comparison src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_6.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
29
30 /*
31 * This function contains 29 FP additions, 30 FP multiplications,
32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
33 * 38 stack variables, 2 constants, and 12 memory accesses
34 */
35 #include "rdft/simd/hc2cfv.h"
36
37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
41 {
42 INT m;
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
44 V T8, Tr, Tf, Tk, Tl, Ts, Tt, Tu, T3, Tj, Te, Th, T7, Ta, T1;
45 V T2, Ti, Tc, Td, Tb, Tg, T5, T6, T4, T9, Tm, Tv, Tp, Tq, Tn;
46 V To, Ty, Tz, Tw, Tx;
47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
49 T3 = VFMACONJ(T2, T1);
50 Ti = LDW(&(W[0]));
51 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
52 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
53 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
54 Tb = LDW(&(W[TWVL * 8]));
55 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
56 Tg = LDW(&(W[TWVL * 6]));
57 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
58 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
59 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
60 T4 = LDW(&(W[TWVL * 4]));
61 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
62 T9 = LDW(&(W[TWVL * 2]));
63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
64 T8 = VSUB(T3, T7);
65 Tr = VADD(T3, T7);
66 Tf = VSUB(Ta, Te);
67 Tk = VSUB(Th, Tj);
68 Tl = VADD(Tf, Tk);
69 Ts = VADD(Ta, Te);
70 Tt = VADD(Tj, Th);
71 Tu = VADD(Ts, Tt);
72 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
73 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
74 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
75 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
77 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
78 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
79 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
80 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
81 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
82 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
83 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
84 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
85 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
86 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
87 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
88 }
89 }
90 VLEAVE();
91 }
92
93 static const tw_instr twinstr[] = {
94 VTW(1, 1),
95 VTW(1, 2),
96 VTW(1, 3),
97 VTW(1, 4),
98 VTW(1, 5),
99 {TW_NEXT, VL, 0}
100 };
101
102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
103
104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
106 }
107 #else
108
109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
110
111 /*
112 * This function contains 29 FP additions, 20 FP multiplications,
113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
114 * 42 stack variables, 3 constants, and 12 memory accesses
115 */
116 #include "rdft/simd/hc2cfv.h"
117
118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
119 {
120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
123 {
124 INT m;
125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
133 Tf = VCONJ(Te);
134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
135 T7 = VCONJ(T6);
136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
137 T3 = VCONJ(T2);
138 T4 = VADD(T1, T3);
139 T5 = LDW(&(W[TWVL * 4]));
140 T9 = VZMULIJ(T5, VSUB(T7, T8));
141 Ta = VADD(T4, T9);
142 Tu = VSUB(T4, T9);
143 Tj = LDW(&(W[0]));
144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
145 Tl = LDW(&(W[TWVL * 6]));
146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
147 Tn = VADD(Tk, Tm);
148 Tw = VSUB(Tm, Tk);
149 Tb = LDW(&(W[TWVL * 2]));
150 Tc = VZMULJ(Tb, VADD(T7, T8));
151 Td = LDW(&(W[TWVL * 8]));
152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
153 Ti = VADD(Tc, Th);
154 Tv = VSUB(Tc, Th);
155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
156 To = VADD(Ti, Tn);
157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
160 Tt = VCONJ(VADD(Tq, Tr));
161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
162 Ts = VSUB(Tq, Tr);
163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
165 Tx = VADD(Tv, Tw);
166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
169 TC = VADD(Tz, TA);
170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
171 TB = VCONJ(VSUB(Tz, TA));
172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
173 }
174 }
175 VLEAVE();
176 }
177
178 static const tw_instr twinstr[] = {
179 VTW(1, 1),
180 VTW(1, 2),
181 VTW(1, 3),
182 VTW(1, 4),
183 VTW(1, 5),
184 {TW_NEXT, VL, 0}
185 };
186
187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
188
189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
191 }
192 #endif