comparison src/fftw-3.3.8/dft/scalar/codelets/n1_10.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:10 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
29
30 /*
31 * This function contains 84 FP additions, 36 FP multiplications,
32 * (or, 48 additions, 0 multiplications, 36 fused multiply/add),
33 * 41 stack variables, 4 constants, and 40 memory accesses
34 */
35 #include "dft/scalar/n.h"
36
37 static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT i;
45 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
46 E T3, Tj, TN, T1b, TU, TV, T1j, T1i, Tm, Tp, Tq, Ta, Th, Ti, TA;
47 E TH, T17, T14, T1c, T1d, T1e, TO, TP, TQ;
48 {
49 E T1, T2, TL, TM;
50 T1 = ri[0];
51 T2 = ri[WS(is, 5)];
52 T3 = T1 - T2;
53 Tj = T1 + T2;
54 TL = ii[0];
55 TM = ii[WS(is, 5)];
56 TN = TL - TM;
57 T1b = TL + TM;
58 }
59 {
60 E T6, Tk, Tg, To, T9, Tl, Td, Tn;
61 {
62 E T4, T5, Te, Tf;
63 T4 = ri[WS(is, 2)];
64 T5 = ri[WS(is, 7)];
65 T6 = T4 - T5;
66 Tk = T4 + T5;
67 Te = ri[WS(is, 6)];
68 Tf = ri[WS(is, 1)];
69 Tg = Te - Tf;
70 To = Te + Tf;
71 }
72 {
73 E T7, T8, Tb, Tc;
74 T7 = ri[WS(is, 8)];
75 T8 = ri[WS(is, 3)];
76 T9 = T7 - T8;
77 Tl = T7 + T8;
78 Tb = ri[WS(is, 4)];
79 Tc = ri[WS(is, 9)];
80 Td = Tb - Tc;
81 Tn = Tb + Tc;
82 }
83 TU = T6 - T9;
84 TV = Td - Tg;
85 T1j = Tk - Tl;
86 T1i = Tn - To;
87 Tm = Tk + Tl;
88 Tp = Tn + To;
89 Tq = Tm + Tp;
90 Ta = T6 + T9;
91 Th = Td + Tg;
92 Ti = Ta + Th;
93 }
94 {
95 E Tw, T15, TG, T13, Tz, T16, TD, T12;
96 {
97 E Tu, Tv, TE, TF;
98 Tu = ii[WS(is, 2)];
99 Tv = ii[WS(is, 7)];
100 Tw = Tu - Tv;
101 T15 = Tu + Tv;
102 TE = ii[WS(is, 6)];
103 TF = ii[WS(is, 1)];
104 TG = TE - TF;
105 T13 = TE + TF;
106 }
107 {
108 E Tx, Ty, TB, TC;
109 Tx = ii[WS(is, 8)];
110 Ty = ii[WS(is, 3)];
111 Tz = Tx - Ty;
112 T16 = Tx + Ty;
113 TB = ii[WS(is, 4)];
114 TC = ii[WS(is, 9)];
115 TD = TB - TC;
116 T12 = TB + TC;
117 }
118 TA = Tw - Tz;
119 TH = TD - TG;
120 T17 = T15 - T16;
121 T14 = T12 - T13;
122 T1c = T15 + T16;
123 T1d = T12 + T13;
124 T1e = T1c + T1d;
125 TO = Tw + Tz;
126 TP = TD + TG;
127 TQ = TO + TP;
128 }
129 ro[WS(os, 5)] = T3 + Ti;
130 io[WS(os, 5)] = TN + TQ;
131 ro[0] = Tj + Tq;
132 io[0] = T1b + T1e;
133 {
134 E TI, TK, Tt, TJ, Tr, Ts;
135 TI = FMA(KP618033988, TH, TA);
136 TK = FNMS(KP618033988, TA, TH);
137 Tr = FNMS(KP250000000, Ti, T3);
138 Ts = Ta - Th;
139 Tt = FMA(KP559016994, Ts, Tr);
140 TJ = FNMS(KP559016994, Ts, Tr);
141 ro[WS(os, 9)] = FNMS(KP951056516, TI, Tt);
142 ro[WS(os, 3)] = FMA(KP951056516, TK, TJ);
143 ro[WS(os, 1)] = FMA(KP951056516, TI, Tt);
144 ro[WS(os, 7)] = FNMS(KP951056516, TK, TJ);
145 }
146 {
147 E TW, TY, TT, TX, TR, TS;
148 TW = FMA(KP618033988, TV, TU);
149 TY = FNMS(KP618033988, TU, TV);
150 TR = FNMS(KP250000000, TQ, TN);
151 TS = TO - TP;
152 TT = FMA(KP559016994, TS, TR);
153 TX = FNMS(KP559016994, TS, TR);
154 io[WS(os, 1)] = FNMS(KP951056516, TW, TT);
155 io[WS(os, 7)] = FMA(KP951056516, TY, TX);
156 io[WS(os, 9)] = FMA(KP951056516, TW, TT);
157 io[WS(os, 3)] = FNMS(KP951056516, TY, TX);
158 }
159 {
160 E T18, T1a, T11, T19, TZ, T10;
161 T18 = FNMS(KP618033988, T17, T14);
162 T1a = FMA(KP618033988, T14, T17);
163 TZ = FNMS(KP250000000, Tq, Tj);
164 T10 = Tm - Tp;
165 T11 = FNMS(KP559016994, T10, TZ);
166 T19 = FMA(KP559016994, T10, TZ);
167 ro[WS(os, 2)] = FNMS(KP951056516, T18, T11);
168 ro[WS(os, 6)] = FMA(KP951056516, T1a, T19);
169 ro[WS(os, 8)] = FMA(KP951056516, T18, T11);
170 ro[WS(os, 4)] = FNMS(KP951056516, T1a, T19);
171 }
172 {
173 E T1k, T1m, T1h, T1l, T1f, T1g;
174 T1k = FNMS(KP618033988, T1j, T1i);
175 T1m = FMA(KP618033988, T1i, T1j);
176 T1f = FNMS(KP250000000, T1e, T1b);
177 T1g = T1c - T1d;
178 T1h = FNMS(KP559016994, T1g, T1f);
179 T1l = FMA(KP559016994, T1g, T1f);
180 io[WS(os, 2)] = FMA(KP951056516, T1k, T1h);
181 io[WS(os, 6)] = FNMS(KP951056516, T1m, T1l);
182 io[WS(os, 8)] = FNMS(KP951056516, T1k, T1h);
183 io[WS(os, 4)] = FMA(KP951056516, T1m, T1l);
184 }
185 }
186 }
187 }
188
189 static const kdft_desc desc = { 10, "n1_10", {48, 0, 36, 0}, &GENUS, 0, 0, 0, 0 };
190
191 void X(codelet_n1_10) (planner *p) {
192 X(kdft_register) (p, n1_10, &desc);
193 }
194
195 #else
196
197 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
198
199 /*
200 * This function contains 84 FP additions, 24 FP multiplications,
201 * (or, 72 additions, 12 multiplications, 12 fused multiply/add),
202 * 41 stack variables, 4 constants, and 40 memory accesses
203 */
204 #include "dft/scalar/n.h"
205
206 static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
207 {
208 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
209 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
210 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
211 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
212 {
213 INT i;
214 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
215 E T3, Tj, TQ, T1e, TU, TV, T1c, T1b, Tm, Tp, Tq, Ta, Th, Ti, TA;
216 E TH, T17, T14, T1f, T1g, T1h, TL, TM, TR;
217 {
218 E T1, T2, TO, TP;
219 T1 = ri[0];
220 T2 = ri[WS(is, 5)];
221 T3 = T1 - T2;
222 Tj = T1 + T2;
223 TO = ii[0];
224 TP = ii[WS(is, 5)];
225 TQ = TO - TP;
226 T1e = TO + TP;
227 }
228 {
229 E T6, Tk, Tg, To, T9, Tl, Td, Tn;
230 {
231 E T4, T5, Te, Tf;
232 T4 = ri[WS(is, 2)];
233 T5 = ri[WS(is, 7)];
234 T6 = T4 - T5;
235 Tk = T4 + T5;
236 Te = ri[WS(is, 6)];
237 Tf = ri[WS(is, 1)];
238 Tg = Te - Tf;
239 To = Te + Tf;
240 }
241 {
242 E T7, T8, Tb, Tc;
243 T7 = ri[WS(is, 8)];
244 T8 = ri[WS(is, 3)];
245 T9 = T7 - T8;
246 Tl = T7 + T8;
247 Tb = ri[WS(is, 4)];
248 Tc = ri[WS(is, 9)];
249 Td = Tb - Tc;
250 Tn = Tb + Tc;
251 }
252 TU = T6 - T9;
253 TV = Td - Tg;
254 T1c = Tk - Tl;
255 T1b = Tn - To;
256 Tm = Tk + Tl;
257 Tp = Tn + To;
258 Tq = Tm + Tp;
259 Ta = T6 + T9;
260 Th = Td + Tg;
261 Ti = Ta + Th;
262 }
263 {
264 E Tw, T15, TG, T13, Tz, T16, TD, T12;
265 {
266 E Tu, Tv, TE, TF;
267 Tu = ii[WS(is, 2)];
268 Tv = ii[WS(is, 7)];
269 Tw = Tu - Tv;
270 T15 = Tu + Tv;
271 TE = ii[WS(is, 6)];
272 TF = ii[WS(is, 1)];
273 TG = TE - TF;
274 T13 = TE + TF;
275 }
276 {
277 E Tx, Ty, TB, TC;
278 Tx = ii[WS(is, 8)];
279 Ty = ii[WS(is, 3)];
280 Tz = Tx - Ty;
281 T16 = Tx + Ty;
282 TB = ii[WS(is, 4)];
283 TC = ii[WS(is, 9)];
284 TD = TB - TC;
285 T12 = TB + TC;
286 }
287 TA = Tw - Tz;
288 TH = TD - TG;
289 T17 = T15 - T16;
290 T14 = T12 - T13;
291 T1f = T15 + T16;
292 T1g = T12 + T13;
293 T1h = T1f + T1g;
294 TL = Tw + Tz;
295 TM = TD + TG;
296 TR = TL + TM;
297 }
298 ro[WS(os, 5)] = T3 + Ti;
299 io[WS(os, 5)] = TQ + TR;
300 ro[0] = Tj + Tq;
301 io[0] = T1e + T1h;
302 {
303 E TI, TK, Tt, TJ, Tr, Ts;
304 TI = FMA(KP951056516, TA, KP587785252 * TH);
305 TK = FNMS(KP587785252, TA, KP951056516 * TH);
306 Tr = KP559016994 * (Ta - Th);
307 Ts = FNMS(KP250000000, Ti, T3);
308 Tt = Tr + Ts;
309 TJ = Ts - Tr;
310 ro[WS(os, 9)] = Tt - TI;
311 ro[WS(os, 3)] = TJ + TK;
312 ro[WS(os, 1)] = Tt + TI;
313 ro[WS(os, 7)] = TJ - TK;
314 }
315 {
316 E TW, TY, TT, TX, TN, TS;
317 TW = FMA(KP951056516, TU, KP587785252 * TV);
318 TY = FNMS(KP587785252, TU, KP951056516 * TV);
319 TN = KP559016994 * (TL - TM);
320 TS = FNMS(KP250000000, TR, TQ);
321 TT = TN + TS;
322 TX = TS - TN;
323 io[WS(os, 1)] = TT - TW;
324 io[WS(os, 7)] = TY + TX;
325 io[WS(os, 9)] = TW + TT;
326 io[WS(os, 3)] = TX - TY;
327 }
328 {
329 E T18, T1a, T11, T19, TZ, T10;
330 T18 = FNMS(KP587785252, T17, KP951056516 * T14);
331 T1a = FMA(KP951056516, T17, KP587785252 * T14);
332 TZ = FNMS(KP250000000, Tq, Tj);
333 T10 = KP559016994 * (Tm - Tp);
334 T11 = TZ - T10;
335 T19 = T10 + TZ;
336 ro[WS(os, 2)] = T11 - T18;
337 ro[WS(os, 6)] = T19 + T1a;
338 ro[WS(os, 8)] = T11 + T18;
339 ro[WS(os, 4)] = T19 - T1a;
340 }
341 {
342 E T1d, T1l, T1k, T1m, T1i, T1j;
343 T1d = FNMS(KP587785252, T1c, KP951056516 * T1b);
344 T1l = FMA(KP951056516, T1c, KP587785252 * T1b);
345 T1i = FNMS(KP250000000, T1h, T1e);
346 T1j = KP559016994 * (T1f - T1g);
347 T1k = T1i - T1j;
348 T1m = T1j + T1i;
349 io[WS(os, 2)] = T1d + T1k;
350 io[WS(os, 6)] = T1m - T1l;
351 io[WS(os, 8)] = T1k - T1d;
352 io[WS(os, 4)] = T1l + T1m;
353 }
354 }
355 }
356 }
357
358 static const kdft_desc desc = { 10, "n1_10", {72, 12, 12, 0}, &GENUS, 0, 0, 0, 0 };
359
360 void X(codelet_n1_10) (planner *p) {
361 X(kdft_register) (p, n1_10, &desc);
362 }
363
364 #endif