Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/simd-support/simd-avx.h @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
22 #error "AVX only works in single or double precision" | |
23 #endif | |
24 | |
25 #ifdef FFTW_SINGLE | |
26 # define DS(d,s) s /* single-precision option */ | |
27 # define SUFF(name) name ## s | |
28 #else | |
29 # define DS(d,s) d /* double-precision option */ | |
30 # define SUFF(name) name ## d | |
31 #endif | |
32 | |
33 #define SIMD_SUFFIX _avx /* for renaming */ | |
34 #define VL DS(2, 4) /* SIMD complex vector length */ | |
35 #define SIMD_VSTRIDE_OKA(x) ((x) == 2) | |
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
37 | |
38 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */ | |
39 #error "compiling simd-avx.h without -mavx" | |
40 #endif | |
41 | |
42 #ifdef _MSC_VER | |
43 #ifndef inline | |
44 #define inline __inline | |
45 #endif | |
46 #endif | |
47 | |
48 #include <immintrin.h> | |
49 | |
50 typedef DS(__m256d, __m256) V; | |
51 #define VADD SUFF(_mm256_add_p) | |
52 #define VSUB SUFF(_mm256_sub_p) | |
53 #define VMUL SUFF(_mm256_mul_p) | |
54 #define VXOR SUFF(_mm256_xor_p) | |
55 #define VSHUF SUFF(_mm256_shuffle_p) | |
56 | |
57 #define SHUFVALD(fp0,fp1) \ | |
58 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) | |
59 #define SHUFVALS(fp0,fp1,fp2,fp3) \ | |
60 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | |
61 | |
62 #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2))) | |
63 #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3))) | |
64 | |
65 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) | |
66 #define DVK(var, val) V var = VLIT(val, val) | |
67 #define LDK(x) x | |
68 | |
69 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
70 { | |
71 (void)aligned_like; /* UNUSED */ | |
72 (void)ivs; /* UNUSED */ | |
73 return SUFF(_mm256_loadu_p)(x); | |
74 } | |
75 | |
76 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
77 { | |
78 (void)aligned_like; /* UNUSED */ | |
79 (void)ovs; /* UNUSED */ | |
80 SUFF(_mm256_storeu_p)(x, v); | |
81 } | |
82 | |
83 #if FFTW_SINGLE | |
84 | |
85 # ifdef _MSC_VER | |
86 /* Temporarily disable the warning "uninitialized local variable | |
87 'name' used" and runtime checks for using a variable before it is | |
88 defined which is erroneously triggered by the LOADL0 / LOADH macros | |
89 as they only modify VAL partly each. */ | |
90 # ifndef __INTEL_COMPILER | |
91 # pragma warning(disable : 4700) | |
92 # pragma runtime_checks("u", off) | |
93 # endif | |
94 # endif | |
95 # ifdef __INTEL_COMPILER | |
96 # pragma warning(disable : 592) | |
97 # endif | |
98 | |
99 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) | |
100 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) | |
101 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) | |
102 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) | |
103 | |
104 /* it seems like the only AVX way to store 4 complex floats is to | |
105 extract two pairs of complex floats into two __m128 registers, and | |
106 then use SSE-like half-stores. Similarly, to load 4 complex | |
107 floats, we load two pairs of complex floats into two __m128 | |
108 registers, and then pack the two __m128 registers into one __m256 | |
109 value. */ | |
110 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
111 { | |
112 __m128 l, h; | |
113 V v; | |
114 (void)aligned_like; /* UNUSED */ | |
115 l = LOADL(x, l); | |
116 l = LOADH(x + ivs, l); | |
117 h = LOADL(x + 2*ivs, h); | |
118 h = LOADH(x + 3*ivs, h); | |
119 v = _mm256_castps128_ps256(l); | |
120 v = _mm256_insertf128_ps(v, h, 1); | |
121 return v; | |
122 } | |
123 | |
124 # ifdef _MSC_VER | |
125 # ifndef __INTEL_COMPILER | |
126 # pragma warning(default : 4700) | |
127 # pragma runtime_checks("u", restore) | |
128 # endif | |
129 # endif | |
130 # ifdef __INTEL_COMPILER | |
131 # pragma warning(default : 592) | |
132 # endif | |
133 | |
134 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
135 { | |
136 __m128 h = _mm256_extractf128_ps(v, 1); | |
137 __m128 l = _mm256_castps256_ps128(v); | |
138 (void)aligned_like; /* UNUSED */ | |
139 /* WARNING: the extra_iter hack depends upon STOREL occurring | |
140 after STOREH */ | |
141 STOREH(x + 3*ovs, h); | |
142 STOREL(x + 2*ovs, h); | |
143 STOREH(x + ovs, l); | |
144 STOREL(x, l); | |
145 } | |
146 | |
147 #define STM2(x, v, ovs, aligned_like) /* no-op */ | |
148 static inline void STN2(R *x, V v0, V v1, INT ovs) | |
149 { | |
150 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); | |
151 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); | |
152 __m128 h0 = _mm256_extractf128_ps(x0, 1); | |
153 __m128 l0 = _mm256_castps256_ps128(x0); | |
154 __m128 h1 = _mm256_extractf128_ps(x1, 1); | |
155 __m128 l1 = _mm256_castps256_ps128(x1); | |
156 | |
157 *(__m128 *)(x + 3*ovs) = h1; | |
158 *(__m128 *)(x + 2*ovs) = h0; | |
159 *(__m128 *)(x + 1*ovs) = l1; | |
160 *(__m128 *)(x + 0*ovs) = l0; | |
161 } | |
162 | |
163 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
164 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
165 { \ | |
166 V xxx0, xxx1, xxx2, xxx3; \ | |
167 V yyy0, yyy1, yyy2, yyy3; \ | |
168 xxx0 = _mm256_unpacklo_ps(v0, v2); \ | |
169 xxx1 = _mm256_unpackhi_ps(v0, v2); \ | |
170 xxx2 = _mm256_unpacklo_ps(v1, v3); \ | |
171 xxx3 = _mm256_unpackhi_ps(v1, v3); \ | |
172 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ | |
173 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ | |
174 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ | |
175 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ | |
176 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ | |
177 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ | |
178 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ | |
179 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ | |
180 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ | |
181 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ | |
182 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ | |
183 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ | |
184 } | |
185 | |
186 #else | |
187 static inline __m128d VMOVAPD_LD(const R *x) | |
188 { | |
189 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) | |
190 into a 256-bit vmovapd, which requires 32-byte aligment instead of | |
191 16-byte alignment. | |
192 | |
193 Force the use of vmovapd via asm until compilers stabilize. | |
194 */ | |
195 #if defined(__GNUC__) | |
196 __m128d var; | |
197 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); | |
198 return var; | |
199 #else | |
200 return *(const __m128d *)x; | |
201 #endif | |
202 } | |
203 | |
204 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
205 { | |
206 V var; | |
207 (void)aligned_like; /* UNUSED */ | |
208 var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); | |
209 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); | |
210 return var; | |
211 } | |
212 | |
213 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
214 { | |
215 (void)aligned_like; /* UNUSED */ | |
216 /* WARNING: the extra_iter hack depends upon the store of the low | |
217 part occurring after the store of the high part */ | |
218 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); | |
219 *(__m128d *)x = _mm256_castpd256_pd128(v); | |
220 } | |
221 | |
222 | |
223 #define STM2 ST | |
224 #define STN2(x, v0, v1, ovs) /* nop */ | |
225 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
226 | |
227 /* STN4 is a macro, not a function, thanks to Visual C++ developers | |
228 deciding "it would be infrequent that people would want to pass more | |
229 than 3 [__m128 parameters] by value." Even though the comment | |
230 was made about __m128 parameters, it appears to apply to __m256 | |
231 parameters as well. */ | |
232 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
233 { \ | |
234 V xxx0, xxx1, xxx2, xxx3; \ | |
235 xxx0 = _mm256_unpacklo_pd(v0, v1); \ | |
236 xxx1 = _mm256_unpackhi_pd(v0, v1); \ | |
237 xxx2 = _mm256_unpacklo_pd(v2, v3); \ | |
238 xxx3 = _mm256_unpackhi_pd(v2, v3); \ | |
239 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ | |
240 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ | |
241 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ | |
242 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ | |
243 } | |
244 #endif | |
245 | |
246 static inline V FLIP_RI(V x) | |
247 { | |
248 return VSHUF(x, x, | |
249 DS(SHUFVALD(1, 0), | |
250 SHUFVALS(1, 0, 3, 2))); | |
251 } | |
252 | |
253 static inline V VCONJ(V x) | |
254 { | |
255 /* Produce a SIMD vector[VL] of (0 + -0i). | |
256 | |
257 We really want to write this: | |
258 | |
259 V pmpm = VLIT(-0.0, 0.0); | |
260 | |
261 but historically some compilers have ignored the distiction | |
262 between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0 | |
263 as 0 too. | |
264 */ | |
265 union uvec { | |
266 unsigned u[8]; | |
267 V v; | |
268 }; | |
269 static const union uvec pmpm = { | |
270 #ifdef FFTW_SINGLE | |
271 { 0x00000000, 0x80000000, 0x00000000, 0x80000000, | |
272 0x00000000, 0x80000000, 0x00000000, 0x80000000 } | |
273 #else | |
274 { 0x00000000, 0x00000000, 0x00000000, 0x80000000, | |
275 0x00000000, 0x00000000, 0x00000000, 0x80000000 } | |
276 #endif | |
277 }; | |
278 return VXOR(pmpm.v, x); | |
279 } | |
280 | |
281 static inline V VBYI(V x) | |
282 { | |
283 return FLIP_RI(VCONJ(x)); | |
284 } | |
285 | |
286 /* FMA support */ | |
287 #define VFMA(a, b, c) VADD(c, VMUL(a, b)) | |
288 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) | |
289 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) | |
290 #define VFMAI(b, c) VADD(c, VBYI(b)) | |
291 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
292 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
293 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
294 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) | |
295 | |
296 static inline V VZMUL(V tx, V sr) | |
297 { | |
298 V tr = VDUPL(tx); | |
299 V ti = VDUPH(tx); | |
300 tr = VMUL(sr, tr); | |
301 sr = VBYI(sr); | |
302 return VFMA(ti, sr, tr); | |
303 } | |
304 | |
305 static inline V VZMULJ(V tx, V sr) | |
306 { | |
307 V tr = VDUPL(tx); | |
308 V ti = VDUPH(tx); | |
309 tr = VMUL(sr, tr); | |
310 sr = VBYI(sr); | |
311 return VFNMS(ti, sr, tr); | |
312 } | |
313 | |
314 static inline V VZMULI(V tx, V sr) | |
315 { | |
316 V tr = VDUPL(tx); | |
317 V ti = VDUPH(tx); | |
318 ti = VMUL(ti, sr); | |
319 sr = VBYI(sr); | |
320 return VFMS(tr, sr, ti); | |
321 } | |
322 | |
323 static inline V VZMULIJ(V tx, V sr) | |
324 { | |
325 V tr = VDUPL(tx); | |
326 V ti = VDUPH(tx); | |
327 ti = VMUL(ti, sr); | |
328 sr = VBYI(sr); | |
329 return VFMA(tr, sr, ti); | |
330 } | |
331 | |
332 /* twiddle storage #1: compact, slower */ | |
333 #ifdef FFTW_SINGLE | |
334 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
335 #else | |
336 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
337 #endif | |
338 #define TWVL1 (VL) | |
339 | |
340 static inline V BYTW1(const R *t, V sr) | |
341 { | |
342 return VZMUL(LDA(t, 2, t), sr); | |
343 } | |
344 | |
345 static inline V BYTWJ1(const R *t, V sr) | |
346 { | |
347 return VZMULJ(LDA(t, 2, t), sr); | |
348 } | |
349 | |
350 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
351 #ifdef FFTW_SINGLE | |
352 # define VTW2(v,x) \ | |
353 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
354 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
355 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
356 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
357 #else | |
358 # define VTW2(v,x) \ | |
359 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
360 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
361 #endif | |
362 #define TWVL2 (2 * VL) | |
363 | |
364 static inline V BYTW2(const R *t, V sr) | |
365 { | |
366 const V *twp = (const V *)t; | |
367 V si = FLIP_RI(sr); | |
368 V tr = twp[0], ti = twp[1]; | |
369 return VFMA(tr, sr, VMUL(ti, si)); | |
370 } | |
371 | |
372 static inline V BYTWJ2(const R *t, V sr) | |
373 { | |
374 const V *twp = (const V *)t; | |
375 V si = FLIP_RI(sr); | |
376 V tr = twp[0], ti = twp[1]; | |
377 return VFNMS(ti, si, VMUL(tr, sr)); | |
378 } | |
379 | |
380 /* twiddle storage #3 */ | |
381 #define VTW3 VTW1 | |
382 #define TWVL3 TWVL1 | |
383 | |
384 /* twiddle storage for split arrays */ | |
385 #ifdef FFTW_SINGLE | |
386 # define VTWS(v,x) \ | |
387 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
388 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
389 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
390 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
391 #else | |
392 # define VTWS(v,x) \ | |
393 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
394 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
395 #endif | |
396 #define TWVLS (2 * VL) | |
397 | |
398 | |
399 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. | |
400 See Intel Optimization Manual (April 2011, version 248966), Section | |
401 11.3 */ | |
402 #define VLEAVE _mm256_zeroupper | |
403 | |
404 #include "simd-common.h" |