Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include rdft/simd/hc2cfv.h */ | |
29 | |
30 /* | |
31 * This function contains 103 FP additions, 96 FP multiplications, | |
32 * (or, 53 additions, 46 multiplications, 50 fused multiply/add), | |
33 * 92 stack variables, 4 constants, and 32 memory accesses | |
34 */ | |
35 #include "rdft/simd/hc2cfv.h" | |
36 | |
37 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
42 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | |
46 V T8, TZ, TH, T12, T1q, T1I, T1x, T1J, Tr, T10, T1A, T1K, TS, T13, T1t; | |
47 V T1N, T3, Tw, TF, TW, T7, Tu, TB, TY, T1, T2, Tv, TD, TE, TC; | |
48 V TV, T5, T6, T4, Tt, Tz, TA, Ty, TX, Tx, TG, T1o, T1p, T1v, T1w; | |
49 V T1C, T1D, T1u, T1B, T1G, T1H, T1E, T1F; | |
50 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
51 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
52 T3 = VFMACONJ(T2, T1); | |
53 Tv = LDW(&(W[0])); | |
54 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1)); | |
55 TD = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
56 TE = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
57 TC = LDW(&(W[TWVL * 8])); | |
58 TF = VZMULIJ(TC, VFNMSCONJ(TE, TD)); | |
59 TV = LDW(&(W[TWVL * 6])); | |
60 TW = VZMULJ(TV, VFMACONJ(TE, TD)); | |
61 T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
62 T6 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
63 T4 = LDW(&(W[TWVL * 14])); | |
64 T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | |
65 Tt = LDW(&(W[TWVL * 16])); | |
66 Tu = VZMULIJ(Tt, VFNMSCONJ(T6, T5)); | |
67 Tz = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
68 TA = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
69 Ty = LDW(&(W[TWVL * 24])); | |
70 TB = VZMULIJ(Ty, VFNMSCONJ(TA, Tz)); | |
71 TX = LDW(&(W[TWVL * 22])); | |
72 TY = VZMULJ(TX, VFMACONJ(TA, Tz)); | |
73 T8 = VSUB(T3, T7); | |
74 TZ = VSUB(TW, TY); | |
75 Tx = VSUB(Tu, Tw); | |
76 TG = VSUB(TB, TF); | |
77 TH = VFNMS(LDK(KP414213562), TG, Tx); | |
78 T12 = VFMA(LDK(KP414213562), Tx, TG); | |
79 T1o = VADD(T3, T7); | |
80 T1p = VADD(TW, TY); | |
81 T1q = VADD(T1o, T1p); | |
82 T1I = VSUB(T1o, T1p); | |
83 T1v = VADD(Tw, Tu); | |
84 T1w = VADD(TF, TB); | |
85 T1x = VADD(T1v, T1w); | |
86 T1J = VSUB(T1w, T1v); | |
87 { | |
88 V Tc, TQ, Tp, TJ, Tg, TO, Tl, TL, Ta, Tb, T9, TP, Tn, To, Tm; | |
89 V TI, Te, Tf, Td, TN, Tj, Tk, Ti, TK, Th, Tq, T1y, T1z, TM, TR; | |
90 V T1r, T1s; | |
91 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
92 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
93 T9 = LDW(&(W[TWVL * 2])); | |
94 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta)); | |
95 TP = LDW(&(W[TWVL * 4])); | |
96 TQ = VZMULIJ(TP, VFNMSCONJ(Tb, Ta)); | |
97 Tn = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
98 To = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
99 Tm = LDW(&(W[TWVL * 10])); | |
100 Tp = VZMULJ(Tm, VFMACONJ(To, Tn)); | |
101 TI = LDW(&(W[TWVL * 12])); | |
102 TJ = VZMULIJ(TI, VFNMSCONJ(To, Tn)); | |
103 Te = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
104 Tf = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
105 Td = LDW(&(W[TWVL * 18])); | |
106 Tg = VZMULJ(Td, VFMACONJ(Tf, Te)); | |
107 TN = LDW(&(W[TWVL * 20])); | |
108 TO = VZMULIJ(TN, VFNMSCONJ(Tf, Te)); | |
109 Tj = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
110 Tk = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
111 Ti = LDW(&(W[TWVL * 26])); | |
112 Tl = VZMULJ(Ti, VFMACONJ(Tk, Tj)); | |
113 TK = LDW(&(W[TWVL * 28])); | |
114 TL = VZMULIJ(TK, VFNMSCONJ(Tk, Tj)); | |
115 Th = VSUB(Tc, Tg); | |
116 Tq = VSUB(Tl, Tp); | |
117 Tr = VADD(Th, Tq); | |
118 T10 = VSUB(Tq, Th); | |
119 T1y = VADD(TQ, TO); | |
120 T1z = VADD(TL, TJ); | |
121 T1A = VADD(T1y, T1z); | |
122 T1K = VSUB(T1y, T1z); | |
123 TM = VSUB(TJ, TL); | |
124 TR = VSUB(TO, TQ); | |
125 TS = VFMA(LDK(KP414213562), TR, TM); | |
126 T13 = VFNMS(LDK(KP414213562), TM, TR); | |
127 T1r = VADD(Tc, Tg); | |
128 T1s = VADD(Tl, Tp); | |
129 T1t = VADD(T1r, T1s); | |
130 T1N = VSUB(T1s, T1r); | |
131 } | |
132 T1u = VSUB(T1q, T1t); | |
133 T1B = VSUB(T1x, T1A); | |
134 T1C = VMUL(LDK(KP500000000), VFMAI(T1B, T1u)); | |
135 T1D = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1B, T1u))); | |
136 ST(&(Rp[WS(rs, 4)]), T1C, ms, &(Rp[0])); | |
137 ST(&(Rm[WS(rs, 3)]), T1D, -ms, &(Rm[WS(rs, 1)])); | |
138 T1E = VADD(T1q, T1t); | |
139 T1F = VADD(T1x, T1A); | |
140 T1G = VMUL(LDK(KP500000000), VSUB(T1E, T1F)); | |
141 T1H = VCONJ(VMUL(LDK(KP500000000), VADD(T1F, T1E))); | |
142 ST(&(Rp[0]), T1G, ms, &(Rp[0])); | |
143 ST(&(Rm[WS(rs, 7)]), T1H, -ms, &(Rm[WS(rs, 1)])); | |
144 { | |
145 V T1M, T1S, T1P, T1T, T1L, T1O, T1Q, T1V, T1R, T1U, TU, T18, T15, T19, Ts; | |
146 V TT, T11, T14, T16, T1b, T17, T1a, T1e, T1k, T1h, T1l, T1c, T1d, T1f, T1g; | |
147 V T1i, T1n, T1j, T1m; | |
148 T1L = VADD(T1J, T1K); | |
149 T1M = VFMA(LDK(KP707106781), T1L, T1I); | |
150 T1S = VFNMS(LDK(KP707106781), T1L, T1I); | |
151 T1O = VSUB(T1K, T1J); | |
152 T1P = VFMA(LDK(KP707106781), T1O, T1N); | |
153 T1T = VFNMS(LDK(KP707106781), T1O, T1N); | |
154 T1Q = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1P, T1M))); | |
155 ST(&(Rm[WS(rs, 1)]), T1Q, -ms, &(Rm[WS(rs, 1)])); | |
156 T1V = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1T, T1S))); | |
157 ST(&(Rm[WS(rs, 5)]), T1V, -ms, &(Rm[WS(rs, 1)])); | |
158 T1R = VMUL(LDK(KP500000000), VFMAI(T1P, T1M)); | |
159 ST(&(Rp[WS(rs, 2)]), T1R, ms, &(Rp[0])); | |
160 T1U = VMUL(LDK(KP500000000), VFNMSI(T1T, T1S)); | |
161 ST(&(Rp[WS(rs, 6)]), T1U, ms, &(Rp[0])); | |
162 Ts = VFMA(LDK(KP707106781), Tr, T8); | |
163 TT = VADD(TH, TS); | |
164 TU = VFMA(LDK(KP923879532), TT, Ts); | |
165 T18 = VFNMS(LDK(KP923879532), TT, Ts); | |
166 T11 = VFNMS(LDK(KP707106781), T10, TZ); | |
167 T14 = VADD(T12, T13); | |
168 T15 = VFMA(LDK(KP923879532), T14, T11); | |
169 T19 = VFNMS(LDK(KP923879532), T14, T11); | |
170 T16 = VMUL(LDK(KP500000000), VFNMSI(T15, TU)); | |
171 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)])); | |
172 T1b = VMUL(LDK(KP500000000), VFMAI(T19, T18)); | |
173 ST(&(Rp[WS(rs, 7)]), T1b, ms, &(Rp[WS(rs, 1)])); | |
174 T17 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T15, TU))); | |
175 ST(&(Rm[0]), T17, -ms, &(Rm[0])); | |
176 T1a = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T19, T18))); | |
177 ST(&(Rm[WS(rs, 6)]), T1a, -ms, &(Rm[0])); | |
178 T1c = VFNMS(LDK(KP707106781), Tr, T8); | |
179 T1d = VSUB(T12, T13); | |
180 T1e = VFMA(LDK(KP923879532), T1d, T1c); | |
181 T1k = VFNMS(LDK(KP923879532), T1d, T1c); | |
182 T1f = VFMA(LDK(KP707106781), T10, TZ); | |
183 T1g = VSUB(TS, TH); | |
184 T1h = VFMA(LDK(KP923879532), T1g, T1f); | |
185 T1l = VFNMS(LDK(KP923879532), T1g, T1f); | |
186 T1i = VCONJ(VMUL(LDK(KP500000000), VFNMSI(T1h, T1e))); | |
187 ST(&(Rm[WS(rs, 2)]), T1i, -ms, &(Rm[0])); | |
188 T1n = VCONJ(VMUL(LDK(KP500000000), VFMAI(T1l, T1k))); | |
189 ST(&(Rm[WS(rs, 4)]), T1n, -ms, &(Rm[0])); | |
190 T1j = VMUL(LDK(KP500000000), VFMAI(T1h, T1e)); | |
191 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)])); | |
192 T1m = VMUL(LDK(KP500000000), VFNMSI(T1l, T1k)); | |
193 ST(&(Rp[WS(rs, 5)]), T1m, ms, &(Rp[WS(rs, 1)])); | |
194 } | |
195 } | |
196 } | |
197 VLEAVE(); | |
198 } | |
199 | |
200 static const tw_instr twinstr[] = { | |
201 VTW(1, 1), | |
202 VTW(1, 2), | |
203 VTW(1, 3), | |
204 VTW(1, 4), | |
205 VTW(1, 5), | |
206 VTW(1, 6), | |
207 VTW(1, 7), | |
208 VTW(1, 8), | |
209 VTW(1, 9), | |
210 VTW(1, 10), | |
211 VTW(1, 11), | |
212 VTW(1, 12), | |
213 VTW(1, 13), | |
214 VTW(1, 14), | |
215 VTW(1, 15), | |
216 {TW_NEXT, VL, 0} | |
217 }; | |
218 | |
219 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {53, 46, 50, 0} }; | |
220 | |
221 void XSIMD(codelet_hc2cfdftv_16) (planner *p) { | |
222 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); | |
223 } | |
224 #else | |
225 | |
226 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dit -name hc2cfdftv_16 -include rdft/simd/hc2cfv.h */ | |
227 | |
228 /* | |
229 * This function contains 103 FP additions, 56 FP multiplications, | |
230 * (or, 99 additions, 52 multiplications, 4 fused multiply/add), | |
231 * 101 stack variables, 5 constants, and 32 memory accesses | |
232 */ | |
233 #include "rdft/simd/hc2cfv.h" | |
234 | |
235 static void hc2cfdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
236 { | |
237 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
238 DVK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
239 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
240 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
241 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
242 { | |
243 INT m; | |
244 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { | |
245 V T1D, T1E, T1R, TP, T1b, Ta, T1w, T18, T1x, T1z, T1A, T1G, T1H, T1S, Tx; | |
246 V T13, T10, T1a, T1, T3, TA, TM, TL, TN, T6, T8, TC, TH, TG, TI; | |
247 V T2, Tz, TK, TJ, T7, TB, TF, TE, TD, TO, T4, T9, T5, T15, T17; | |
248 V T14, T16; | |
249 T1 = LD(&(Rp[0]), ms, &(Rp[0])); | |
250 T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
251 T3 = VCONJ(T2); | |
252 Tz = LDW(&(W[0])); | |
253 TA = VZMULIJ(Tz, VSUB(T3, T1)); | |
254 TM = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); | |
255 TK = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); | |
256 TL = VCONJ(TK); | |
257 TJ = LDW(&(W[TWVL * 24])); | |
258 TN = VZMULIJ(TJ, VSUB(TL, TM)); | |
259 T6 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); | |
260 T7 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); | |
261 T8 = VCONJ(T7); | |
262 TB = LDW(&(W[TWVL * 16])); | |
263 TC = VZMULIJ(TB, VSUB(T8, T6)); | |
264 TH = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
265 TF = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
266 TG = VCONJ(TF); | |
267 TE = LDW(&(W[TWVL * 8])); | |
268 TI = VZMULIJ(TE, VSUB(TG, TH)); | |
269 T1D = VADD(TA, TC); | |
270 T1E = VADD(TI, TN); | |
271 T1R = VSUB(T1D, T1E); | |
272 TD = VSUB(TA, TC); | |
273 TO = VSUB(TI, TN); | |
274 TP = VFNMS(LDK(KP382683432), TO, VMUL(LDK(KP923879532), TD)); | |
275 T1b = VFMA(LDK(KP382683432), TD, VMUL(LDK(KP923879532), TO)); | |
276 T4 = VADD(T1, T3); | |
277 T5 = LDW(&(W[TWVL * 14])); | |
278 T9 = VZMULJ(T5, VADD(T6, T8)); | |
279 Ta = VMUL(LDK(KP500000000), VSUB(T4, T9)); | |
280 T1w = VADD(T4, T9); | |
281 T14 = LDW(&(W[TWVL * 6])); | |
282 T15 = VZMULJ(T14, VADD(TH, TG)); | |
283 T16 = LDW(&(W[TWVL * 22])); | |
284 T17 = VZMULJ(T16, VADD(TM, TL)); | |
285 T18 = VSUB(T15, T17); | |
286 T1x = VADD(T15, T17); | |
287 { | |
288 V Tf, TR, Tv, TY, Tk, TT, Tq, TW, Tc, Te, Td, Tb, TQ, Ts, Tu; | |
289 V Tt, Tr, TX, Th, Tj, Ti, Tg, TS, Tn, Tp, To, Tm, TV, Tl, Tw; | |
290 V TU, TZ; | |
291 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
292 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
293 Te = VCONJ(Td); | |
294 Tb = LDW(&(W[TWVL * 2])); | |
295 Tf = VZMULJ(Tb, VADD(Tc, Te)); | |
296 TQ = LDW(&(W[TWVL * 4])); | |
297 TR = VZMULIJ(TQ, VSUB(Te, Tc)); | |
298 Ts = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
299 Tt = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
300 Tu = VCONJ(Tt); | |
301 Tr = LDW(&(W[TWVL * 10])); | |
302 Tv = VZMULJ(Tr, VADD(Ts, Tu)); | |
303 TX = LDW(&(W[TWVL * 12])); | |
304 TY = VZMULIJ(TX, VSUB(Tu, Ts)); | |
305 Th = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); | |
306 Ti = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); | |
307 Tj = VCONJ(Ti); | |
308 Tg = LDW(&(W[TWVL * 18])); | |
309 Tk = VZMULJ(Tg, VADD(Th, Tj)); | |
310 TS = LDW(&(W[TWVL * 20])); | |
311 TT = VZMULIJ(TS, VSUB(Tj, Th)); | |
312 Tn = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); | |
313 To = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); | |
314 Tp = VCONJ(To); | |
315 Tm = LDW(&(W[TWVL * 26])); | |
316 Tq = VZMULJ(Tm, VADD(Tn, Tp)); | |
317 TV = LDW(&(W[TWVL * 28])); | |
318 TW = VZMULIJ(TV, VSUB(Tp, Tn)); | |
319 T1z = VADD(Tf, Tk); | |
320 T1A = VADD(Tq, Tv); | |
321 T1G = VADD(TR, TT); | |
322 T1H = VADD(TW, TY); | |
323 T1S = VSUB(T1H, T1G); | |
324 Tl = VSUB(Tf, Tk); | |
325 Tw = VSUB(Tq, Tv); | |
326 Tx = VMUL(LDK(KP353553390), VADD(Tl, Tw)); | |
327 T13 = VMUL(LDK(KP707106781), VSUB(Tw, Tl)); | |
328 TU = VSUB(TR, TT); | |
329 TZ = VSUB(TW, TY); | |
330 T10 = VFMA(LDK(KP382683432), TU, VMUL(LDK(KP923879532), TZ)); | |
331 T1a = VFNMS(LDK(KP923879532), TU, VMUL(LDK(KP382683432), TZ)); | |
332 } | |
333 { | |
334 V T1U, T20, T1X, T21, T1Q, T1T, T1V, T1W, T1Y, T23, T1Z, T22, T1C, T1M, T1J; | |
335 V T1N, T1y, T1B, T1F, T1I, T1K, T1P, T1L, T1O, T12, T1g, T1d, T1h, Ty, T11; | |
336 V T19, T1c, T1e, T1j, T1f, T1i, T1m, T1s, T1p, T1t, T1k, T1l, T1n, T1o, T1q; | |
337 V T1v, T1r, T1u; | |
338 T1Q = VMUL(LDK(KP500000000), VSUB(T1w, T1x)); | |
339 T1T = VMUL(LDK(KP353553390), VADD(T1R, T1S)); | |
340 T1U = VADD(T1Q, T1T); | |
341 T20 = VSUB(T1Q, T1T); | |
342 T1V = VSUB(T1A, T1z); | |
343 T1W = VMUL(LDK(KP707106781), VSUB(T1S, T1R)); | |
344 T1X = VMUL(LDK(KP500000000), VBYI(VADD(T1V, T1W))); | |
345 T21 = VMUL(LDK(KP500000000), VBYI(VSUB(T1W, T1V))); | |
346 T1Y = VCONJ(VSUB(T1U, T1X)); | |
347 ST(&(Rm[WS(rs, 1)]), T1Y, -ms, &(Rm[WS(rs, 1)])); | |
348 T23 = VADD(T20, T21); | |
349 ST(&(Rp[WS(rs, 6)]), T23, ms, &(Rp[0])); | |
350 T1Z = VADD(T1U, T1X); | |
351 ST(&(Rp[WS(rs, 2)]), T1Z, ms, &(Rp[0])); | |
352 T22 = VCONJ(VSUB(T20, T21)); | |
353 ST(&(Rm[WS(rs, 5)]), T22, -ms, &(Rm[WS(rs, 1)])); | |
354 T1y = VADD(T1w, T1x); | |
355 T1B = VADD(T1z, T1A); | |
356 T1C = VADD(T1y, T1B); | |
357 T1M = VSUB(T1y, T1B); | |
358 T1F = VADD(T1D, T1E); | |
359 T1I = VADD(T1G, T1H); | |
360 T1J = VADD(T1F, T1I); | |
361 T1N = VBYI(VSUB(T1I, T1F)); | |
362 T1K = VCONJ(VMUL(LDK(KP500000000), VSUB(T1C, T1J))); | |
363 ST(&(Rm[WS(rs, 7)]), T1K, -ms, &(Rm[WS(rs, 1)])); | |
364 T1P = VMUL(LDK(KP500000000), VADD(T1M, T1N)); | |
365 ST(&(Rp[WS(rs, 4)]), T1P, ms, &(Rp[0])); | |
366 T1L = VMUL(LDK(KP500000000), VADD(T1C, T1J)); | |
367 ST(&(Rp[0]), T1L, ms, &(Rp[0])); | |
368 T1O = VCONJ(VMUL(LDK(KP500000000), VSUB(T1M, T1N))); | |
369 ST(&(Rm[WS(rs, 3)]), T1O, -ms, &(Rm[WS(rs, 1)])); | |
370 Ty = VADD(Ta, Tx); | |
371 T11 = VMUL(LDK(KP500000000), VADD(TP, T10)); | |
372 T12 = VADD(Ty, T11); | |
373 T1g = VSUB(Ty, T11); | |
374 T19 = VSUB(T13, T18); | |
375 T1c = VSUB(T1a, T1b); | |
376 T1d = VMUL(LDK(KP500000000), VBYI(VADD(T19, T1c))); | |
377 T1h = VMUL(LDK(KP500000000), VBYI(VSUB(T1c, T19))); | |
378 T1e = VCONJ(VSUB(T12, T1d)); | |
379 ST(&(Rm[0]), T1e, -ms, &(Rm[0])); | |
380 T1j = VADD(T1g, T1h); | |
381 ST(&(Rp[WS(rs, 7)]), T1j, ms, &(Rp[WS(rs, 1)])); | |
382 T1f = VADD(T12, T1d); | |
383 ST(&(Rp[WS(rs, 1)]), T1f, ms, &(Rp[WS(rs, 1)])); | |
384 T1i = VCONJ(VSUB(T1g, T1h)); | |
385 ST(&(Rm[WS(rs, 6)]), T1i, -ms, &(Rm[0])); | |
386 T1k = VSUB(T10, TP); | |
387 T1l = VADD(T18, T13); | |
388 T1m = VMUL(LDK(KP500000000), VBYI(VSUB(T1k, T1l))); | |
389 T1s = VMUL(LDK(KP500000000), VBYI(VADD(T1l, T1k))); | |
390 T1n = VSUB(Ta, Tx); | |
391 T1o = VMUL(LDK(KP500000000), VADD(T1b, T1a)); | |
392 T1p = VSUB(T1n, T1o); | |
393 T1t = VADD(T1n, T1o); | |
394 T1q = VADD(T1m, T1p); | |
395 ST(&(Rp[WS(rs, 5)]), T1q, ms, &(Rp[WS(rs, 1)])); | |
396 T1v = VCONJ(VSUB(T1t, T1s)); | |
397 ST(&(Rm[WS(rs, 2)]), T1v, -ms, &(Rm[0])); | |
398 T1r = VCONJ(VSUB(T1p, T1m)); | |
399 ST(&(Rm[WS(rs, 4)]), T1r, -ms, &(Rm[0])); | |
400 T1u = VADD(T1s, T1t); | |
401 ST(&(Rp[WS(rs, 3)]), T1u, ms, &(Rp[WS(rs, 1)])); | |
402 } | |
403 } | |
404 } | |
405 VLEAVE(); | |
406 } | |
407 | |
408 static const tw_instr twinstr[] = { | |
409 VTW(1, 1), | |
410 VTW(1, 2), | |
411 VTW(1, 3), | |
412 VTW(1, 4), | |
413 VTW(1, 5), | |
414 VTW(1, 6), | |
415 VTW(1, 7), | |
416 VTW(1, 8), | |
417 VTW(1, 9), | |
418 VTW(1, 10), | |
419 VTW(1, 11), | |
420 VTW(1, 12), | |
421 VTW(1, 13), | |
422 VTW(1, 14), | |
423 VTW(1, 15), | |
424 {TW_NEXT, VL, 0} | |
425 }; | |
426 | |
427 static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cfdftv_16"), twinstr, &GENUS, {99, 52, 4, 0} }; | |
428 | |
429 void XSIMD(codelet_hc2cfdftv_16) (planner *p) { | |
430 X(khc2c_register) (p, hc2cfdftv_16, &desc, HC2C_VIA_DFT); | |
431 } | |
432 #endif |