1h;
362 }
363 {
364 E Td, Tt, Tg, Tu;
365 {
366 E Tb, Tc, Te, Tf;
367 Tb = ri[WS(is, 4)];
368 Tc = ri[WS(is, 11)];
369 Td = Tb - Tc;
370 Tt = Tb + Tc;
371 Te = ri[WS(is, 10)];
372 Tf = ri[WS(is, 3)];
373 Tg = Te - Tf;
374 Tu = Te + Tf;
375 }
376 Th = Td + Tg;
377 T1s = Tt - Tu;
378 Tv = Tt + Tu;
379 T12 = Tg - Td;
380 }
381 {
382 E TQ, T1m, TT, T1n;
383 {
384 E TO, TP, TR, TS;
385 TO = ii[WS(is, 4)];
386 TP = ii[WS(is, 11)];
387 TQ = TO - TP;
388 T1m = TO + TP;
389 TR = ii[WS(is, 10)];
390 TS = ii[WS(is, 3)];
391 TT = TR - TS;
392 T1n = TR + TS;
393 }
394 TU = TQ - TT;
395 T1B = T1n - T1m;
396 T17 = TQ + TT;
397 T1o = T1m + T1n;
398 }
399 {
400 E Tk, Tw, Tn, Tx;
401 {
402 E Ti, Tj, Tl, Tm;
403 Ti = ri[WS(is, 6)];
404 Tj = ri[WS(is, 13)];
405 Tk = Ti - Tj;
406 Tw = Ti + Tj;
407 Tl = ri[WS(is, 8)];
408 Tm = ri[WS(is, 1)];
409 Tn = Tl - Tm;
410 Tx = Tl + Tm;
411 }
412 To = Tk + Tn;
413 T1r = Tw - Tx;
414 Ty = Tw + Tx;
415 T11 = Tn - Tk;
416 }
417 {
418 E TJ, T1j, TM, T1k;
419 {
420 E TH, TI, TK, TL;
421 TH = ii[WS(is, 6)];
422 TI = ii[WS(is, 13)];
423 TJ = TH - TI;
424 T1j = TH + TI;
425 TK = ii[WS(is, 8)];
426 TL = ii[WS(is, 1)];
427 TM = TK - TL;
428 T1k = TK + TL;
429 }
430 TN = TJ - TM;
431 T1A = T1k - T1j;
432 T18 = TJ + TM;
433 T1l = T1j + T1k;
434 }
435 ro[WS(os, 7)] = T3 + Ta + Th + To;
436 io[WS(os, 7)] = T16 + T19 + T17 + T18;
437 ro[0] = Tp + Ts + Tv + Ty;
438 io[0] = T1f + T1i + T1o + T1l;
439 {
440 E TV, Tz, T1e, T1d;
441 TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU);
442 Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);
443 ro[WS(os, 5)] = Tz - TV;
444 ro[WS(os, 9)] = Tz + TV;
445 T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12);
446 T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19);
447 io[WS(os, 5)] = T1d - T1e;
448 io[WS(os, 9)] = T1e + T1d;
449 }
450 {
451 E TX, TW, T1b, T1c;
452 TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN);
453 TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th);
454 ro[WS(os, 13)] = TW - TX;
455 ro[WS(os, 1)] = TW + TX;
456 T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11);
457 T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17);
458 io[WS(os, 1)] = T1b + T1c;
459 io[WS(os, 13)] = T1c - T1b;
460 }
461 {
462 E TZ, TY, T13, T1a;
463 TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU);
464 TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta);
465 ro[WS(os, 11)] = TY - TZ;
466 ro[WS(os, 3)] = TY + TZ;
467 T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12);
468 T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19);
469 io[WS(os, 3)] = T13 + T1a;
470 io[WS(os, 11)] = T1a - T13;
471 }
472 {
473 E T1t, T1p, T1C, T1y;
474 T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s);
475 T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o);
476 io[WS(os, 6)] = T1p - T1t;
477 io[WS(os, 8)] = T1t + T1p;
478 T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B);
479 T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv);
480 ro[WS(os, 6)] = T1y - T1C;
481 ro[WS(os, 8)] = T1y + T1C;
482 }
483 {
484 E T1v, T1u, T1E, T1D;
485 T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r);
486 T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i);
487 io[WS(os, 4)] = T1u - T1v;
488 io[WS(os, 10)] = T1v + T1u;
489 T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A);
490 T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts);
491 ro[WS(os, 4)] = T1D - T1E;
492 ro[WS(os, 10)] = T1D + T1E;
493 }
494 {
495 E T1w, T1x, T1G, T1F;
496 T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r);
497 T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i);
498 io[WS(os, 2)] = T1w + T1x;
499 io[WS(os, 12)] = T1x - T1w;
500 T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A);
501 T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts);
502 ro[WS(os, 12)] = T1F - T1G;
503 ro[WS(os, 2)] = T1F + T1G;
504 }
505 }
506 }
507 }
508
509 static const kdft_desc desc = { 14, "n1_14", {100, 24, 48, 0}, &GENUS, 0, 0, 0, 0 };
510
511 void X(codelet_n1_14) (planner *p) {
512 X(kdft_register) (p, n1_14, &desc);
513 }
514
515 #endif