comparison src/fftw-3.3.8/simd-support/simd-avx-128-fma.h @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * 128-bit AVX support by Erik Lindahl, 2015.
6 * Erik Lindahl hereby places his modifications in the public domain.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
25 #error "AVX only works in single or double precision"
26 #endif
27
28 #ifdef FFTW_SINGLE
29 # define DS(d,s) s /* single-precision option */
30 # define SUFF(name) name ## s
31 #else
32 # define DS(d,s) d /* double-precision option */
33 # define SUFF(name) name ## d
34 #endif
35
36 #define SIMD_SUFFIX _avx_128_fma /* for renaming */
37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
40
41 #ifdef _MSC_VER
42 #ifndef inline
43 #define inline __inline
44 #endif
45 #endif
46
47 #include <immintrin.h>
48 #ifdef _MSC_VER
49 # include <intrin.h>
50 #elif defined (__GNUC__)
51 # include <x86intrin.h>
52 #endif
53
54 #if !(defined(__AVX__) && defined(__FMA4__)) /* sanity check */
55 #error "compiling simd-avx-128-fma.h without -mavx or -mfma4"
56 #endif
57
58 typedef DS(__m128d,__m128) V;
59 #define VADD SUFF(_mm_add_p)
60 #define VSUB SUFF(_mm_sub_p)
61 #define VMUL SUFF(_mm_mul_p)
62 #define VXOR SUFF(_mm_xor_p)
63 #define SHUF SUFF(_mm_shuffle_p)
64 #define VPERM1 SUFF(_mm_permute_p)
65 #define UNPCKL SUFF(_mm_unpacklo_p)
66 #define UNPCKH SUFF(_mm_unpackhi_p)
67
68 #define SHUFVALS(fp0,fp1,fp2,fp3) \
69 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
70
71 #define VDUPL(x) DS(_mm_permute_pd(x,0), _mm_moveldup_ps(x))
72 #define VDUPH(x) DS(_mm_permute_pd(x,3), _mm_movehdup_ps(x))
73 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
74 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
75 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
76 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
77
78 #define VLIT(x0, x1) DS(_mm_set_pd(x0, x1), _mm_set_ps(x0, x1, x0, x1))
79 #define DVK(var, val) V var = VLIT(val, val)
80 #define LDK(x) x
81
82 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
83 {
84 (void)aligned_like; /* UNUSED */
85 (void)ivs; /* UNUSED */
86 return *(const V *)x;
87 }
88
89 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
90 {
91 (void)aligned_like; /* UNUSED */
92 (void)ovs; /* UNUSED */
93 *(V *)x = v;
94 }
95
96 #ifdef FFTW_SINGLE
97
98 static inline V LD(const R *x, INT ivs, const R *aligned_like)
99 {
100 V var;
101 #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
102 var = LOADL(x, SUFF(_mm_undefined_p)());
103 var = LOADH(x + ivs, var);
104 #else
105 var = LOADL(x, var);
106 var = LOADH(x + ivs, var);
107 #endif
108 return var;
109 }
110
111 # ifdef _MSC_VER
112 # pragma warning(default : 4700)
113 # pragma runtime_checks("u", restore)
114 # endif
115
116 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
117 {
118 (void)aligned_like; /* UNUSED */
119 /* WARNING: the extra_iter hack depends upon STOREL occurring
120 after STOREH */
121 STOREH(x + ovs, v);
122 STOREL(x, v);
123 }
124
125 #else /* ! FFTW_SINGLE */
126 # define LD LDA
127 # define ST STA
128 #endif
129
130 #define STM2 DS(STA,ST)
131 #define STN2(x, v0, v1, ovs) /* nop */
132
133 #ifdef FFTW_SINGLE
134 # define STM4(x, v, ovs, aligned_like) /* no-op */
135 /* STN4 is a macro, not a function, thanks to Visual C++ developers
136 deciding "it would be infrequent that people would want to pass more
137 than 3 [__m128 parameters] by value." 3 parameters ought to be enough
138 for anybody. */
139 # define STN4(x, v0, v1, v2, v3, ovs) \
140 { \
141 V xxx0, xxx1, xxx2, xxx3; \
142 xxx0 = UNPCKL(v0, v2); \
143 xxx1 = UNPCKH(v0, v2); \
144 xxx2 = UNPCKL(v1, v3); \
145 xxx3 = UNPCKH(v1, v3); \
146 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
147 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
148 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
149 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
150 }
151 #else /* !FFTW_SINGLE */
152 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
153 {
154 (void)aligned_like; /* UNUSED */
155 STOREL(x, v);
156 STOREH(x + ovs, v);
157 }
158 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
159 #endif
160
161 static inline V FLIP_RI(V x)
162 {
163 return VPERM1(x, DS(1, SHUFVALS(1, 0, 3, 2)));
164 }
165
166
167 static inline V VCONJ(V x)
168 {
169 /* Produce a SIMD vector[VL] of (0 + -0i).
170
171 We really want to write this:
172
173 V pmpm = VLIT(-0.0, 0.0);
174
175 but historically some compilers have ignored the distiction
176 between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0
177 as 0 too.
178 */
179 union uvec {
180 unsigned u[4];
181 V v;
182 };
183 static const union uvec pmpm = {
184 #ifdef FFTW_SINGLE
185 { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
186 #else
187 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
188 #endif
189 };
190 return VXOR(pmpm.v, x);
191 }
192
193 static inline V VBYI(V x)
194 {
195 x = VCONJ(x);
196 x = FLIP_RI(x);
197 return x;
198 }
199
200 /* FMA support */
201 #define VFMA(a, b, c) SUFF(_mm_macc_p)(a,b,c)
202 #define VFNMS(a, b, c) SUFF(_mm_nmacc_p)(a,b,c)
203 #define VFMS(a, b, c) SUFF(_mm_msub_p)(a,b,c)
204 #define VFMAI(b, c) SUFF(_mm_addsub_p)(c,FLIP_RI(b))
205 #define VFNMSI(b, c) VSUB(c, VBYI(b))
206 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
207 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
208 #define VFNMSCONJ(b,c) SUFF(_mm_addsub_p)(c,b)
209
210 static inline V VZMUL(V tx, V sr)
211 {
212 V tr = VDUPL(tx);
213 V ti = VDUPH(tx);
214 tr = VMUL(tr, sr);
215 ti = VMUL(ti, FLIP_RI(sr));
216 return SUFF(_mm_addsub_p)(tr,ti);
217 }
218
219 static inline V VZMULJ(V tx, V sr)
220 {
221 V tr = VDUPL(tx);
222 V ti = VDUPH(tx);
223 tr = VMUL(tr, sr);
224 sr = VBYI(sr);
225 return VFNMS(ti, sr, tr);
226 }
227
228 static inline V VZMULI(V tx, V sr)
229 {
230 V tr = VDUPL(tx);
231 V ti = VDUPH(tx);
232 ti = VMUL(ti, sr);
233 sr = VBYI(sr);
234 return VFMS(tr, sr, ti);
235 }
236
237 static inline V VZMULIJ(V tx, V sr)
238 {
239 V tr = VDUPL(tx);
240 V ti = VDUPH(tx);
241 ti = VMUL(ti, sr);
242 tr = VMUL(tr, FLIP_RI(sr));
243 return SUFF(_mm_addsub_p)(ti,tr);
244 }
245
246 /* twiddle storage #1: compact, slower */
247 #ifdef FFTW_SINGLE
248 # define VTW1(v,x) \
249 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
250 static inline V BYTW1(const R *t, V sr)
251 {
252 const V *twp = (const V *)t;
253 V tx = twp[0];
254 V tr = UNPCKL(tx, tx);
255 V ti = UNPCKH(tx, tx);
256 tr = VMUL(tr, sr);
257 ti = VMUL(ti, FLIP_RI(sr));
258 return SUFF(_mm_addsub_p)(tr,ti);
259 }
260 static inline V BYTWJ1(const R *t, V sr)
261 {
262 const V *twp = (const V *)t;
263 V tx = twp[0];
264 V tr = UNPCKL(tx, tx);
265 V ti = UNPCKH(tx, tx);
266 tr = VMUL(tr, sr);
267 sr = VBYI(sr);
268 return VFNMS(ti, sr, tr);
269 }
270 #else /* !FFTW_SINGLE */
271 # define VTW1(v,x) {TW_CEXP, v, x}
272 static inline V BYTW1(const R *t, V sr)
273 {
274 V tx = LD(t, 1, t);
275 return VZMUL(tx, sr);
276 }
277 static inline V BYTWJ1(const R *t, V sr)
278 {
279 V tx = LD(t, 1, t);
280 return VZMULJ(tx, sr);
281 }
282 #endif
283 #define TWVL1 (VL)
284
285 /* twiddle storage #2: twice the space, faster (when in cache) */
286 #ifdef FFTW_SINGLE
287 # define VTW2(v,x) \
288 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
289 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
290 #else /* !FFTW_SINGLE */
291 # define VTW2(v,x) \
292 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
293 #endif
294 #define TWVL2 (2 * VL)
295 static inline V BYTW2(const R *t, V sr)
296 {
297 const V *twp = (const V *)t;
298 V si = FLIP_RI(sr);
299 V tr = twp[0], ti = twp[1];
300 return VFMA(tr, sr, VMUL(ti, si));
301 }
302 static inline V BYTWJ2(const R *t, V sr)
303 {
304 const V *twp = (const V *)t;
305 V si = FLIP_RI(sr);
306 V tr = twp[0], ti = twp[1];
307 return VFNMS(ti, si, VMUL(tr, sr));
308 }
309
310 /* twiddle storage #3 */
311 #ifdef FFTW_SINGLE
312 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
313 # define TWVL3 (VL)
314 #else
315 # define VTW3(v,x) VTW1(v,x)
316 # define TWVL3 TWVL1
317 #endif
318
319 /* twiddle storage for split arrays */
320 #ifdef FFTW_SINGLE
321 # define VTWS(v,x) \
322 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
323 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
324 #else
325 # define VTWS(v,x) \
326 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
327 #endif
328 #define TWVLS (2 * VL)
329
330 #define VLEAVE() /* nothing */
331
332 #include "simd-common.h"