Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_6.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */ | |
29 | |
30 /* | |
31 * This function contains 29 FP additions, 24 FP multiplications, | |
32 * (or, 17 additions, 12 multiplications, 12 fused multiply/add), | |
33 * 38 stack variables, 2 constants, and 12 memory accesses | |
34 */ | |
35 #include "rdft/simd/hc2cbv.h" | |
36 | |
37 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 V T4, Te, Tj, Tp, Tb, To, Th, Ti, Ta, Tg, T7, Tf, T2, T3, T8; | |
45 V T9, T5, T6, Tx, Tw, Tv, Ty, Tz, Tq, Ts, Tn, Tr, Tt, Tu, Tc; | |
46 V Tk, T1, Td, Tl, Tm; | |
47 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
48 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
49 T4 = VFNMSCONJ(T3, T2); | |
50 Te = VFMACONJ(T3, T2); | |
51 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
52 T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
53 Ta = VFMSCONJ(T9, T8); | |
54 Tg = VFMACONJ(T9, T8); | |
55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
56 T6 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
57 T7 = VFNMSCONJ(T6, T5); | |
58 Tf = VFMACONJ(T6, T5); | |
59 Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg)); | |
60 Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta)); | |
61 Tb = VADD(T7, Ta); | |
62 To = VFNMS(LDK(KP500000000), Tb, T4); | |
63 Th = VADD(Tf, Tg); | |
64 Ti = VFNMS(LDK(KP500000000), Th, Te); | |
65 Tx = VADD(Te, Th); | |
66 Tv = LDW(&(W[0])); | |
67 Tw = VZMULI(Tv, VFMAI(Tp, To)); | |
68 Ty = VADD(Tw, Tx); | |
69 ST(&(Rp[0]), Ty, ms, &(Rp[0])); | |
70 Tz = VCONJ(VSUB(Tx, Tw)); | |
71 ST(&(Rm[0]), Tz, -ms, &(Rm[0])); | |
72 Tn = LDW(&(W[TWVL * 8])); | |
73 Tq = VZMULI(Tn, VFNMSI(Tp, To)); | |
74 Tr = LDW(&(W[TWVL * 6])); | |
75 Ts = VZMUL(Tr, VFMAI(Tj, Ti)); | |
76 Tt = VADD(Tq, Ts); | |
77 ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0])); | |
78 Tu = VCONJ(VSUB(Ts, Tq)); | |
79 ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0])); | |
80 T1 = LDW(&(W[TWVL * 4])); | |
81 Tc = VZMULI(T1, VADD(T4, Tb)); | |
82 Td = LDW(&(W[TWVL * 2])); | |
83 Tk = VZMUL(Td, VFNMSI(Tj, Ti)); | |
84 Tl = VADD(Tc, Tk); | |
85 ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)])); | |
86 Tm = VCONJ(VSUB(Tk, Tc)); | |
87 ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)])); | |
88 } | |
89 } | |
90 VLEAVE(); | |
91 } | |
92 | |
93 static const tw_instr twinstr[] = { | |
94 VTW(1, 1), | |
95 VTW(1, 2), | |
96 VTW(1, 3), | |
97 VTW(1, 4), | |
98 VTW(1, 5), | |
99 {TW_NEXT, VL, 0} | |
100 }; | |
101 | |
102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} }; | |
103 | |
104 void XSIMD(codelet_hc2cbdftv_6) (planner *p) { | |
105 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); | |
106 } | |
107 #else | |
108 | |
109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include rdft/simd/hc2cbv.h */ | |
110 | |
111 /* | |
112 * This function contains 29 FP additions, 14 FP multiplications, | |
113 * (or, 27 additions, 12 multiplications, 2 fused multiply/add), | |
114 * 41 stack variables, 2 constants, and 12 memory accesses | |
115 */ | |
116 #include "rdft/simd/hc2cbv.h" | |
117 | |
118 static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
119 { | |
120 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
122 { | |
123 INT m; | |
124 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { | |
125 V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta; | |
126 V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr; | |
127 V Tq, Ty, To, Tp, TC, TB, Tx, Tw; | |
128 T2 = LD(&(Rp[0]), ms, &(Rp[0])); | |
129 T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | |
130 T4 = VCONJ(T3); | |
131 T5 = VSUB(T2, T4); | |
132 Th = VADD(T2, T4); | |
133 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | |
134 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | |
135 T7 = LD(&(Rm[0]), -ms, &(Rm[0])); | |
136 T8 = VCONJ(T7); | |
137 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | |
138 Tb = VCONJ(Ta); | |
139 T9 = VSUB(T6, T8); | |
140 Td = VSUB(Tb, Tc); | |
141 Te = VADD(T9, Td); | |
142 Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td))); | |
143 Ti = VADD(T6, T8); | |
144 Tj = VADD(Tb, Tc); | |
145 Tk = VADD(Ti, Tj); | |
146 Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj))); | |
147 TA = VADD(Th, Tk); | |
148 T1 = LDW(&(W[TWVL * 4])); | |
149 Tf = VZMULI(T1, VADD(T5, Te)); | |
150 Tl = VFNMS(LDK(KP500000000), Tk, Th); | |
151 Tg = LDW(&(W[TWVL * 2])); | |
152 Tn = VZMUL(Tg, VSUB(Tl, Tm)); | |
153 Tu = LDW(&(W[TWVL * 6])); | |
154 Tv = VZMUL(Tu, VADD(Tm, Tl)); | |
155 Tr = VFNMS(LDK(KP500000000), Te, T5); | |
156 Tq = LDW(&(W[TWVL * 8])); | |
157 Tt = VZMULI(Tq, VSUB(Tr, Ts)); | |
158 Ty = LDW(&(W[0])); | |
159 Tz = VZMULI(Ty, VADD(Ts, Tr)); | |
160 To = VADD(Tf, Tn); | |
161 ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)])); | |
162 Tp = VCONJ(VSUB(Tn, Tf)); | |
163 ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)])); | |
164 TC = VCONJ(VSUB(TA, Tz)); | |
165 ST(&(Rm[0]), TC, -ms, &(Rm[0])); | |
166 TB = VADD(Tz, TA); | |
167 ST(&(Rp[0]), TB, ms, &(Rp[0])); | |
168 Tx = VCONJ(VSUB(Tv, Tt)); | |
169 ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0])); | |
170 Tw = VADD(Tt, Tv); | |
171 ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0])); | |
172 } | |
173 } | |
174 VLEAVE(); | |
175 } | |
176 | |
177 static const tw_instr twinstr[] = { | |
178 VTW(1, 1), | |
179 VTW(1, 2), | |
180 VTW(1, 3), | |
181 VTW(1, 4), | |
182 VTW(1, 5), | |
183 {TW_NEXT, VL, 0} | |
184 }; | |
185 | |
186 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} }; | |
187 | |
188 void XSIMD(codelet_hc2cbdftv_6) (planner *p) { | |
189 X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); | |
190 } | |
191 #endif |