comparison src/fftw-3.3.8/threads/hc2hc.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 #include "threads/threads.h"
22
23 typedef struct {
24 plan_rdft super;
25 plan *cld;
26 plan **cldws;
27 int nthr;
28 INT r;
29 } P;
30
31 typedef struct {
32 plan **cldws;
33 R *IO;
34 } PD;
35
36 static void *spawn_apply(spawn_data *d)
37 {
38 PD *ego = (PD *) d->data;
39
40 plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]);
41 cldw->apply((plan *) cldw, ego->IO);
42 return 0;
43 }
44
45 static void apply_dit(const plan *ego_, R *I, R *O)
46 {
47 const P *ego = (const P *) ego_;
48 plan_rdft *cld;
49
50 cld = (plan_rdft *) ego->cld;
51 cld->apply((plan *) cld, I, O);
52
53 {
54 PD d;
55
56 d.IO = O;
57 d.cldws = ego->cldws;
58
59 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
60 }
61 }
62
63 static void apply_dif(const plan *ego_, R *I, R *O)
64 {
65 const P *ego = (const P *) ego_;
66 plan_rdft *cld;
67
68 {
69 PD d;
70
71 d.IO = I;
72 d.cldws = ego->cldws;
73
74 X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
75 }
76
77 cld = (plan_rdft *) ego->cld;
78 cld->apply((plan *) cld, I, O);
79 }
80
81 static void awake(plan *ego_, enum wakefulness wakefulness)
82 {
83 P *ego = (P *) ego_;
84 int i;
85 X(plan_awake)(ego->cld, wakefulness);
86 for (i = 0; i < ego->nthr; ++i)
87 X(plan_awake)(ego->cldws[i], wakefulness);
88 }
89
90 static void destroy(plan *ego_)
91 {
92 P *ego = (P *) ego_;
93 int i;
94 X(plan_destroy_internal)(ego->cld);
95 for (i = 0; i < ego->nthr; ++i)
96 X(plan_destroy_internal)(ego->cldws[i]);
97 X(ifree)(ego->cldws);
98 }
99
100 static void print(const plan *ego_, printer *p)
101 {
102 const P *ego = (const P *) ego_;
103 int i;
104 p->print(p, "(rdft-thr-ct-%s-x%d/%D",
105 ego->super.apply == apply_dit ? "dit" : "dif",
106 ego->nthr, ego->r);
107 for (i = 0; i < ego->nthr; ++i)
108 if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
109 (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
110 p->print(p, "%(%p%)", ego->cldws[i]);
111 p->print(p, "%(%p%))", ego->cld);
112 }
113
114 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
115 {
116 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
117 const problem_rdft *p;
118 P *pln = 0;
119 plan *cld = 0, **cldws = 0;
120 INT n, r, m, v, ivs, ovs, mcount;
121 int i, nthr, plnr_nthr_save;
122 INT block_size;
123 iodim *d;
124
125 static const plan_adt padt = {
126 X(rdft_solve), awake, print, destroy
127 };
128
129 if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr))
130 return (plan *) 0;
131
132 p = (const problem_rdft *) p_;
133 d = p->sz->dims;
134 n = d[0].n;
135 r = X(choose_radix)(ego->r, n);
136 m = n / r;
137 mcount = (m + 2) / 2;
138
139 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
140
141 block_size = (mcount + plnr->nthr - 1) / plnr->nthr;
142 nthr = (int)((mcount + block_size - 1) / block_size);
143 plnr_nthr_save = plnr->nthr;
144 plnr->nthr = (plnr->nthr + nthr - 1) / nthr;
145
146 cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
147 for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;
148
149 switch (p->kind[0]) {
150 case R2HC:
151 for (i = 0; i < nthr; ++i) {
152 cldws[i] = ego->mkcldw(ego,
153 R2HC, r, m, d[0].os, v, ovs,
154 i*block_size,
155 (i == nthr - 1) ?
156 (mcount - i*block_size) : block_size,
157 p->O, plnr);
158 if (!cldws[i]) goto nada;
159 }
160
161 plnr->nthr = plnr_nthr_save;
162
163 cld = X(mkplan_d)(plnr,
164 X(mkproblem_rdft_d)(
165 X(mktensor_1d)(m, r * d[0].is, d[0].os),
166 X(mktensor_2d)(r, d[0].is, m * d[0].os,
167 v, ivs, ovs),
168 p->I, p->O, p->kind)
169 );
170 if (!cld) goto nada;
171
172 pln = MKPLAN_RDFT(P, &padt, apply_dit);
173 break;
174
175 case HC2R:
176 for (i = 0; i < nthr; ++i) {
177 cldws[i] = ego->mkcldw(ego,
178 HC2R, r, m, d[0].is, v, ivs,
179 i*block_size,
180 (i == nthr - 1) ?
181 (mcount - i*block_size) : block_size,
182 p->I, plnr);
183 if (!cldws[i]) goto nada;
184 }
185
186 plnr->nthr = plnr_nthr_save;
187
188 cld = X(mkplan_d)(plnr,
189 X(mkproblem_rdft_d)(
190 X(mktensor_1d)(m, d[0].is, r * d[0].os),
191 X(mktensor_2d)(r, m * d[0].is, d[0].os,
192 v, ivs, ovs),
193 p->I, p->O, p->kind)
194 );
195 if (!cld) goto nada;
196
197 pln = MKPLAN_RDFT(P, &padt, apply_dif);
198 break;
199
200 default:
201 A(0);
202 }
203
204 pln->cld = cld;
205 pln->cldws = cldws;
206 pln->nthr = nthr;
207 pln->r = r;
208 X(ops_zero)(&pln->super.super.ops);
209 for (i = 0; i < nthr; ++i) {
210 X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
211 pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
212 }
213 X(ops_add2)(&cld->ops, &pln->super.super.ops);
214 return &(pln->super.super);
215
216 nada:
217 if (cldws) {
218 for (i = 0; i < nthr; ++i)
219 X(plan_destroy_internal)(cldws[i]);
220 X(ifree)(cldws);
221 }
222 X(plan_destroy_internal)(cld);
223 return (plan *) 0;
224 }
225
226 hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r,
227 hc2hc_mkinferior mkcldw)
228 {
229 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
230 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
231 slv->r = r;
232 slv->mkcldw = mkcldw;
233 return slv;
234 }