comparison src/fftw-3.3.8/dft/scalar/codelets/n1_13.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:10 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 176 FP additions, 114 FP multiplications,
32 * (or, 62 additions, 0 multiplications, 114 fused multiply/add),
33 * 76 stack variables, 25 constants, and 52 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP875502302, +0.875502302409147941146295545768755143177842006);
40 DK(KP520028571, +0.520028571888864619117130500499232802493238139);
41 DK(KP968287244, +0.968287244361984016049539446938120421179794516);
42 DK(KP575140729, +0.575140729474003121368385547455453388461001608);
43 DK(KP600477271, +0.600477271932665282925769253334763009352012849);
44 DK(KP957805992, +0.957805992594665126462521754605754580515587217);
45 DK(KP516520780, +0.516520780623489722840901288569017135705033622);
46 DK(KP581704778, +0.581704778510515730456870384989698884939833902);
47 DK(KP300462606, +0.300462606288665774426601772289207995520941381);
48 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
49 DK(KP251768516, +0.251768516431883313623436926934233488546674281);
50 DK(KP301479260, +0.301479260047709873958013540496673347309208464);
51 DK(KP083333333, +0.083333333333333333333333333333333333333333333);
52 DK(KP859542535, +0.859542535098774820163672132761689612766401925);
53 DK(KP514918778, +0.514918778086315755491789696138117261566051239);
54 DK(KP522026385, +0.522026385161275033714027226654165028300441940);
55 DK(KP853480001, +0.853480001859823990758994934970528322872359049);
56 DK(KP612264650, +0.612264650376756543746494474777125408779395514);
57 DK(KP038632954, +0.038632954644348171955506895830342264440241080);
58 DK(KP302775637, +0.302775637731994646559610633735247973125648287);
59 DK(KP769338817, +0.769338817572980603471413688209101117038278899);
60 DK(KP686558370, +0.686558370781754340655719594850823015421401653);
61 DK(KP226109445, +0.226109445035782405468510155372505010481906348);
62 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
63 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
64 {
65 INT i;
66 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) {
67 E T1, T1P, T2n, T2o, To, TH, T2h, T2k, TB, TE, Tw, TF, T2c, T2j, T1j;
68 E T1m, T12, T1f, T21, T24, T1U, T27, T1d, T1g, T1Y, T25;
69 T1 = ri[0];
70 T1P = ii[0];
71 {
72 E Tf, T2d, Tb, Ty, Tq, T6, Tx, Tr, Ti, Tt, Tl, Tu, Tm, T2e, Td;
73 E Te, Tc, Tn;
74 Td = ri[WS(is, 8)];
75 Te = ri[WS(is, 5)];
76 Tf = Td + Te;
77 T2d = Td - Te;
78 {
79 E T7, T8, T9, Ta;
80 T7 = ri[WS(is, 12)];
81 T8 = ri[WS(is, 10)];
82 T9 = ri[WS(is, 4)];
83 Ta = T8 + T9;
84 Tb = T7 + Ta;
85 Ty = FMS(KP500000000, Ta, T7);
86 Tq = T8 - T9;
87 }
88 {
89 E T2, T3, T4, T5;
90 T2 = ri[WS(is, 1)];
91 T3 = ri[WS(is, 3)];
92 T4 = ri[WS(is, 9)];
93 T5 = T3 + T4;
94 T6 = T2 + T5;
95 Tx = FNMS(KP500000000, T5, T2);
96 Tr = T4 - T3;
97 }
98 {
99 E Tg, Th, Tj, Tk;
100 Tg = ri[WS(is, 11)];
101 Th = ri[WS(is, 6)];
102 Ti = Tg + Th;
103 Tt = Tg - Th;
104 Tj = ri[WS(is, 7)];
105 Tk = ri[WS(is, 2)];
106 Tl = Tj + Tk;
107 Tu = Tj - Tk;
108 }
109 Tm = Ti + Tl;
110 T2e = Tt + Tu;
111 T2n = T6 - Tb;
112 T2o = T2d + T2e;
113 Tc = T6 + Tb;
114 Tn = Tf + Tm;
115 To = Tc + Tn;
116 TH = Tc - Tn;
117 {
118 E T2f, T2g, Tz, TA;
119 T2f = FNMS(KP500000000, T2e, T2d);
120 T2g = Tr + Tq;
121 T2h = FMA(KP866025403, T2g, T2f);
122 T2k = FNMS(KP866025403, T2g, T2f);
123 Tz = Tx - Ty;
124 TA = FNMS(KP500000000, Tm, Tf);
125 TB = Tz + TA;
126 TE = Tz - TA;
127 }
128 {
129 E Ts, Tv, T2a, T2b;
130 Ts = Tq - Tr;
131 Tv = Tt - Tu;
132 Tw = Ts + Tv;
133 TF = Ts - Tv;
134 T2a = Tx + Ty;
135 T2b = Ti - Tl;
136 T2c = FMA(KP866025403, T2b, T2a);
137 T2j = FNMS(KP866025403, T2b, T2a);
138 }
139 }
140 {
141 E TM, T1R, T10, T1l, T18, TX, T1k, T15, TP, T1a, TS, T1b, TT, T1S, TK;
142 E TL, TU, T11;
143 TK = ii[WS(is, 8)];
144 TL = ii[WS(is, 5)];
145 TM = TK - TL;
146 T1R = TK + TL;
147 {
148 E T16, TY, TZ, T17;
149 T16 = ii[WS(is, 12)];
150 TY = ii[WS(is, 10)];
151 TZ = ii[WS(is, 4)];
152 T17 = TY + TZ;
153 T10 = TY - TZ;
154 T1l = T16 + T17;
155 T18 = FMS(KP500000000, T17, T16);
156 }
157 {
158 E T13, TV, TW, T14;
159 T13 = ii[WS(is, 1)];
160 TV = ii[WS(is, 9)];
161 TW = ii[WS(is, 3)];
162 T14 = TW + TV;
163 TX = TV - TW;
164 T1k = T13 + T14;
165 T15 = FNMS(KP500000000, T14, T13);
166 }
167 {
168 E TN, TO, TQ, TR;
169 TN = ii[WS(is, 11)];
170 TO = ii[WS(is, 6)];
171 TP = TN - TO;
172 T1a = TN + TO;
173 TQ = ii[WS(is, 7)];
174 TR = ii[WS(is, 2)];
175 TS = TQ - TR;
176 T1b = TQ + TR;
177 }
178 TT = TP + TS;
179 T1S = T1a + T1b;
180 T1j = TM + TT;
181 T1m = T1k - T1l;
182 TU = FNMS(KP500000000, TT, TM);
183 T11 = TX + T10;
184 T12 = FMA(KP866025403, T11, TU);
185 T1f = FNMS(KP866025403, T11, TU);
186 {
187 E T1Z, T20, T1Q, T1T;
188 T1Z = T15 - T18;
189 T20 = FNMS(KP500000000, T1S, T1R);
190 T21 = T1Z + T20;
191 T24 = T1Z - T20;
192 T1Q = T1k + T1l;
193 T1T = T1R + T1S;
194 T1U = T1Q + T1T;
195 T27 = T1Q - T1T;
196 }
197 {
198 E T19, T1c, T1W, T1X;
199 T19 = T15 + T18;
200 T1c = T1a - T1b;
201 T1d = FMA(KP866025403, T1c, T19);
202 T1g = FNMS(KP866025403, T1c, T19);
203 T1W = T10 - TX;
204 T1X = TP - TS;
205 T1Y = T1W + T1X;
206 T25 = T1W - T1X;
207 }
208 }
209 ro[0] = T1 + To;
210 io[0] = T1P + T1U;
211 {
212 E T1z, T1J, T1G, T1H, T1w, T1I, T1n, T1i, T1s, T1E, TD, T1D, TI, T1r, T1e;
213 E T1h;
214 {
215 E T1x, T1y, T1u, T1v;
216 T1x = FNMS(KP226109445, Tw, TB);
217 T1y = FMA(KP686558370, TE, TF);
218 T1z = FNMS(KP769338817, T1y, T1x);
219 T1J = FMA(KP769338817, T1y, T1x);
220 T1G = FMA(KP302775637, T1j, T1m);
221 T1u = FNMS(KP038632954, T12, T1d);
222 T1v = FNMS(KP612264650, T1f, T1g);
223 T1H = FNMS(KP853480001, T1v, T1u);
224 T1w = FMA(KP853480001, T1v, T1u);
225 T1I = FNMS(KP522026385, T1H, T1G);
226 }
227 T1n = FNMS(KP302775637, T1m, T1j);
228 T1e = FMA(KP038632954, T1d, T12);
229 T1h = FMA(KP612264650, T1g, T1f);
230 T1i = FNMS(KP853480001, T1h, T1e);
231 T1s = FNMS(KP522026385, T1i, T1n);
232 T1E = FMA(KP853480001, T1h, T1e);
233 {
234 E TG, T1q, Tp, TC, T1p;
235 TG = FNMS(KP514918778, TF, TE);
236 T1q = FNMS(KP859542535, TG, TH);
237 Tp = FNMS(KP083333333, To, T1);
238 TC = FMA(KP301479260, TB, Tw);
239 T1p = FNMS(KP251768516, TC, Tp);
240 TD = FMA(KP503537032, TC, Tp);
241 T1D = FNMS(KP300462606, T1q, T1p);
242 TI = FMA(KP581704778, TH, TG);
243 T1r = FMA(KP300462606, T1q, T1p);
244 }
245 {
246 E TJ, T1o, T1L, T1M;
247 TJ = FMA(KP516520780, TI, TD);
248 T1o = FMA(KP957805992, T1n, T1i);
249 ro[WS(os, 1)] = FNMS(KP600477271, T1o, TJ);
250 ro[WS(os, 12)] = FMA(KP600477271, T1o, TJ);
251 {
252 E T1t, T1A, T1N, T1O;
253 T1t = FNMS(KP575140729, T1s, T1r);
254 T1A = FMA(KP968287244, T1z, T1w);
255 ro[WS(os, 9)] = FNMS(KP520028571, T1A, T1t);
256 ro[WS(os, 3)] = FMA(KP520028571, T1A, T1t);
257 T1N = FNMS(KP516520780, TI, TD);
258 T1O = FMA(KP957805992, T1G, T1H);
259 ro[WS(os, 8)] = FNMS(KP600477271, T1O, T1N);
260 ro[WS(os, 5)] = FMA(KP600477271, T1O, T1N);
261 }
262 T1L = FNMS(KP520028571, T1E, T1D);
263 T1M = FNMS(KP875502302, T1J, T1I);
264 ro[WS(os, 11)] = FNMS(KP575140729, T1M, T1L);
265 ro[WS(os, 6)] = FMA(KP575140729, T1M, T1L);
266 {
267 E T1F, T1K, T1B, T1C;
268 T1F = FMA(KP520028571, T1E, T1D);
269 T1K = FMA(KP875502302, T1J, T1I);
270 ro[WS(os, 7)] = FNMS(KP575140729, T1K, T1F);
271 ro[WS(os, 2)] = FMA(KP575140729, T1K, T1F);
272 T1B = FMA(KP575140729, T1s, T1r);
273 T1C = FNMS(KP968287244, T1z, T1w);
274 ro[WS(os, 10)] = FNMS(KP520028571, T1C, T1B);
275 ro[WS(os, 4)] = FMA(KP520028571, T1C, T1B);
276 }
277 }
278 }
279 {
280 E T2F, T2N, T2v, T2u, T2A, T2K, T2p, T2m, T2C, T2M, T23, T2J, T28, T2z, T2i;
281 E T2l;
282 {
283 E T2D, T2E, T2s, T2t;
284 T2D = FNMS(KP226109445, T1Y, T21);
285 T2E = FMA(KP686558370, T24, T25);
286 T2F = FNMS(KP769338817, T2E, T2D);
287 T2N = FMA(KP769338817, T2E, T2D);
288 T2v = FNMS(KP302775637, T2n, T2o);
289 T2s = FMA(KP038632954, T2c, T2h);
290 T2t = FMA(KP612264650, T2j, T2k);
291 T2u = FNMS(KP853480001, T2t, T2s);
292 T2A = FNMS(KP522026385, T2u, T2v);
293 T2K = FMA(KP853480001, T2t, T2s);
294 }
295 T2p = FMA(KP302775637, T2o, T2n);
296 T2i = FNMS(KP038632954, T2h, T2c);
297 T2l = FNMS(KP612264650, T2k, T2j);
298 T2m = FNMS(KP853480001, T2l, T2i);
299 T2C = FMA(KP853480001, T2l, T2i);
300 T2M = FNMS(KP522026385, T2m, T2p);
301 {
302 E T26, T2y, T1V, T22, T2x;
303 T26 = FNMS(KP514918778, T25, T24);
304 T2y = FNMS(KP859542535, T26, T27);
305 T1V = FNMS(KP083333333, T1U, T1P);
306 T22 = FMA(KP301479260, T21, T1Y);
307 T2x = FNMS(KP251768516, T22, T1V);
308 T23 = FMA(KP503537032, T22, T1V);
309 T2J = FNMS(KP300462606, T2y, T2x);
310 T28 = FMA(KP581704778, T27, T26);
311 T2z = FMA(KP300462606, T2y, T2x);
312 }
313 {
314 E T29, T2q, T2L, T2O;
315 T29 = FNMS(KP516520780, T28, T23);
316 T2q = FMA(KP957805992, T2p, T2m);
317 io[WS(os, 5)] = FNMS(KP600477271, T2q, T29);
318 io[WS(os, 8)] = FMA(KP600477271, T2q, T29);
319 {
320 E T2r, T2w, T2P, T2Q;
321 T2r = FMA(KP516520780, T28, T23);
322 T2w = FMA(KP957805992, T2v, T2u);
323 io[WS(os, 1)] = FMA(KP600477271, T2w, T2r);
324 io[WS(os, 12)] = FNMS(KP600477271, T2w, T2r);
325 T2P = FMA(KP520028571, T2K, T2J);
326 T2Q = FMA(KP875502302, T2N, T2M);
327 io[WS(os, 6)] = FNMS(KP575140729, T2Q, T2P);
328 io[WS(os, 11)] = FMA(KP575140729, T2Q, T2P);
329 }
330 T2L = FNMS(KP520028571, T2K, T2J);
331 T2O = FNMS(KP875502302, T2N, T2M);
332 io[WS(os, 2)] = FNMS(KP575140729, T2O, T2L);
333 io[WS(os, 7)] = FMA(KP575140729, T2O, T2L);
334 {
335 E T2H, T2I, T2B, T2G;
336 T2H = FNMS(KP575140729, T2A, T2z);
337 T2I = FMA(KP968287244, T2F, T2C);
338 io[WS(os, 4)] = FNMS(KP520028571, T2I, T2H);
339 io[WS(os, 10)] = FMA(KP520028571, T2I, T2H);
340 T2B = FMA(KP575140729, T2A, T2z);
341 T2G = FNMS(KP968287244, T2F, T2C);
342 io[WS(os, 3)] = FNMS(KP520028571, T2G, T2B);
343 io[WS(os, 9)] = FMA(KP520028571, T2G, T2B);
344 }
345 }
346 }
347 }
348 }
349 }
350
351 static const kdft_desc desc = { 13, "n1_13", {62, 0, 114, 0}, &GENUS, 0, 0, 0, 0 };
352
353 void X(codelet_n1_13) (planner *p) {
354 X(kdft_register) (p, n1_13, &desc);
355 }
356
357 #else
358
359 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */
360
361 /*
362 * This function contains 176 FP additions, 68 FP multiplications,
363 * (or, 138 additions, 30 multiplications, 38 fused multiply/add),
364 * 71 stack variables, 20 constants, and 52 memory accesses
365 */
366 #include "dft/scalar/n.h"
367
368 static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
369 {
370 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
371 DK(KP083333333, +0.083333333333333333333333333333333333333333333);
372 DK(KP251768516, +0.251768516431883313623436926934233488546674281);
373 DK(KP075902986, +0.075902986037193865983102897245103540356428373);
374 DK(KP132983124, +0.132983124607418643793760531921092974399165133);
375 DK(KP258260390, +0.258260390311744861420450644284508567852516811);
376 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
377 DK(KP300238635, +0.300238635966332641462884626667381504676006424);
378 DK(KP011599105, +0.011599105605768290721655456654083252189827041);
379 DK(KP156891391, +0.156891391051584611046832726756003269660212636);
380 DK(KP256247671, +0.256247671582936600958684654061725059144125175);
381 DK(KP174138601, +0.174138601152135905005660794929264742616964676);
382 DK(KP575140729, +0.575140729474003121368385547455453388461001608);
383 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
384 DK(KP113854479, +0.113854479055790798974654345867655310534642560);
385 DK(KP265966249, +0.265966249214837287587521063842185948798330267);
386 DK(KP387390585, +0.387390585467617292130675966426762851778775217);
387 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
388 DK(KP300462606, +0.300462606288665774426601772289207995520941381);
389 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
390 {
391 INT i;
392 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) {
393 E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a;
394 E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m;
395 T1 = ri[0];
396 T1q = ii[0];
397 {
398 E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td;
399 E Te, Tc, Tn;
400 Td = ri[WS(is, 8)];
401 Te = ri[WS(is, 5)];
402 Tf = Td + Te;
403 Tp = Td - Te;
404 {
405 E T7, T8, T9, Ta;
406 T7 = ri[WS(is, 12)];
407 T8 = ri[WS(is, 10)];
408 T9 = ri[WS(is, 4)];
409 Ta = T8 + T9;
410 Tb = T7 + Ta;
411 TC = T8 - T9;
412 Tx = FNMS(KP500000000, Ta, T7);
413 }
414 {
415 E T2, T3, T4, T5;
416 T2 = ri[WS(is, 1)];
417 T3 = ri[WS(is, 3)];
418 T4 = ri[WS(is, 9)];
419 T5 = T3 + T4;
420 T6 = T2 + T5;
421 TB = T3 - T4;
422 Tw = FNMS(KP500000000, T5, T2);
423 }
424 {
425 E Tg, Th, Tj, Tk;
426 Tg = ri[WS(is, 11)];
427 Th = ri[WS(is, 6)];
428 Ti = Tg + Th;
429 Tq = Tg - Th;
430 Tj = ri[WS(is, 7)];
431 Tk = ri[WS(is, 2)];
432 Tl = Tj + Tk;
433 Tr = Tj - Tk;
434 }
435 Tm = Ti + Tl;
436 Ts = Tq + Tr;
437 Tt = Tp + Ts;
438 Tu = T6 - Tb;
439 Tc = T6 + Tb;
440 Tn = Tf + Tm;
441 To = Tc + Tn;
442 T22 = KP300462606 * (Tc - Tn);
443 {
444 E T1Y, T1Z, TD, TE;
445 T1Y = TB + TC;
446 T1Z = Tq - Tr;
447 T20 = T1Y - T1Z;
448 T24 = T1Y + T1Z;
449 TD = KP866025403 * (TB - TC);
450 TE = FNMS(KP500000000, Ts, Tp);
451 TF = TD - TE;
452 TH = TD + TE;
453 }
454 {
455 E Ty, Tz, T1V, T1W;
456 Ty = Tw - Tx;
457 Tz = KP866025403 * (Ti - Tl);
458 TA = Ty + Tz;
459 TI = Ty - Tz;
460 T1V = Tw + Tx;
461 T1W = FNMS(KP500000000, Tm, Tf);
462 T1X = T1V - T1W;
463 T25 = T1V + T1W;
464 }
465 }
466 {
467 E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX;
468 E TY, TW, T17;
469 TX = ii[WS(is, 8)];
470 TY = ii[WS(is, 5)];
471 TZ = TX + TY;
472 T2b = TX - TY;
473 {
474 E TR, TS, TT, TU;
475 TR = ii[WS(is, 12)];
476 TS = ii[WS(is, 10)];
477 TT = ii[WS(is, 4)];
478 TU = TS + TT;
479 TV = FNMS(KP500000000, TU, TR);
480 T1i = TR + TU;
481 T1a = TS - TT;
482 }
483 {
484 E TM, TN, TO, TP;
485 TM = ii[WS(is, 1)];
486 TN = ii[WS(is, 3)];
487 TO = ii[WS(is, 9)];
488 TP = TN + TO;
489 TQ = FNMS(KP500000000, TP, TM);
490 T1h = TM + TP;
491 T19 = TN - TO;
492 }
493 {
494 E T10, T11, T13, T14;
495 T10 = ii[WS(is, 11)];
496 T11 = ii[WS(is, 6)];
497 T12 = T10 + T11;
498 T1d = T10 - T11;
499 T13 = ii[WS(is, 7)];
500 T14 = ii[WS(is, 2)];
501 T15 = T13 + T14;
502 T1c = T13 - T14;
503 }
504 T16 = T12 + T15;
505 T2c = T1d + T1c;
506 T2a = T1h - T1i;
507 T2d = T2b + T2c;
508 TW = TQ + TV;
509 T17 = FNMS(KP500000000, T16, TZ);
510 T18 = TW - T17;
511 T1n = TW + T17;
512 {
513 E T2i, T2j, T1j, T1k;
514 T2i = TQ - TV;
515 T2j = KP866025403 * (T15 - T12);
516 T2k = T2i + T2j;
517 T2n = T2i - T2j;
518 T1j = T1h + T1i;
519 T1k = TZ + T16;
520 T1l = KP300462606 * (T1j - T1k);
521 T1r = T1j + T1k;
522 }
523 {
524 E T1b, T1e, T2f, T2g;
525 T1b = T19 + T1a;
526 T1e = T1c - T1d;
527 T1f = T1b + T1e;
528 T1o = T1e - T1b;
529 T2f = FNMS(KP500000000, T2c, T2b);
530 T2g = KP866025403 * (T1a - T19);
531 T2h = T2f - T2g;
532 T2m = T2g + T2f;
533 }
534 }
535 ro[0] = T1 + To;
536 io[0] = T1q + T1r;
537 {
538 E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG;
539 E TJ;
540 {
541 E T1B, T1C, T1v, T1w;
542 T1B = FMA(KP387390585, T1f, KP265966249 * T18);
543 T1C = FMA(KP113854479, T1o, KP503537032 * T1n);
544 T1D = T1B + T1C;
545 T1N = T1C - T1B;
546 T1y = FMA(KP575140729, Tu, KP174138601 * Tt);
547 T1v = FNMS(KP156891391, TH, KP256247671 * TI);
548 T1w = FMA(KP011599105, TF, KP300238635 * TA);
549 T1x = T1v - T1w;
550 T1E = T1y + T1x;
551 T1O = KP1_732050807 * (T1v + T1w);
552 }
553 Tv = FNMS(KP174138601, Tu, KP575140729 * Tt);
554 TG = FNMS(KP300238635, TF, KP011599105 * TA);
555 TJ = FMA(KP256247671, TH, KP156891391 * TI);
556 TK = TG - TJ;
557 T1J = KP1_732050807 * (TJ + TG);
558 T1Q = Tv - TK;
559 {
560 E T1g, T1H, T1p, T1s, T1G;
561 T1g = FNMS(KP132983124, T1f, KP258260390 * T18);
562 T1H = T1l - T1g;
563 T1p = FNMS(KP251768516, T1o, KP075902986 * T1n);
564 T1s = FNMS(KP083333333, T1r, T1q);
565 T1G = T1s - T1p;
566 T1m = FMA(KP2_000000000, T1g, T1l);
567 T1R = T1H + T1G;
568 T1t = FMA(KP2_000000000, T1p, T1s);
569 T1I = T1G - T1H;
570 }
571 {
572 E TL, T1u, T1P, T1S;
573 TL = FMA(KP2_000000000, TK, Tv);
574 T1u = T1m + T1t;
575 io[WS(os, 1)] = TL + T1u;
576 io[WS(os, 12)] = T1u - TL;
577 {
578 E T1z, T1A, T1T, T1U;
579 T1z = FMS(KP2_000000000, T1x, T1y);
580 T1A = T1t - T1m;
581 io[WS(os, 5)] = T1z + T1A;
582 io[WS(os, 8)] = T1A - T1z;
583 T1T = T1R - T1Q;
584 T1U = T1O + T1N;
585 io[WS(os, 4)] = T1T - T1U;
586 io[WS(os, 10)] = T1U + T1T;
587 }
588 T1P = T1N - T1O;
589 T1S = T1Q + T1R;
590 io[WS(os, 3)] = T1P + T1S;
591 io[WS(os, 9)] = T1S - T1P;
592 {
593 E T1L, T1M, T1F, T1K;
594 T1L = T1J + T1I;
595 T1M = T1E + T1D;
596 io[WS(os, 6)] = T1L - T1M;
597 io[WS(os, 11)] = T1M + T1L;
598 T1F = T1D - T1E;
599 T1K = T1I - T1J;
600 io[WS(os, 2)] = T1F + T1K;
601 io[WS(os, 7)] = T1K - T1F;
602 }
603 }
604 }
605 {
606 E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l;
607 E T2o;
608 {
609 E T2w, T2x, T2z, T2A;
610 T2w = FMA(KP387390585, T20, KP265966249 * T1X);
611 T2x = FNMS(KP503537032, T25, KP113854479 * T24);
612 T2y = T2w + T2x;
613 T2I = T2w - T2x;
614 T2J = FMA(KP575140729, T2a, KP174138601 * T2d);
615 T2z = FNMS(KP300238635, T2n, KP011599105 * T2m);
616 T2A = FNMS(KP156891391, T2h, KP256247671 * T2k);
617 T2K = T2z + T2A;
618 T2B = KP1_732050807 * (T2z - T2A);
619 T2L = T2J + T2K;
620 }
621 T2e = FNMS(KP575140729, T2d, KP174138601 * T2a);
622 T2l = FMA(KP256247671, T2h, KP156891391 * T2k);
623 T2o = FMA(KP300238635, T2m, KP011599105 * T2n);
624 T2p = T2l - T2o;
625 T2u = T2e - T2p;
626 T2G = KP1_732050807 * (T2o + T2l);
627 {
628 E T21, T2r, T26, T27, T2s;
629 T21 = FNMS(KP132983124, T20, KP258260390 * T1X);
630 T2r = T22 - T21;
631 T26 = FMA(KP251768516, T24, KP075902986 * T25);
632 T27 = FNMS(KP083333333, To, T1);
633 T2s = T27 - T26;
634 T23 = FMA(KP2_000000000, T21, T22);
635 T2F = T2s - T2r;
636 T28 = FMA(KP2_000000000, T26, T27);
637 T2t = T2r + T2s;
638 }
639 {
640 E T29, T2q, T2N, T2O;
641 T29 = T23 + T28;
642 T2q = FMA(KP2_000000000, T2p, T2e);
643 ro[WS(os, 12)] = T29 - T2q;
644 ro[WS(os, 1)] = T29 + T2q;
645 {
646 E T2v, T2C, T2P, T2Q;
647 T2v = T2t - T2u;
648 T2C = T2y - T2B;
649 ro[WS(os, 10)] = T2v - T2C;
650 ro[WS(os, 4)] = T2v + T2C;
651 T2P = T28 - T23;
652 T2Q = FMS(KP2_000000000, T2K, T2J);
653 ro[WS(os, 5)] = T2P - T2Q;
654 ro[WS(os, 8)] = T2P + T2Q;
655 }
656 T2N = T2F - T2G;
657 T2O = T2L - T2I;
658 ro[WS(os, 11)] = T2N - T2O;
659 ro[WS(os, 6)] = T2N + T2O;
660 {
661 E T2H, T2M, T2D, T2E;
662 T2H = T2F + T2G;
663 T2M = T2I + T2L;
664 ro[WS(os, 7)] = T2H - T2M;
665 ro[WS(os, 2)] = T2H + T2M;
666 T2D = T2t + T2u;
667 T2E = T2y + T2B;
668 ro[WS(os, 3)] = T2D - T2E;
669 ro[WS(os, 9)] = T2D + T2E;
670 }
671 }
672 }
673 }
674 }
675 }
676
677 static const kdft_desc desc = { 13, "n1_13", {138, 30, 38, 0}, &GENUS, 0, 0, 0, 0 };
678
679 void X(codelet_n1_13) (planner *p) {
680 X(kdft_register) (p, n1_13, &desc);
681 }
682
683 #endif