Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */ | |
29 | |
30 /* | |
31 * This function contains 41 FP additions, 32 FP multiplications, | |
32 * (or, 23 additions, 14 multiplications, 18 fused multiply/add), | |
33 * 51 stack variables, 1 constants, and 16 memory accesses | |
34 */ | |
35 #include "rdft/simd/hc2cbv.h" | |
36 | |
37 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | |
43 V Tm, Tp, TF, TE, Th, Tv, Tc, Tu, T4, Tk, Tf, Tl, T7, Tn, Ta; | |
44 V To, T2, T3, Td, Te, T5, T6, T8, T9, Tg, Tb, TL, TK, TJ, TM; | |
45 V TN, TC, TG, TB, TD, TH, TI, Ti, Tq, T1, Tj, Tr, Ts, Tw, Ty; | |
46 V Tt, Tx, Tz, TA; | |
47 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
48 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
49 T4 = VFNMSCONJ(T3, T2); | |
50 Tk = VFMACONJ(T3, T2); | |
51 Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
52 Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
53 Tf = VFNMSCONJ(Te, Td); | |
54 Tl = VFMACONJ(Te, Td); | |
55 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
57 T7 = VFNMSCONJ(T6, T5); | |
58 Tn = VFMACONJ(T6, T5); | |
59 T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
60 T9 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
61 Ta = VFMSCONJ(T9, T8); | |
62 To = VFMACONJ(T9, T8); | |
63 Tm = VSUB(Tk, Tl); | |
64 Tp = VSUB(Tn, To); | |
65 TF = VADD(Tn, To); | |
66 TE = VADD(Tk, Tl); | |
67 Tg = VSUB(T7, Ta); | |
68 Th = VFMA(LDK(KP707106781), Tg, Tf); | |
69 Tv = VFNMS(LDK(KP707106781), Tg, Tf); | |
70 Tb = VADD(T7, Ta); | |
71 Tc = VFMA(LDK(KP707106781), Tb, T4); | |
72 Tu = VFNMS(LDK(KP707106781), Tb, T4); | |
73 TL = VADD(TE, TF); | |
74 TJ = LDW(&(W[0])); | |
75 TK = VZMULI(TJ, VFMAI(Th, Tc)); | |
76 TM = VADD(TK, TL); | |
77 ST(&(Rp[0]), TM, ms, &(Rp[0])); | |
78 TN = VCONJ(VSUB(TL, TK)); | |
79 ST(&(Rm[0]), TN, -ms, &(Rm[0])); | |
80 TB = LDW(&(W[TWVL * 8])); | |
81 TC = VZMULI(TB, VFMAI(Tv, Tu)); | |
82 TD = LDW(&(W[TWVL * 6])); | |
83 TG = VZMUL(TD, VSUB(TE, TF)); | |
84 TH = VADD(TC, TG); | |
85 ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0])); | |
86 TI = VCONJ(VSUB(TG, TC)); | |
87 ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0])); | |
88 T1 = LDW(&(W[TWVL * 12])); | |
89 Ti = VZMULI(T1, VFNMSI(Th, Tc)); | |
90 Tj = LDW(&(W[TWVL * 10])); | |
91 Tq = VZMUL(Tj, VFNMSI(Tp, Tm)); | |
92 Tr = VADD(Ti, Tq); | |
93 ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)])); | |
94 Ts = VCONJ(VSUB(Tq, Ti)); | |
95 ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)])); | |
96 Tt = LDW(&(W[TWVL * 4])); | |
97 Tw = VZMULI(Tt, VFNMSI(Tv, Tu)); | |
98 Tx = LDW(&(W[TWVL * 2])); | |
99 Ty = VZMUL(Tx, VFMAI(Tp, Tm)); | |
100 Tz = VADD(Tw, Ty); | |
101 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)])); | |
102 TA = VCONJ(VSUB(Ty, Tw)); | |
103 ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)])); | |
104 } | |
105 } | |
106 VLEAVE(); | |
107 } | |
108 | |
109 static const tw_instr twinstr[] = { | |
110 VTW(1, 1), | |
111 VTW(1, 2), | |
112 VTW(1, 3), | |
113 VTW(1, 4), | |
114 VTW(1, 5), | |
115 VTW(1, 6), | |
116 VTW(1, 7), | |
117 {TW_NEXT, VL, 0} | |
118 }; | |
119 | |
120 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} }; | |
121 | |
122 void XSIMD(codelet_hc2cbdftv_8) (planner *p) { | |
123 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT); | |
124 } | |
125 #else | |
126 | |
127 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */ | |
128 | |
129 /* | |
130 * This function contains 41 FP additions, 16 FP multiplications, | |
131 * (or, 41 additions, 16 multiplications, 0 fused multiply/add), | |
132 * 55 stack variables, 1 constants, and 16 memory accesses | |
133 */ | |
134 #include "rdft/simd/hc2cbv.h" | |
135 | |
136 static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
137 { | |
138 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
139 { | |
140 INT m; | |
141 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | |
142 V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To; | |
143 V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO; | |
144 V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH; | |
145 V Ty, Tz, Tx, TF, TD, TM, TE, TL; | |
146 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
147 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
148 T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | |
149 T4 = VCONJ(T3); | |
150 Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
151 Ti = VCONJ(Th); | |
152 T5 = VSUB(T2, T4); | |
153 Tj = VSUB(Tg, Ti); | |
154 To = VADD(T2, T4); | |
155 Tp = VADD(Tg, Ti); | |
156 Tq = VSUB(To, Tp); | |
157 TI = VADD(To, Tp); | |
158 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
159 Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | |
160 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
161 T8 = VCONJ(T7); | |
162 Ta = LD(&(Rm[0]), -ms, &(Rm[0])); | |
163 Tb = VCONJ(Ta); | |
164 T9 = VSUB(T6, T8); | |
165 Td = VSUB(Tb, Tc); | |
166 Te = VMUL(LDK(KP707106781), VADD(T9, Td)); | |
167 Tk = VMUL(LDK(KP707106781), VSUB(T9, Td)); | |
168 Tr = VADD(T6, T8); | |
169 Ts = VADD(Tb, Tc); | |
170 Tt = VBYI(VSUB(Tr, Ts)); | |
171 TJ = VADD(Tr, Ts); | |
172 TP = VADD(TI, TJ); | |
173 Tn = LDW(&(W[TWVL * 10])); | |
174 Tu = VZMUL(Tn, VSUB(Tq, Tt)); | |
175 Tf = VADD(T5, Te); | |
176 Tl = VBYI(VADD(Tj, Tk)); | |
177 T1 = LDW(&(W[TWVL * 12])); | |
178 Tm = VZMULI(T1, VSUB(Tf, Tl)); | |
179 TN = LDW(&(W[0])); | |
180 TO = VZMULI(TN, VADD(Tl, Tf)); | |
181 Tv = VADD(Tm, Tu); | |
182 ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)])); | |
183 TR = VCONJ(VSUB(TP, TO)); | |
184 ST(&(Rm[0]), TR, -ms, &(Rm[0])); | |
185 Tw = VCONJ(VSUB(Tu, Tm)); | |
186 ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)])); | |
187 TQ = VADD(TO, TP); | |
188 ST(&(Rp[0]), TQ, ms, &(Rp[0])); | |
189 TB = LDW(&(W[TWVL * 2])); | |
190 TC = VZMUL(TB, VADD(Tq, Tt)); | |
191 TH = LDW(&(W[TWVL * 6])); | |
192 TK = VZMUL(TH, VSUB(TI, TJ)); | |
193 Ty = VBYI(VSUB(Tk, Tj)); | |
194 Tz = VSUB(T5, Te); | |
195 Tx = LDW(&(W[TWVL * 4])); | |
196 TA = VZMULI(Tx, VADD(Ty, Tz)); | |
197 TF = LDW(&(W[TWVL * 8])); | |
198 TG = VZMULI(TF, VSUB(Tz, Ty)); | |
199 TD = VADD(TA, TC); | |
200 ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)])); | |
201 TM = VCONJ(VSUB(TK, TG)); | |
202 ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0])); | |
203 TE = VCONJ(VSUB(TC, TA)); | |
204 ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)])); | |
205 TL = VADD(TG, TK); | |
206 ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0])); | |
207 } | |
208 } | |
209 VLEAVE(); | |
210 } | |
211 | |
212 static const tw_instr twinstr[] = { | |
213 VTW(1, 1), | |
214 VTW(1, 2), | |
215 VTW(1, 3), | |
216 VTW(1, 4), | |
217 VTW(1, 5), | |
218 VTW(1, 6), | |
219 VTW(1, 7), | |
220 {TW_NEXT, VL, 0} | |
221 }; | |
222 | |
223 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} }; | |
224 | |
225 void XSIMD(codelet_hc2cbdftv_8) (planner *p) { | |
226 X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT); | |
227 } | |
228 #endif |