comparison src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_4.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */
29
30 /*
31 * This function contains 15 FP additions, 12 FP multiplications,
32 * (or, 9 additions, 6 multiplications, 6 fused multiply/add),
33 * 20 stack variables, 0 constants, and 8 memory accesses
34 */
35 #include "rdft/simd/hc2cbv.h"
36
37 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 {
40 INT m;
41 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
42 V Th, Tg, T8, Tc, T4, Ta, T7, Tb, T2, T3, T5, T6, Tf, T1, T9;
43 V Td, Tj, Te, Ti;
44 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
45 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
46 T4 = VFNMSCONJ(T3, T2);
47 Ta = VFMACONJ(T3, T2);
48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
49 T6 = LD(&(Rm[0]), -ms, &(Rm[0]));
50 T7 = VFNMSCONJ(T6, T5);
51 Tb = VFMACONJ(T6, T5);
52 Th = VADD(Ta, Tb);
53 Tf = LDW(&(W[0]));
54 Tg = VZMULI(Tf, VFMAI(T7, T4));
55 T1 = LDW(&(W[TWVL * 4]));
56 T8 = VZMULI(T1, VFNMSI(T7, T4));
57 T9 = LDW(&(W[TWVL * 2]));
58 Tc = VZMUL(T9, VSUB(Ta, Tb));
59 Td = VADD(T8, Tc);
60 ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)]));
61 Tj = VCONJ(VSUB(Th, Tg));
62 ST(&(Rm[0]), Tj, -ms, &(Rm[0]));
63 Te = VCONJ(VSUB(Tc, T8));
64 ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)]));
65 Ti = VADD(Tg, Th);
66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
67 }
68 }
69 VLEAVE();
70 }
71
72 static const tw_instr twinstr[] = {
73 VTW(1, 1),
74 VTW(1, 2),
75 VTW(1, 3),
76 {TW_NEXT, VL, 0}
77 };
78
79 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {9, 6, 6, 0} };
80
81 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
82 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
83 }
84 #else
85
86 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include rdft/simd/hc2cbv.h */
87
88 /*
89 * This function contains 15 FP additions, 6 FP multiplications,
90 * (or, 15 additions, 6 multiplications, 0 fused multiply/add),
91 * 22 stack variables, 0 constants, and 8 memory accesses
92 */
93 #include "rdft/simd/hc2cbv.h"
94
95 static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
96 {
97 {
98 INT m;
99 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
100 V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl;
101 V Ta, Te, T1, Tb, Tf, Tg;
102 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
103 T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
104 T4 = VCONJ(T3);
105 T5 = VSUB(T2, T4);
106 Tc = VADD(T2, T4);
107 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
108 T7 = LD(&(Rm[0]), -ms, &(Rm[0]));
109 T8 = VCONJ(T7);
110 T9 = VBYI(VSUB(T6, T8));
111 Td = VADD(T6, T8);
112 Tj = VADD(Tc, Td);
113 Th = LDW(&(W[0]));
114 Ti = VZMULI(Th, VADD(T5, T9));
115 Tk = VADD(Ti, Tj);
116 ST(&(Rp[0]), Tk, ms, &(Rp[0]));
117 Tl = VCONJ(VSUB(Tj, Ti));
118 ST(&(Rm[0]), Tl, -ms, &(Rm[0]));
119 T1 = LDW(&(W[TWVL * 4]));
120 Ta = VZMULI(T1, VSUB(T5, T9));
121 Tb = LDW(&(W[TWVL * 2]));
122 Te = VZMUL(Tb, VSUB(Tc, Td));
123 Tf = VADD(Ta, Te);
124 ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)]));
125 Tg = VCONJ(VSUB(Te, Ta));
126 ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)]));
127 }
128 }
129 VLEAVE();
130 }
131
132 static const tw_instr twinstr[] = {
133 VTW(1, 1),
134 VTW(1, 2),
135 VTW(1, 3),
136 {TW_NEXT, VL, 0}
137 };
138
139 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {15, 6, 0, 0} };
140
141 void XSIMD(codelet_hc2cbdftv_4) (planner *p) {
142 X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT);
143 }
144 #endif