comparison src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_4.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */
29
30 /*
31 * This function contains 15 FP additions, 16 FP multiplications,
32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
33 * 21 stack variables, 1 constants, and 8 memory accesses
34 */
35 #include "rdft/simd/hc2cfv.h"
36
37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
40 {
41 INT m;
42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
43 V T8, Th, Td, Tg, T3, Tc, T7, Ta, T1, T2, Tb, T5, T6, T4, T9;
44 V Te, Tj, Tf, Ti;
45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
47 T3 = VFMACONJ(T2, T1);
48 Tb = LDW(&(W[0]));
49 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
50 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
51 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
52 T4 = LDW(&(W[TWVL * 2]));
53 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
54 T9 = LDW(&(W[TWVL * 4]));
55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
56 T8 = VSUB(T3, T7);
57 Th = VADD(Tc, Ta);
58 Td = VSUB(Ta, Tc);
59 Tg = VADD(T3, T7);
60 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
61 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
62 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
63 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
64 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
65 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
66 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
67 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
68 }
69 }
70 VLEAVE();
71 }
72
73 static const tw_instr twinstr[] = {
74 VTW(1, 1),
75 VTW(1, 2),
76 VTW(1, 3),
77 {TW_NEXT, VL, 0}
78 };
79
80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
81
82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
84 }
85 #else
86
87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include rdft/simd/hc2cfv.h */
88
89 /*
90 * This function contains 15 FP additions, 10 FP multiplications,
91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
92 * 23 stack variables, 1 constants, and 8 memory accesses
93 */
94 #include "rdft/simd/hc2cfv.h"
95
96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
97 {
98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
99 {
100 INT m;
101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
103 V Ta, Tf, Tk, Tl, Ti, Tj;
104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
106 T3 = VCONJ(T2);
107 T4 = VADD(T1, T3);
108 Tb = LDW(&(W[0]));
109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
112 T8 = VCONJ(T7);
113 T5 = LDW(&(W[TWVL * 2]));
114 T9 = VZMULJ(T5, VADD(T6, T8));
115 Td = LDW(&(W[TWVL * 4]));
116 Te = VZMULIJ(Td, VSUB(T8, T6));
117 Ta = VSUB(T4, T9);
118 Tf = VBYI(VSUB(Tc, Te));
119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
123 Ti = VADD(T4, T9);
124 Tj = VADD(Tc, Te);
125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
129 }
130 }
131 VLEAVE();
132 }
133
134 static const tw_instr twinstr[] = {
135 VTW(1, 1),
136 VTW(1, 2),
137 VTW(1, 3),
138 {TW_NEXT, VL, 0}
139 };
140
141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
142
143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
145 }
146 #endif