comparison src/fftw-3.3.8/rdft/scalar/r2cf/r2cf_128.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:06:27 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include rdft/scalar/r2cf.h */
29
30 /*
31 * This function contains 956 FP additions, 516 FP multiplications,
32 * (or, 440 additions, 0 multiplications, 516 fused multiply/add),
33 * 186 stack variables, 31 constants, and 256 memory accesses
34 */
35 #include "rdft/scalar/r2cf.h"
36
37 static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP803207531, +0.803207531480644909806676512963141923879569427);
40 DK(KP989176509, +0.989176509964780973451673738016243063983689533);
41 DK(KP741650546, +0.741650546272035369581266691172079863842265220);
42 DK(KP148335987, +0.148335987538347428753676511486911367000625355);
43 DK(KP740951125, +0.740951125354959091175616897495162729728955309);
44 DK(KP998795456, +0.998795456205172392714771604759100694443203615);
45 DK(KP906347169, +0.906347169019147157946142717268914412664134293);
46 DK(KP049126849, +0.049126849769467254105343321271313617079695752);
47 DK(KP970031253, +0.970031253194543992603984207286100251456865962);
48 DK(KP857728610, +0.857728610000272069902269984284770137042490799);
49 DK(KP250486960, +0.250486960191305461595702160124721208578685568);
50 DK(KP599376933, +0.599376933681923766271389869014404232837890546);
51 DK(KP941544065, +0.941544065183020778412509402599502357185589796);
52 DK(KP903989293, +0.903989293123443331586200297230537048710132025);
53 DK(KP357805721, +0.357805721314524104672487743774474392487532769);
54 DK(KP472964775, +0.472964775891319928124438237972992463904131113);
55 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
56 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
57 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
58 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
59 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
60 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
61 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
62 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
63 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
64 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
65 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
66 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
67 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
68 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
69 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
70 {
71 INT i;
72 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
73 E TcD, TdR, T27, T7r, T5P, T8v, Tf, Ta5, Tu, Tbn, TcG, TdS, T2e, T8w, T5S;
74 E T7s, TK, Ta6, TcK, TdU, T2o, T5U, T7w, T8y, TZ, Ta7, TcN, TdV, T2x, T5V;
75 E T7z, T8z, T1g, Taa, TcU, Tex, TcX, Tew, T1v, Tab, T2M, T6A, T7E, T9b, T7H;
76 E T9a, T2T, T6z, T4X, T6L, Tdz, TeL, TdK, TeO, T5G, T6O, T8d, T9p, TaV, Tc3;
77 E Tbi, Tc4, T8o, T9s, T3I, T6E, Tde, TeE, Tdp, TeH, T4r, T6H, T7U, T9i, Tao;
78 E TbW, TaL, TbX, T85, T9l, T1L, Tad, Td3, TeA, Td6, Tez, T20, Tae, T37, T6x;
79 E T7L, T9e, T7O, T9d, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeF, T4g, T4t, T80;
80 E T87, Tdl, TeI, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I;
81 E T8j, T8q, TdG, TeP, T8g, T8p, Tba, Tbj;
82 {
83 E T3, T23, Td, T25, T6, T5N, Ta, T24;
84 {
85 E T1, T2, Tb, Tc;
86 T1 = R0[0];
87 T2 = R0[WS(rs, 32)];
88 T3 = T1 + T2;
89 T23 = T1 - T2;
90 Tb = R0[WS(rs, 56)];
91 Tc = R0[WS(rs, 24)];
92 Td = Tb + Tc;
93 T25 = Tb - Tc;
94 }
95 {
96 E T4, T5, T8, T9;
97 T4 = R0[WS(rs, 16)];
98 T5 = R0[WS(rs, 48)];
99 T6 = T4 + T5;
100 T5N = T4 - T5;
101 T8 = R0[WS(rs, 8)];
102 T9 = R0[WS(rs, 40)];
103 Ta = T8 + T9;
104 T24 = T8 - T9;
105 }
106 TcD = T3 - T6;
107 TdR = Td - Ta;
108 {
109 E T26, T5O, T7, Te;
110 T26 = T24 + T25;
111 T27 = FMA(KP707106781, T26, T23);
112 T7r = FNMS(KP707106781, T26, T23);
113 T5O = T25 - T24;
114 T5P = FNMS(KP707106781, T5O, T5N);
115 T8v = FMA(KP707106781, T5O, T5N);
116 T7 = T3 + T6;
117 Te = Ta + Td;
118 Tf = T7 + Te;
119 Ta5 = T7 - Te;
120 }
121 }
122 {
123 E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b;
124 {
125 E Tg, Th, Tq, Tr;
126 Tg = R0[WS(rs, 4)];
127 Th = R0[WS(rs, 36)];
128 Ti = Tg + Th;
129 T28 = Tg - Th;
130 Tq = R0[WS(rs, 12)];
131 Tr = R0[WS(rs, 44)];
132 Ts = Tq + Tr;
133 T2c = Tq - Tr;
134 }
135 {
136 E Tj, Tk, Tn, To;
137 Tj = R0[WS(rs, 20)];
138 Tk = R0[WS(rs, 52)];
139 Tl = Tj + Tk;
140 T29 = Tj - Tk;
141 Tn = R0[WS(rs, 60)];
142 To = R0[WS(rs, 28)];
143 Tp = Tn + To;
144 T2b = Tn - To;
145 }
146 {
147 E Tm, Tt, TcE, TcF;
148 Tm = Ti + Tl;
149 Tt = Tp + Ts;
150 Tu = Tm + Tt;
151 Tbn = Tt - Tm;
152 TcE = Ti - Tl;
153 TcF = Tp - Ts;
154 TcG = TcE + TcF;
155 TdS = TcF - TcE;
156 }
157 {
158 E T2a, T2d, T5Q, T5R;
159 T2a = FNMS(KP414213562, T29, T28);
160 T2d = FMA(KP414213562, T2c, T2b);
161 T2e = T2a + T2d;
162 T8w = T2d - T2a;
163 T5Q = FMA(KP414213562, T28, T29);
164 T5R = FNMS(KP414213562, T2b, T2c);
165 T5S = T5Q + T5R;
166 T7s = T5Q - T5R;
167 }
168 }
169 {
170 E Ty, T2g, TB, T2l, TF, T2m, TI, T2j;
171 {
172 E Tw, Tx, Tz, TA;
173 Tw = R0[WS(rs, 2)];
174 Tx = R0[WS(rs, 34)];
175 Ty = Tw + Tx;
176 T2g = Tw - Tx;
177 Tz = R0[WS(rs, 18)];
178 TA = R0[WS(rs, 50)];
179 TB = Tz + TA;
180 T2l = Tz - TA;
181 {
182 E TD, TE, T2h, TG, TH, T2i;
183 TD = R0[WS(rs, 10)];
184 TE = R0[WS(rs, 42)];
185 T2h = TD - TE;
186 TG = R0[WS(rs, 58)];
187 TH = R0[WS(rs, 26)];
188 T2i = TG - TH;
189 TF = TD + TE;
190 T2m = T2h - T2i;
191 TI = TG + TH;
192 T2j = T2h + T2i;
193 }
194 }
195 {
196 E TC, TJ, TcI, TcJ;
197 TC = Ty + TB;
198 TJ = TF + TI;
199 TK = TC + TJ;
200 Ta6 = TC - TJ;
201 TcI = Ty - TB;
202 TcJ = TI - TF;
203 TcK = FMA(KP414213562, TcJ, TcI);
204 TdU = FNMS(KP414213562, TcI, TcJ);
205 }
206 {
207 E T2k, T2n, T7u, T7v;
208 T2k = FMA(KP707106781, T2j, T2g);
209 T2n = FMA(KP707106781, T2m, T2l);
210 T2o = FNMS(KP198912367, T2n, T2k);
211 T5U = FMA(KP198912367, T2k, T2n);
212 T7u = FNMS(KP707106781, T2j, T2g);
213 T7v = FNMS(KP707106781, T2m, T2l);
214 T7w = FMA(KP668178637, T7v, T7u);
215 T8y = FNMS(KP668178637, T7u, T7v);
216 }
217 }
218 {
219 E TN, T2p, TQ, T2u, TU, T2v, TX, T2s;
220 {
221 E TL, TM, TO, TP;
222 TL = R0[WS(rs, 62)];
223 TM = R0[WS(rs, 30)];
224 TN = TL + TM;
225 T2p = TL - TM;
226 TO = R0[WS(rs, 14)];
227 TP = R0[WS(rs, 46)];
228 TQ = TO + TP;
229 T2u = TO - TP;
230 {
231 E TS, TT, T2q, TV, TW, T2r;
232 TS = R0[WS(rs, 6)];
233 TT = R0[WS(rs, 38)];
234 T2q = TS - TT;
235 TV = R0[WS(rs, 54)];
236 TW = R0[WS(rs, 22)];
237 T2r = TV - TW;
238 TU = TS + TT;
239 T2v = T2q - T2r;
240 TX = TV + TW;
241 T2s = T2q + T2r;
242 }
243 }
244 {
245 E TR, TY, TcL, TcM;
246 TR = TN + TQ;
247 TY = TU + TX;
248 TZ = TR + TY;
249 Ta7 = TR - TY;
250 TcL = TN - TQ;
251 TcM = TX - TU;
252 TcN = FNMS(KP414213562, TcM, TcL);
253 TdV = FMA(KP414213562, TcL, TcM);
254 }
255 {
256 E T2t, T2w, T7x, T7y;
257 T2t = FMA(KP707106781, T2s, T2p);
258 T2w = FMA(KP707106781, T2v, T2u);
259 T2x = FMA(KP198912367, T2w, T2t);
260 T5V = FNMS(KP198912367, T2t, T2w);
261 T7x = FNMS(KP707106781, T2s, T2p);
262 T7y = FNMS(KP707106781, T2v, T2u);
263 T7z = FNMS(KP668178637, T7y, T7x);
264 T8z = FMA(KP668178637, T7x, T7y);
265 }
266 }
267 {
268 E T14, T2A, T17, T2N, T1b, T2O, T1e, T2D, T1j, T1m, T2H, TcR, T2Q, T1q, T1t;
269 E T2K, TcS, T2R;
270 {
271 E T12, T13, T15, T16;
272 T12 = R0[WS(rs, 1)];
273 T13 = R0[WS(rs, 33)];
274 T14 = T12 + T13;
275 T2A = T12 - T13;
276 T15 = R0[WS(rs, 17)];
277 T16 = R0[WS(rs, 49)];
278 T17 = T15 + T16;
279 T2N = T15 - T16;
280 }
281 {
282 E T19, T1a, T2B, T1c, T1d, T2C;
283 T19 = R0[WS(rs, 9)];
284 T1a = R0[WS(rs, 41)];
285 T2B = T19 - T1a;
286 T1c = R0[WS(rs, 57)];
287 T1d = R0[WS(rs, 25)];
288 T2C = T1c - T1d;
289 T1b = T19 + T1a;
290 T2O = T2B - T2C;
291 T1e = T1c + T1d;
292 T2D = T2B + T2C;
293 }
294 {
295 E T2F, T2G, T2I, T2J;
296 {
297 E T1h, T1i, T1k, T1l;
298 T1h = R0[WS(rs, 5)];
299 T1i = R0[WS(rs, 37)];
300 T1j = T1h + T1i;
301 T2F = T1h - T1i;
302 T1k = R0[WS(rs, 21)];
303 T1l = R0[WS(rs, 53)];
304 T1m = T1k + T1l;
305 T2G = T1k - T1l;
306 }
307 T2H = FNMS(KP414213562, T2G, T2F);
308 TcR = T1j - T1m;
309 T2Q = FMA(KP414213562, T2F, T2G);
310 {
311 E T1o, T1p, T1r, T1s;
312 T1o = R0[WS(rs, 61)];
313 T1p = R0[WS(rs, 29)];
314 T1q = T1o + T1p;
315 T2I = T1o - T1p;
316 T1r = R0[WS(rs, 13)];
317 T1s = R0[WS(rs, 45)];
318 T1t = T1r + T1s;
319 T2J = T1r - T1s;
320 }
321 T2K = FMA(KP414213562, T2J, T2I);
322 TcS = T1q - T1t;
323 T2R = FNMS(KP414213562, T2I, T2J);
324 }
325 {
326 E T18, T1f, TcQ, TcT;
327 T18 = T14 + T17;
328 T1f = T1b + T1e;
329 T1g = T18 + T1f;
330 Taa = T18 - T1f;
331 TcQ = T14 - T17;
332 TcT = TcR + TcS;
333 TcU = FMA(KP707106781, TcT, TcQ);
334 Tex = FNMS(KP707106781, TcT, TcQ);
335 }
336 {
337 E TcV, TcW, T1n, T1u;
338 TcV = T1e - T1b;
339 TcW = TcS - TcR;
340 TcX = FMA(KP707106781, TcW, TcV);
341 Tew = FNMS(KP707106781, TcW, TcV);
342 T1n = T1j + T1m;
343 T1u = T1q + T1t;
344 T1v = T1n + T1u;
345 Tab = T1u - T1n;
346 }
347 {
348 E T2E, T2L, T7C, T7D;
349 T2E = FMA(KP707106781, T2D, T2A);
350 T2L = T2H + T2K;
351 T2M = FMA(KP923879532, T2L, T2E);
352 T6A = FNMS(KP923879532, T2L, T2E);
353 T7C = FNMS(KP707106781, T2D, T2A);
354 T7D = T2Q - T2R;
355 T7E = FMA(KP923879532, T7D, T7C);
356 T9b = FNMS(KP923879532, T7D, T7C);
357 }
358 {
359 E T7F, T7G, T2P, T2S;
360 T7F = FNMS(KP707106781, T2O, T2N);
361 T7G = T2K - T2H;
362 T7H = FMA(KP923879532, T7G, T7F);
363 T9a = FNMS(KP923879532, T7G, T7F);
364 T2P = FMA(KP707106781, T2O, T2N);
365 T2S = T2Q + T2R;
366 T2T = FMA(KP923879532, T2S, T2P);
367 T6z = FNMS(KP923879532, T2S, T2P);
368 }
369 }
370 {
371 E T4z, TaP, T5A, TaQ, T4G, TaT, T5B, TaS, Tbf, Tbg, T4O, Tdw, T5D, Tbc, Tbd;
372 E T4V, Tdx, T5E;
373 {
374 E T4x, T4y, T5y, T5z;
375 T4x = R1[WS(rs, 63)];
376 T4y = R1[WS(rs, 31)];
377 T4z = T4x - T4y;
378 TaP = T4x + T4y;
379 T5y = R1[WS(rs, 47)];
380 T5z = R1[WS(rs, 15)];
381 T5A = T5y - T5z;
382 TaQ = T5z + T5y;
383 }
384 {
385 E T4A, T4B, T4C, T4D, T4E, T4F;
386 T4A = R1[WS(rs, 7)];
387 T4B = R1[WS(rs, 39)];
388 T4C = T4A - T4B;
389 T4D = R1[WS(rs, 55)];
390 T4E = R1[WS(rs, 23)];
391 T4F = T4D - T4E;
392 T4G = T4C + T4F;
393 TaT = T4D + T4E;
394 T5B = T4F - T4C;
395 TaS = T4A + T4B;
396 }
397 {
398 E T4K, T4N, T4R, T4U;
399 {
400 E T4I, T4J, T4L, T4M;
401 T4I = R1[WS(rs, 3)];
402 T4J = R1[WS(rs, 35)];
403 T4K = T4I - T4J;
404 Tbf = T4I + T4J;
405 T4L = R1[WS(rs, 51)];
406 T4M = R1[WS(rs, 19)];
407 T4N = T4L - T4M;
408 Tbg = T4M + T4L;
409 }
410 T4O = FMA(KP414213562, T4N, T4K);
411 Tdw = Tbf - Tbg;
412 T5D = FNMS(KP414213562, T4K, T4N);
413 {
414 E T4P, T4Q, T4S, T4T;
415 T4P = R1[WS(rs, 59)];
416 T4Q = R1[WS(rs, 27)];
417 T4R = T4P - T4Q;
418 Tbc = T4P + T4Q;
419 T4S = R1[WS(rs, 43)];
420 T4T = R1[WS(rs, 11)];
421 T4U = T4S - T4T;
422 Tbd = T4T + T4S;
423 }
424 T4V = FNMS(KP414213562, T4U, T4R);
425 Tdx = Tbc - Tbd;
426 T5E = FMA(KP414213562, T4R, T4U);
427 }
428 {
429 E T4H, T4W, Tdv, Tdy;
430 T4H = FMA(KP707106781, T4G, T4z);
431 T4W = T4O + T4V;
432 T4X = FMA(KP923879532, T4W, T4H);
433 T6L = FNMS(KP923879532, T4W, T4H);
434 Tdv = TaP - TaQ;
435 Tdy = Tdw + Tdx;
436 Tdz = FMA(KP707106781, Tdy, Tdv);
437 TeL = FNMS(KP707106781, Tdy, Tdv);
438 }
439 {
440 E TdI, TdJ, T5C, T5F;
441 TdI = TaT - TaS;
442 TdJ = Tdx - Tdw;
443 TdK = FMA(KP707106781, TdJ, TdI);
444 TeO = FNMS(KP707106781, TdJ, TdI);
445 T5C = FMA(KP707106781, T5B, T5A);
446 T5F = T5D + T5E;
447 T5G = FMA(KP923879532, T5F, T5C);
448 T6O = FNMS(KP923879532, T5F, T5C);
449 }
450 {
451 E T8b, T8c, TaR, TaU;
452 T8b = FNMS(KP707106781, T4G, T4z);
453 T8c = T5E - T5D;
454 T8d = FMA(KP923879532, T8c, T8b);
455 T9p = FNMS(KP923879532, T8c, T8b);
456 TaR = TaP + TaQ;
457 TaU = TaS + TaT;
458 TaV = TaR - TaU;
459 Tc3 = TaR + TaU;
460 }
461 {
462 E Tbe, Tbh, T8m, T8n;
463 Tbe = Tbc + Tbd;
464 Tbh = Tbf + Tbg;
465 Tbi = Tbe - Tbh;
466 Tc4 = Tbh + Tbe;
467 T8m = FNMS(KP707106781, T5B, T5A);
468 T8n = T4V - T4O;
469 T8o = FNMS(KP923879532, T8n, T8m);
470 T9s = FMA(KP923879532, T8n, T8m);
471 }
472 }
473 {
474 E T3k, Tai, T4l, Taj, T3r, Tam, T4m, Tal, TaI, TaJ, T3z, Tdb, T4o, TaF, TaG;
475 E T3G, Tdc, T4p;
476 {
477 E T3i, T3j, T4j, T4k;
478 T3i = R1[0];
479 T3j = R1[WS(rs, 32)];
480 T3k = T3i - T3j;
481 Tai = T3i + T3j;
482 T4j = R1[WS(rs, 16)];
483 T4k = R1[WS(rs, 48)];
484 T4l = T4j - T4k;
485 Taj = T4j + T4k;
486 }
487 {
488 E T3l, T3m, T3n, T3o, T3p, T3q;
489 T3l = R1[WS(rs, 8)];
490 T3m = R1[WS(rs, 40)];
491 T3n = T3l - T3m;
492 T3o = R1[WS(rs, 56)];
493 T3p = R1[WS(rs, 24)];
494 T3q = T3o - T3p;
495 T3r = T3n + T3q;
496 Tam = T3o + T3p;
497 T4m = T3n - T3q;
498 Tal = T3l + T3m;
499 }
500 {
501 E T3v, T3y, T3C, T3F;
502 {
503 E T3t, T3u, T3w, T3x;
504 T3t = R1[WS(rs, 4)];
505 T3u = R1[WS(rs, 36)];
506 T3v = T3t - T3u;
507 TaI = T3t + T3u;
508 T3w = R1[WS(rs, 20)];
509 T3x = R1[WS(rs, 52)];
510 T3y = T3w - T3x;
511 TaJ = T3w + T3x;
512 }
513 T3z = FNMS(KP414213562, T3y, T3v);
514 Tdb = TaI - TaJ;
515 T4o = FMA(KP414213562, T3v, T3y);
516 {
517 E T3A, T3B, T3D, T3E;
518 T3A = R1[WS(rs, 60)];
519 T3B = R1[WS(rs, 28)];
520 T3C = T3A - T3B;
521 TaF = T3A + T3B;
522 T3D = R1[WS(rs, 12)];
523 T3E = R1[WS(rs, 44)];
524 T3F = T3D - T3E;
525 TaG = T3D + T3E;
526 }
527 T3G = FMA(KP414213562, T3F, T3C);
528 Tdc = TaF - TaG;
529 T4p = FNMS(KP414213562, T3C, T3F);
530 }
531 {
532 E T3s, T3H, Tda, Tdd;
533 T3s = FMA(KP707106781, T3r, T3k);
534 T3H = T3z + T3G;
535 T3I = FMA(KP923879532, T3H, T3s);
536 T6E = FNMS(KP923879532, T3H, T3s);
537 Tda = Tai - Taj;
538 Tdd = Tdb + Tdc;
539 Tde = FMA(KP707106781, Tdd, Tda);
540 TeE = FNMS(KP707106781, Tdd, Tda);
541 }
542 {
543 E Tdn, Tdo, T4n, T4q;
544 Tdn = Tam - Tal;
545 Tdo = Tdc - Tdb;
546 Tdp = FMA(KP707106781, Tdo, Tdn);
547 TeH = FNMS(KP707106781, Tdo, Tdn);
548 T4n = FMA(KP707106781, T4m, T4l);
549 T4q = T4o + T4p;
550 T4r = FMA(KP923879532, T4q, T4n);
551 T6H = FNMS(KP923879532, T4q, T4n);
552 }
553 {
554 E T7S, T7T, Tak, Tan;
555 T7S = FNMS(KP707106781, T3r, T3k);
556 T7T = T4o - T4p;
557 T7U = FMA(KP923879532, T7T, T7S);
558 T9i = FNMS(KP923879532, T7T, T7S);
559 Tak = Tai + Taj;
560 Tan = Tal + Tam;
561 Tao = Tak - Tan;
562 TbW = Tak + Tan;
563 }
564 {
565 E TaH, TaK, T83, T84;
566 TaH = TaF + TaG;
567 TaK = TaI + TaJ;
568 TaL = TaH - TaK;
569 TbX = TaK + TaH;
570 T83 = FNMS(KP707106781, T4m, T4l);
571 T84 = T3G - T3z;
572 T85 = FMA(KP923879532, T84, T83);
573 T9l = FNMS(KP923879532, T84, T83);
574 }
575 }
576 {
577 E T1z, T2V, T1C, T38, T1G, T39, T1J, T2Y, T1O, T1R, T32, Td0, T3b, T1V, T1Y;
578 E T35, Td1, T3c;
579 {
580 E T1x, T1y, T1A, T1B;
581 T1x = R0[WS(rs, 63)];
582 T1y = R0[WS(rs, 31)];
583 T1z = T1x + T1y;
584 T2V = T1x - T1y;
585 T1A = R0[WS(rs, 15)];
586 T1B = R0[WS(rs, 47)];
587 T1C = T1A + T1B;
588 T38 = T1A - T1B;
589 }
590 {
591 E T1E, T1F, T2W, T1H, T1I, T2X;
592 T1E = R0[WS(rs, 7)];
593 T1F = R0[WS(rs, 39)];
594 T2W = T1E - T1F;
595 T1H = R0[WS(rs, 55)];
596 T1I = R0[WS(rs, 23)];
597 T2X = T1H - T1I;
598 T1G = T1E + T1F;
599 T39 = T2W - T2X;
600 T1J = T1H + T1I;
601 T2Y = T2W + T2X;
602 }
603 {
604 E T30, T31, T33, T34;
605 {
606 E T1M, T1N, T1P, T1Q;
607 T1M = R0[WS(rs, 3)];
608 T1N = R0[WS(rs, 35)];
609 T1O = T1M + T1N;
610 T30 = T1M - T1N;
611 T1P = R0[WS(rs, 19)];
612 T1Q = R0[WS(rs, 51)];
613 T1R = T1P + T1Q;
614 T31 = T1P - T1Q;
615 }
616 T32 = FNMS(KP414213562, T31, T30);
617 Td0 = T1O - T1R;
618 T3b = FMA(KP414213562, T30, T31);
619 {
620 E T1T, T1U, T1W, T1X;
621 T1T = R0[WS(rs, 59)];
622 T1U = R0[WS(rs, 27)];
623 T1V = T1T + T1U;
624 T33 = T1T - T1U;
625 T1W = R0[WS(rs, 11)];
626 T1X = R0[WS(rs, 43)];
627 T1Y = T1W + T1X;
628 T34 = T1W - T1X;
629 }
630 T35 = FMA(KP414213562, T34, T33);
631 Td1 = T1V - T1Y;
632 T3c = FNMS(KP414213562, T33, T34);
633 }
634 {
635 E T1D, T1K, TcZ, Td2;
636 T1D = T1z + T1C;
637 T1K = T1G + T1J;
638 T1L = T1D + T1K;
639 Tad = T1D - T1K;
640 TcZ = T1z - T1C;
641 Td2 = Td0 + Td1;
642 Td3 = FMA(KP707106781, Td2, TcZ);
643 TeA = FNMS(KP707106781, Td2, TcZ);
644 }
645 {
646 E Td4, Td5, T1S, T1Z;
647 Td4 = T1J - T1G;
648 Td5 = Td1 - Td0;
649 Td6 = FMA(KP707106781, Td5, Td4);
650 Tez = FNMS(KP707106781, Td5, Td4);
651 T1S = T1O + T1R;
652 T1Z = T1V + T1Y;
653 T20 = T1S + T1Z;
654 Tae = T1Z - T1S;
655 }
656 {
657 E T2Z, T36, T7J, T7K;
658 T2Z = FMA(KP707106781, T2Y, T2V);
659 T36 = T32 + T35;
660 T37 = FMA(KP923879532, T36, T2Z);
661 T6x = FNMS(KP923879532, T36, T2Z);
662 T7J = FNMS(KP707106781, T2Y, T2V);
663 T7K = T3b - T3c;
664 T7L = FMA(KP923879532, T7K, T7J);
665 T9e = FNMS(KP923879532, T7K, T7J);
666 }
667 {
668 E T7M, T7N, T3a, T3d;
669 T7M = FNMS(KP707106781, T39, T38);
670 T7N = T35 - T32;
671 T7O = FMA(KP923879532, T7N, T7M);
672 T9d = FNMS(KP923879532, T7N, T7M);
673 T3a = FMA(KP707106781, T39, T38);
674 T3d = T3b + T3c;
675 T3e = FMA(KP923879532, T3d, T3a);
676 T6w = FNMS(KP923879532, T3d, T3a);
677 }
678 }
679 {
680 E T3L, Tdf, T3W, Tar, T42, Tdi, T4d, Tay, T3S, Tdg, T3X, Tau, T49, Tdj, T4e;
681 E TaB, Tdh, Tdk;
682 {
683 E T3J, T3K, Tap, T3U, T3V, Taq;
684 T3J = R1[WS(rs, 2)];
685 T3K = R1[WS(rs, 34)];
686 Tap = T3J + T3K;
687 T3U = R1[WS(rs, 18)];
688 T3V = R1[WS(rs, 50)];
689 Taq = T3U + T3V;
690 T3L = T3J - T3K;
691 Tdf = Tap - Taq;
692 T3W = T3U - T3V;
693 Tar = Tap + Taq;
694 }
695 {
696 E T40, T41, Taw, T4b, T4c, Tax;
697 T40 = R1[WS(rs, 62)];
698 T41 = R1[WS(rs, 30)];
699 Taw = T40 + T41;
700 T4b = R1[WS(rs, 14)];
701 T4c = R1[WS(rs, 46)];
702 Tax = T4b + T4c;
703 T42 = T40 - T41;
704 Tdi = Taw - Tax;
705 T4d = T4b - T4c;
706 Tay = Taw + Tax;
707 }
708 {
709 E T3O, Tas, T3R, Tat;
710 {
711 E T3M, T3N, T3P, T3Q;
712 T3M = R1[WS(rs, 10)];
713 T3N = R1[WS(rs, 42)];
714 T3O = T3M - T3N;
715 Tas = T3M + T3N;
716 T3P = R1[WS(rs, 58)];
717 T3Q = R1[WS(rs, 26)];
718 T3R = T3P - T3Q;
719 Tat = T3P + T3Q;
720 }
721 T3S = T3O + T3R;
722 Tdg = Tat - Tas;
723 T3X = T3O - T3R;
724 Tau = Tas + Tat;
725 }
726 {
727 E T45, Taz, T48, TaA;
728 {
729 E T43, T44, T46, T47;
730 T43 = R1[WS(rs, 6)];
731 T44 = R1[WS(rs, 38)];
732 T45 = T43 - T44;
733 Taz = T43 + T44;
734 T46 = R1[WS(rs, 54)];
735 T47 = R1[WS(rs, 22)];
736 T48 = T46 - T47;
737 TaA = T46 + T47;
738 }
739 T49 = T45 + T48;
740 Tdj = TaA - Taz;
741 T4e = T45 - T48;
742 TaB = Taz + TaA;
743 }
744 TbZ = Tar + Tau;
745 Tc0 = Tay + TaB;
746 {
747 E T3T, T3Y, Tdq, Tdr;
748 T3T = FMA(KP707106781, T3S, T3L);
749 T3Y = FMA(KP707106781, T3X, T3W);
750 T3Z = FNMS(KP198912367, T3Y, T3T);
751 T4s = FMA(KP198912367, T3T, T3Y);
752 Tdq = FNMS(KP414213562, Tdf, Tdg);
753 Tdr = FMA(KP414213562, Tdi, Tdj);
754 Tds = Tdq + Tdr;
755 TeF = Tdr - Tdq;
756 }
757 {
758 E T4a, T4f, T7Y, T7Z;
759 T4a = FMA(KP707106781, T49, T42);
760 T4f = FMA(KP707106781, T4e, T4d);
761 T4g = FMA(KP198912367, T4f, T4a);
762 T4t = FNMS(KP198912367, T4a, T4f);
763 T7Y = FNMS(KP707106781, T49, T42);
764 T7Z = FNMS(KP707106781, T4e, T4d);
765 T80 = FNMS(KP668178637, T7Z, T7Y);
766 T87 = FMA(KP668178637, T7Y, T7Z);
767 }
768 Tdh = FMA(KP414213562, Tdg, Tdf);
769 Tdk = FNMS(KP414213562, Tdj, Tdi);
770 Tdl = Tdh + Tdk;
771 TeI = Tdh - Tdk;
772 {
773 E T7V, T7W, Tav, TaC;
774 T7V = FNMS(KP707106781, T3S, T3L);
775 T7W = FNMS(KP707106781, T3X, T3W);
776 T7X = FMA(KP668178637, T7W, T7V);
777 T86 = FNMS(KP668178637, T7V, T7W);
778 Tav = Tar - Tau;
779 TaC = Tay - TaB;
780 TaD = Tav + TaC;
781 TaM = TaC - Tav;
782 }
783 }
784 {
785 E T50, TdA, T5b, TaY, T5h, TdD, T5s, Tb5, T57, TdB, T5c, Tb1, T5o, TdE, T5t;
786 E Tb8, TdC, TdF;
787 {
788 E T4Y, T4Z, TaW, T59, T5a, TaX;
789 T4Y = R1[WS(rs, 1)];
790 T4Z = R1[WS(rs, 33)];
791 TaW = T4Y + T4Z;
792 T59 = R1[WS(rs, 49)];
793 T5a = R1[WS(rs, 17)];
794 TaX = T5a + T59;
795 T50 = T4Y - T4Z;
796 TdA = TaW - TaX;
797 T5b = T59 - T5a;
798 TaY = TaW + TaX;
799 }
800 {
801 E T5f, T5g, Tb3, T5q, T5r, Tb4;
802 T5f = R1[WS(rs, 61)];
803 T5g = R1[WS(rs, 29)];
804 Tb3 = T5f + T5g;
805 T5q = R1[WS(rs, 45)];
806 T5r = R1[WS(rs, 13)];
807 Tb4 = T5r + T5q;
808 T5h = T5f - T5g;
809 TdD = Tb3 - Tb4;
810 T5s = T5q - T5r;
811 Tb5 = Tb3 + Tb4;
812 }
813 {
814 E T53, TaZ, T56, Tb0;
815 {
816 E T51, T52, T54, T55;
817 T51 = R1[WS(rs, 9)];
818 T52 = R1[WS(rs, 41)];
819 T53 = T51 - T52;
820 TaZ = T51 + T52;
821 T54 = R1[WS(rs, 57)];
822 T55 = R1[WS(rs, 25)];
823 T56 = T54 - T55;
824 Tb0 = T54 + T55;
825 }
826 T57 = T53 + T56;
827 TdB = Tb0 - TaZ;
828 T5c = T56 - T53;
829 Tb1 = TaZ + Tb0;
830 }
831 {
832 E T5k, Tb6, T5n, Tb7;
833 {
834 E T5i, T5j, T5l, T5m;
835 T5i = R1[WS(rs, 5)];
836 T5j = R1[WS(rs, 37)];
837 T5k = T5i - T5j;
838 Tb6 = T5i + T5j;
839 T5l = R1[WS(rs, 53)];
840 T5m = R1[WS(rs, 21)];
841 T5n = T5l - T5m;
842 Tb7 = T5l + T5m;
843 }
844 T5o = T5k + T5n;
845 TdE = Tb7 - Tb6;
846 T5t = T5n - T5k;
847 Tb8 = Tb6 + Tb7;
848 }
849 Tc6 = TaY + Tb1;
850 Tc7 = Tb5 + Tb8;
851 {
852 E T58, T5d, TdL, TdM;
853 T58 = FMA(KP707106781, T57, T50);
854 T5d = FMA(KP707106781, T5c, T5b);
855 T5e = FMA(KP198912367, T5d, T58);
856 T5H = FNMS(KP198912367, T58, T5d);
857 TdL = FNMS(KP414213562, TdA, TdB);
858 TdM = FMA(KP414213562, TdD, TdE);
859 TdN = TdL + TdM;
860 TeM = TdM - TdL;
861 }
862 {
863 E T5p, T5u, T8h, T8i;
864 T5p = FMA(KP707106781, T5o, T5h);
865 T5u = FMA(KP707106781, T5t, T5s);
866 T5v = FNMS(KP198912367, T5u, T5p);
867 T5I = FMA(KP198912367, T5p, T5u);
868 T8h = FNMS(KP707106781, T5o, T5h);
869 T8i = FNMS(KP707106781, T5t, T5s);
870 T8j = FMA(KP668178637, T8i, T8h);
871 T8q = FNMS(KP668178637, T8h, T8i);
872 }
873 TdC = FMA(KP414213562, TdB, TdA);
874 TdF = FNMS(KP414213562, TdE, TdD);
875 TdG = TdC + TdF;
876 TeP = TdF - TdC;
877 {
878 E T8e, T8f, Tb2, Tb9;
879 T8e = FNMS(KP707106781, T57, T50);
880 T8f = FNMS(KP707106781, T5c, T5b);
881 T8g = FNMS(KP668178637, T8f, T8e);
882 T8p = FMA(KP668178637, T8e, T8f);
883 Tb2 = TaY - Tb1;
884 Tb9 = Tb5 - Tb8;
885 Tba = Tb2 + Tb9;
886 Tbj = Tb9 - Tb2;
887 }
888 }
889 {
890 E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce;
891 {
892 E Tv, T10, Tc5, Tc8;
893 Tv = Tf + Tu;
894 T10 = TK + TZ;
895 T11 = Tv + T10;
896 TbV = Tv - T10;
897 Tc5 = Tc3 + Tc4;
898 Tc8 = Tc6 + Tc7;
899 Tc9 = Tc5 - Tc8;
900 Tcf = Tc5 + Tc8;
901 }
902 {
903 E T1w, T21, TbY, Tc1;
904 T1w = T1g + T1v;
905 T21 = T1L + T20;
906 T22 = T1w + T21;
907 Tcb = T21 - T1w;
908 TbY = TbW + TbX;
909 Tc1 = TbZ + Tc0;
910 Tc2 = TbY - Tc1;
911 Tce = TbY + Tc1;
912 }
913 Cr[WS(csr, 32)] = T11 - T22;
914 Ci[WS(csi, 32)] = Tcf - Tce;
915 {
916 E Tca, Tcc, Tcd, Tcg;
917 Tca = Tc2 + Tc9;
918 Cr[WS(csr, 48)] = FNMS(KP707106781, Tca, TbV);
919 Cr[WS(csr, 16)] = FMA(KP707106781, Tca, TbV);
920 Tcc = Tc9 - Tc2;
921 Ci[WS(csi, 16)] = FMA(KP707106781, Tcc, Tcb);
922 Ci[WS(csi, 48)] = FMS(KP707106781, Tcc, Tcb);
923 Tcd = T11 + T22;
924 Tcg = Tce + Tcf;
925 Cr[WS(csr, 64)] = Tcd - Tcg;
926 Cr[0] = Tcd + Tcg;
927 }
928 }
929 {
930 E Tch, Tct, Tck, Tcu, Tco, Tcy, Tcr, Tcz, Tci, Tcj;
931 Tch = Tf - Tu;
932 Tct = TZ - TK;
933 Tci = T1g - T1v;
934 Tcj = T1L - T20;
935 Tck = Tci + Tcj;
936 Tcu = Tcj - Tci;
937 {
938 E Tcm, Tcn, Tcp, Tcq;
939 Tcm = TbW - TbX;
940 Tcn = Tc0 - TbZ;
941 Tco = FMA(KP414213562, Tcn, Tcm);
942 Tcy = FNMS(KP414213562, Tcm, Tcn);
943 Tcp = Tc3 - Tc4;
944 Tcq = Tc7 - Tc6;
945 Tcr = FNMS(KP414213562, Tcq, Tcp);
946 Tcz = FMA(KP414213562, Tcp, Tcq);
947 }
948 {
949 E Tcl, Tcs, Tcx, TcA;
950 Tcl = FMA(KP707106781, Tck, Tch);
951 Tcs = Tco + Tcr;
952 Cr[WS(csr, 56)] = FNMS(KP923879532, Tcs, Tcl);
953 Cr[WS(csr, 8)] = FMA(KP923879532, Tcs, Tcl);
954 Tcx = FMA(KP707106781, Tcu, Tct);
955 TcA = Tcy + Tcz;
956 Ci[WS(csi, 8)] = FMA(KP923879532, TcA, Tcx);
957 Ci[WS(csi, 56)] = FMS(KP923879532, TcA, Tcx);
958 }
959 {
960 E Tcv, Tcw, TcB, TcC;
961 Tcv = FNMS(KP707106781, Tcu, Tct);
962 Tcw = Tcr - Tco;
963 Ci[WS(csi, 24)] = FMS(KP923879532, Tcw, Tcv);
964 Ci[WS(csi, 40)] = FMA(KP923879532, Tcw, Tcv);
965 TcB = FNMS(KP707106781, Tck, Tch);
966 TcC = Tcz - Tcy;
967 Cr[WS(csr, 40)] = FNMS(KP923879532, TcC, TcB);
968 Cr[WS(csr, 24)] = FMA(KP923879532, TcC, TcB);
969 }
970 }
971 {
972 E Ta9, TbB, Tbp, TbL, Tag, TbM, TbJ, TbR, TaO, Tbw, Tbs, TbC, TbG, TbQ, Tbl;
973 E Tbx, Ta8, Tbo;
974 Ta8 = Ta6 + Ta7;
975 Ta9 = FMA(KP707106781, Ta8, Ta5);
976 TbB = FNMS(KP707106781, Ta8, Ta5);
977 Tbo = Ta7 - Ta6;
978 Tbp = FMA(KP707106781, Tbo, Tbn);
979 TbL = FNMS(KP707106781, Tbo, Tbn);
980 {
981 E Tac, Taf, TbH, TbI;
982 Tac = FMA(KP414213562, Tab, Taa);
983 Taf = FNMS(KP414213562, Tae, Tad);
984 Tag = Tac + Taf;
985 TbM = Taf - Tac;
986 TbH = FNMS(KP707106781, Tba, TaV);
987 TbI = FNMS(KP707106781, Tbj, Tbi);
988 TbJ = FMA(KP668178637, TbI, TbH);
989 TbR = FNMS(KP668178637, TbH, TbI);
990 }
991 {
992 E TaE, TaN, Tbq, Tbr;
993 TaE = FMA(KP707106781, TaD, Tao);
994 TaN = FMA(KP707106781, TaM, TaL);
995 TaO = FMA(KP198912367, TaN, TaE);
996 Tbw = FNMS(KP198912367, TaE, TaN);
997 Tbq = FNMS(KP414213562, Taa, Tab);
998 Tbr = FMA(KP414213562, Tad, Tae);
999 Tbs = Tbq + Tbr;
1000 TbC = Tbr - Tbq;
1001 }
1002 {
1003 E TbE, TbF, Tbb, Tbk;
1004 TbE = FNMS(KP707106781, TaD, Tao);
1005 TbF = FNMS(KP707106781, TaM, TaL);
1006 TbG = FNMS(KP668178637, TbF, TbE);
1007 TbQ = FMA(KP668178637, TbE, TbF);
1008 Tbb = FMA(KP707106781, Tba, TaV);
1009 Tbk = FMA(KP707106781, Tbj, Tbi);
1010 Tbl = FNMS(KP198912367, Tbk, Tbb);
1011 Tbx = FMA(KP198912367, Tbb, Tbk);
1012 }
1013 {
1014 E Tah, Tbm, Tbv, Tby;
1015 Tah = FMA(KP923879532, Tag, Ta9);
1016 Tbm = TaO + Tbl;
1017 Cr[WS(csr, 60)] = FNMS(KP980785280, Tbm, Tah);
1018 Cr[WS(csr, 4)] = FMA(KP980785280, Tbm, Tah);
1019 Tbv = FMA(KP923879532, Tbs, Tbp);
1020 Tby = Tbw + Tbx;
1021 Ci[WS(csi, 4)] = FMA(KP980785280, Tby, Tbv);
1022 Ci[WS(csi, 60)] = FMS(KP980785280, Tby, Tbv);
1023 }
1024 {
1025 E Tbt, Tbu, Tbz, TbA;
1026 Tbt = FNMS(KP923879532, Tbs, Tbp);
1027 Tbu = Tbl - TaO;
1028 Ci[WS(csi, 28)] = FMS(KP980785280, Tbu, Tbt);
1029 Ci[WS(csi, 36)] = FMA(KP980785280, Tbu, Tbt);
1030 Tbz = FNMS(KP923879532, Tag, Ta9);
1031 TbA = Tbx - Tbw;
1032 Cr[WS(csr, 36)] = FNMS(KP980785280, TbA, Tbz);
1033 Cr[WS(csr, 28)] = FMA(KP980785280, TbA, Tbz);
1034 }
1035 {
1036 E TbD, TbK, TbP, TbS;
1037 TbD = FMA(KP923879532, TbC, TbB);
1038 TbK = TbG + TbJ;
1039 Cr[WS(csr, 52)] = FNMS(KP831469612, TbK, TbD);
1040 Cr[WS(csr, 12)] = FMA(KP831469612, TbK, TbD);
1041 TbP = FNMS(KP923879532, TbM, TbL);
1042 TbS = TbQ + TbR;
1043 Ci[WS(csi, 12)] = -(FMA(KP831469612, TbS, TbP));
1044 Ci[WS(csi, 52)] = FNMS(KP831469612, TbS, TbP);
1045 }
1046 {
1047 E TbN, TbO, TbT, TbU;
1048 TbN = FMA(KP923879532, TbM, TbL);
1049 TbO = TbJ - TbG;
1050 Ci[WS(csi, 20)] = FMA(KP831469612, TbO, TbN);
1051 Ci[WS(csi, 44)] = FMS(KP831469612, TbO, TbN);
1052 TbT = FNMS(KP923879532, TbC, TbB);
1053 TbU = TbQ - TbR;
1054 Cr[WS(csr, 44)] = FNMS(KP831469612, TbU, TbT);
1055 Cr[WS(csr, 20)] = FMA(KP831469612, TbU, TbT);
1056 }
1057 }
1058 {
1059 E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfi, TeK, Tf2, TeV, Tfh, TeY, Tf8, TeR;
1060 E Tf3;
1061 {
1062 E Tet, Teu, Tfa, Tfb;
1063 Tet = FNMS(KP707106781, TcG, TcD);
1064 Teu = TdV - TdU;
1065 Tev = FNMS(KP923879532, Teu, Tet);
1066 Tf7 = FMA(KP923879532, Teu, Tet);
1067 Tfa = FMA(KP923879532, TeF, TeE);
1068 Tfb = FMA(KP923879532, TeI, TeH);
1069 Tfc = FNMS(KP303346683, Tfb, Tfa);
1070 Tfm = FMA(KP303346683, Tfa, Tfb);
1071 }
1072 {
1073 E Tfd, Tfe, Tey, TeB;
1074 Tfd = FMA(KP923879532, TeM, TeL);
1075 Tfe = FNMS(KP923879532, TeP, TeO);
1076 Tff = FMA(KP303346683, Tfe, Tfd);
1077 Tfn = FNMS(KP303346683, Tfd, Tfe);
1078 Tey = FMA(KP668178637, Tex, Tew);
1079 TeB = FNMS(KP668178637, TeA, Tez);
1080 TeC = Tey - TeB;
1081 Tfi = Tey + TeB;
1082 }
1083 {
1084 E TeG, TeJ, TeT, TeU;
1085 TeG = FNMS(KP923879532, TeF, TeE);
1086 TeJ = FNMS(KP923879532, TeI, TeH);
1087 TeK = FMA(KP534511135, TeJ, TeG);
1088 Tf2 = FNMS(KP534511135, TeG, TeJ);
1089 TeT = FNMS(KP707106781, TdS, TdR);
1090 TeU = TcN - TcK;
1091 TeV = FMA(KP923879532, TeU, TeT);
1092 Tfh = FNMS(KP923879532, TeU, TeT);
1093 }
1094 {
1095 E TeW, TeX, TeN, TeQ;
1096 TeW = FMA(KP668178637, Tez, TeA);
1097 TeX = FNMS(KP668178637, Tew, Tex);
1098 TeY = TeW - TeX;
1099 Tf8 = TeX + TeW;
1100 TeN = FNMS(KP923879532, TeM, TeL);
1101 TeQ = FMA(KP923879532, TeP, TeO);
1102 TeR = FNMS(KP534511135, TeQ, TeN);
1103 Tf3 = FMA(KP534511135, TeN, TeQ);
1104 }
1105 {
1106 E TeD, TeS, Tf1, Tf4;
1107 TeD = FMA(KP831469612, TeC, Tev);
1108 TeS = TeK + TeR;
1109 Cr[WS(csr, 54)] = FNMS(KP881921264, TeS, TeD);
1110 Cr[WS(csr, 10)] = FMA(KP881921264, TeS, TeD);
1111 Tf1 = FMA(KP831469612, TeY, TeV);
1112 Tf4 = Tf2 + Tf3;
1113 Ci[WS(csi, 10)] = FMA(KP881921264, Tf4, Tf1);
1114 Ci[WS(csi, 54)] = FMS(KP881921264, Tf4, Tf1);
1115 }
1116 {
1117 E TeZ, Tf0, Tf5, Tf6;
1118 TeZ = FNMS(KP831469612, TeY, TeV);
1119 Tf0 = TeR - TeK;
1120 Ci[WS(csi, 22)] = FMS(KP881921264, Tf0, TeZ);
1121 Ci[WS(csi, 42)] = FMA(KP881921264, Tf0, TeZ);
1122 Tf5 = FNMS(KP831469612, TeC, Tev);
1123 Tf6 = Tf3 - Tf2;
1124 Cr[WS(csr, 42)] = FNMS(KP881921264, Tf6, Tf5);
1125 Cr[WS(csr, 22)] = FMA(KP881921264, Tf6, Tf5);
1126 }
1127 {
1128 E Tf9, Tfg, Tfl, Tfo;
1129 Tf9 = FMA(KP831469612, Tf8, Tf7);
1130 Tfg = Tfc + Tff;
1131 Cr[WS(csr, 58)] = FNMS(KP956940335, Tfg, Tf9);
1132 Cr[WS(csr, 6)] = FMA(KP956940335, Tfg, Tf9);
1133 Tfl = FMA(KP831469612, Tfi, Tfh);
1134 Tfo = Tfm + Tfn;
1135 Ci[WS(csi, 6)] = -(FMA(KP956940335, Tfo, Tfl));
1136 Ci[WS(csi, 58)] = FNMS(KP956940335, Tfo, Tfl);
1137 }
1138 {
1139 E Tfj, Tfk, Tfp, Tfq;
1140 Tfj = FNMS(KP831469612, Tfi, Tfh);
1141 Tfk = Tff - Tfc;
1142 Ci[WS(csi, 26)] = FMA(KP956940335, Tfk, Tfj);
1143 Ci[WS(csi, 38)] = FMS(KP956940335, Tfk, Tfj);
1144 Tfp = FNMS(KP831469612, Tf8, Tf7);
1145 Tfq = Tfm - Tfn;
1146 Cr[WS(csr, 38)] = FNMS(KP956940335, Tfq, Tfp);
1147 Cr[WS(csr, 26)] = FMA(KP956940335, Tfq, Tfp);
1148 }
1149 }
1150 {
1151 E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tek, Tdu, Te4, TdX, Tej, Te0, Tea, TdP;
1152 E Te5;
1153 {
1154 E TcH, TcO, Tec, Ted;
1155 TcH = FMA(KP707106781, TcG, TcD);
1156 TcO = TcK + TcN;
1157 TcP = FMA(KP923879532, TcO, TcH);
1158 Te9 = FNMS(KP923879532, TcO, TcH);
1159 Tec = FNMS(KP923879532, Tdl, Tde);
1160 Ted = FNMS(KP923879532, Tds, Tdp);
1161 Tee = FNMS(KP820678790, Ted, Tec);
1162 Teo = FMA(KP820678790, Tec, Ted);
1163 }
1164 {
1165 E Tef, Teg, TcY, Td7;
1166 Tef = FNMS(KP923879532, TdG, Tdz);
1167 Teg = FNMS(KP923879532, TdN, TdK);
1168 Teh = FMA(KP820678790, Teg, Tef);
1169 Tep = FNMS(KP820678790, Tef, Teg);
1170 TcY = FMA(KP198912367, TcX, TcU);
1171 Td7 = FNMS(KP198912367, Td6, Td3);
1172 Td8 = TcY + Td7;
1173 Tek = Td7 - TcY;
1174 }
1175 {
1176 E Tdm, Tdt, TdT, TdW;
1177 Tdm = FMA(KP923879532, Tdl, Tde);
1178 Tdt = FMA(KP923879532, Tds, Tdp);
1179 Tdu = FMA(KP098491403, Tdt, Tdm);
1180 Te4 = FNMS(KP098491403, Tdm, Tdt);
1181 TdT = FMA(KP707106781, TdS, TdR);
1182 TdW = TdU + TdV;
1183 TdX = FMA(KP923879532, TdW, TdT);
1184 Tej = FNMS(KP923879532, TdW, TdT);
1185 }
1186 {
1187 E TdY, TdZ, TdH, TdO;
1188 TdY = FNMS(KP198912367, TcU, TcX);
1189 TdZ = FMA(KP198912367, Td3, Td6);
1190 Te0 = TdY + TdZ;
1191 Tea = TdZ - TdY;
1192 TdH = FMA(KP923879532, TdG, Tdz);
1193 TdO = FMA(KP923879532, TdN, TdK);
1194 TdP = FNMS(KP098491403, TdO, TdH);
1195 Te5 = FMA(KP098491403, TdH, TdO);
1196 }
1197 {
1198 E Td9, TdQ, Te3, Te6;
1199 Td9 = FMA(KP980785280, Td8, TcP);
1200 TdQ = Tdu + TdP;
1201 Cr[WS(csr, 62)] = FNMS(KP995184726, TdQ, Td9);
1202 Cr[WS(csr, 2)] = FMA(KP995184726, TdQ, Td9);
1203 Te3 = FMA(KP980785280, Te0, TdX);
1204 Te6 = Te4 + Te5;
1205 Ci[WS(csi, 2)] = FMA(KP995184726, Te6, Te3);
1206 Ci[WS(csi, 62)] = FMS(KP995184726, Te6, Te3);
1207 }
1208 {
1209 E Te1, Te2, Te7, Te8;
1210 Te1 = FNMS(KP980785280, Te0, TdX);
1211 Te2 = TdP - Tdu;
1212 Ci[WS(csi, 30)] = FMS(KP995184726, Te2, Te1);
1213 Ci[WS(csi, 34)] = FMA(KP995184726, Te2, Te1);
1214 Te7 = FNMS(KP980785280, Td8, TcP);
1215 Te8 = Te5 - Te4;
1216 Cr[WS(csr, 34)] = FNMS(KP995184726, Te8, Te7);
1217 Cr[WS(csr, 30)] = FMA(KP995184726, Te8, Te7);
1218 }
1219 {
1220 E Teb, Tei, Ten, Teq;
1221 Teb = FMA(KP980785280, Tea, Te9);
1222 Tei = Tee + Teh;
1223 Cr[WS(csr, 50)] = FNMS(KP773010453, Tei, Teb);
1224 Cr[WS(csr, 14)] = FMA(KP773010453, Tei, Teb);
1225 Ten = FNMS(KP980785280, Tek, Tej);
1226 Teq = Teo + Tep;
1227 Ci[WS(csi, 14)] = -(FMA(KP773010453, Teq, Ten));
1228 Ci[WS(csi, 50)] = FNMS(KP773010453, Teq, Ten);
1229 }
1230 {
1231 E Tel, Tem, Ter, Tes;
1232 Tel = FMA(KP980785280, Tek, Tej);
1233 Tem = Teh - Tee;
1234 Ci[WS(csi, 18)] = FMA(KP773010453, Tem, Tel);
1235 Ci[WS(csi, 46)] = FMS(KP773010453, Tem, Tel);
1236 Ter = FNMS(KP980785280, Tea, Te9);
1237 Tes = Teo - Tep;
1238 Cr[WS(csr, 46)] = FNMS(KP773010453, Tes, Ter);
1239 Cr[WS(csr, 18)] = FMA(KP773010453, Tes, Ter);
1240 }
1241 }
1242 {
1243 E T6v, T77, T6C, T7i, T6Y, T78, T6V, T7h, T6R, T7n, T72, T7f, T6K, T7m, T73;
1244 E T7c;
1245 {
1246 E T6t, T6u, T6T, T6U;
1247 T6t = FNMS(KP923879532, T2e, T27);
1248 T6u = T5U - T5V;
1249 T6v = FNMS(KP980785280, T6u, T6t);
1250 T77 = FMA(KP980785280, T6u, T6t);
1251 {
1252 E T6y, T6B, T6W, T6X;
1253 T6y = FMA(KP820678790, T6x, T6w);
1254 T6B = FNMS(KP820678790, T6A, T6z);
1255 T6C = T6y - T6B;
1256 T7i = T6B + T6y;
1257 T6W = FNMS(KP820678790, T6w, T6x);
1258 T6X = FMA(KP820678790, T6z, T6A);
1259 T6Y = T6W - T6X;
1260 T78 = T6X + T6W;
1261 }
1262 T6T = FNMS(KP923879532, T5S, T5P);
1263 T6U = T2x - T2o;
1264 T6V = FNMS(KP980785280, T6U, T6T);
1265 T7h = FMA(KP980785280, T6U, T6T);
1266 {
1267 E T6N, T7d, T6Q, T7e, T6M, T6P;
1268 T6M = T5I - T5H;
1269 T6N = FNMS(KP980785280, T6M, T6L);
1270 T7d = FMA(KP980785280, T6M, T6L);
1271 T6P = T5v - T5e;
1272 T6Q = FMA(KP980785280, T6P, T6O);
1273 T7e = FNMS(KP980785280, T6P, T6O);
1274 T6R = FNMS(KP472964775, T6Q, T6N);
1275 T7n = FNMS(KP357805721, T7d, T7e);
1276 T72 = FMA(KP472964775, T6N, T6Q);
1277 T7f = FMA(KP357805721, T7e, T7d);
1278 }
1279 {
1280 E T6G, T7a, T6J, T7b, T6F, T6I;
1281 T6F = T4s - T4t;
1282 T6G = FNMS(KP980785280, T6F, T6E);
1283 T7a = FMA(KP980785280, T6F, T6E);
1284 T6I = T4g - T3Z;
1285 T6J = FNMS(KP980785280, T6I, T6H);
1286 T7b = FMA(KP980785280, T6I, T6H);
1287 T6K = FNMS(KP472964775, T6J, T6G);
1288 T7m = FNMS(KP357805721, T7a, T7b);
1289 T73 = FMA(KP472964775, T6G, T6J);
1290 T7c = FMA(KP357805721, T7b, T7a);
1291 }
1292 }
1293 {
1294 E T6D, T6S, T71, T74;
1295 T6D = FMA(KP773010453, T6C, T6v);
1296 T6S = T6K + T6R;
1297 Cr[WS(csr, 55)] = FNMS(KP903989293, T6S, T6D);
1298 Cr[WS(csr, 9)] = FMA(KP903989293, T6S, T6D);
1299 T71 = FNMS(KP773010453, T6Y, T6V);
1300 T74 = T72 - T73;
1301 Ci[WS(csi, 9)] = FMS(KP903989293, T74, T71);
1302 Ci[WS(csi, 55)] = FMA(KP903989293, T74, T71);
1303 }
1304 {
1305 E T6Z, T70, T75, T76;
1306 T6Z = FMA(KP773010453, T6Y, T6V);
1307 T70 = T6R - T6K;
1308 Ci[WS(csi, 23)] = FMA(KP903989293, T70, T6Z);
1309 Ci[WS(csi, 41)] = FMS(KP903989293, T70, T6Z);
1310 T75 = FNMS(KP773010453, T6C, T6v);
1311 T76 = T73 + T72;
1312 Cr[WS(csr, 41)] = FNMS(KP903989293, T76, T75);
1313 Cr[WS(csr, 23)] = FMA(KP903989293, T76, T75);
1314 }
1315 {
1316 E T79, T7g, T7l, T7o;
1317 T79 = FMA(KP773010453, T78, T77);
1318 T7g = T7c + T7f;
1319 Cr[WS(csr, 57)] = FNMS(KP941544065, T7g, T79);
1320 Cr[WS(csr, 7)] = FMA(KP941544065, T7g, T79);
1321 T7l = FMA(KP773010453, T7i, T7h);
1322 T7o = T7m - T7n;
1323 Ci[WS(csi, 7)] = FMA(KP941544065, T7o, T7l);
1324 Ci[WS(csi, 57)] = FMS(KP941544065, T7o, T7l);
1325 }
1326 {
1327 E T7j, T7k, T7p, T7q;
1328 T7j = FNMS(KP773010453, T7i, T7h);
1329 T7k = T7f - T7c;
1330 Ci[WS(csi, 25)] = FMS(KP941544065, T7k, T7j);
1331 Ci[WS(csi, 39)] = FMA(KP941544065, T7k, T7j);
1332 T7p = FNMS(KP773010453, T78, T77);
1333 T7q = T7m + T7n;
1334 Cr[WS(csr, 39)] = FMA(KP941544065, T7q, T7p);
1335 Cr[WS(csr, 25)] = FNMS(KP941544065, T7q, T7p);
1336 }
1337 }
1338 {
1339 E T99, T9L, T9g, T9W, T9C, T9M, T9z, T9V, T9v, Ta0, T9H, T9T, T9o, Ta1, T9G;
1340 E T9Q;
1341 {
1342 E T97, T98, T9x, T9y;
1343 T97 = FNMS(KP923879532, T7s, T7r);
1344 T98 = T8z - T8y;
1345 T99 = FNMS(KP831469612, T98, T97);
1346 T9L = FMA(KP831469612, T98, T97);
1347 {
1348 E T9c, T9f, T9A, T9B;
1349 T9c = FMA(KP534511135, T9b, T9a);
1350 T9f = FNMS(KP534511135, T9e, T9d);
1351 T9g = T9c - T9f;
1352 T9W = T9c + T9f;
1353 T9A = FMA(KP534511135, T9d, T9e);
1354 T9B = FNMS(KP534511135, T9a, T9b);
1355 T9C = T9A - T9B;
1356 T9M = T9B + T9A;
1357 }
1358 T9x = FNMS(KP923879532, T8w, T8v);
1359 T9y = T7z - T7w;
1360 T9z = FMA(KP831469612, T9y, T9x);
1361 T9V = FNMS(KP831469612, T9y, T9x);
1362 {
1363 E T9r, T9R, T9u, T9S, T9q, T9t;
1364 T9q = T8p - T8q;
1365 T9r = FNMS(KP831469612, T9q, T9p);
1366 T9R = FMA(KP831469612, T9q, T9p);
1367 T9t = T8j - T8g;
1368 T9u = FNMS(KP831469612, T9t, T9s);
1369 T9S = FMA(KP831469612, T9t, T9s);
1370 T9v = FMA(KP599376933, T9u, T9r);
1371 Ta0 = FMA(KP250486960, T9R, T9S);
1372 T9H = FNMS(KP599376933, T9r, T9u);
1373 T9T = FNMS(KP250486960, T9S, T9R);
1374 }
1375 {
1376 E T9k, T9O, T9n, T9P, T9j, T9m;
1377 T9j = T87 - T86;
1378 T9k = FNMS(KP831469612, T9j, T9i);
1379 T9O = FMA(KP831469612, T9j, T9i);
1380 T9m = T7X - T80;
1381 T9n = FNMS(KP831469612, T9m, T9l);
1382 T9P = FMA(KP831469612, T9m, T9l);
1383 T9o = FMA(KP599376933, T9n, T9k);
1384 Ta1 = FMA(KP250486960, T9O, T9P);
1385 T9G = FNMS(KP599376933, T9k, T9n);
1386 T9Q = FNMS(KP250486960, T9P, T9O);
1387 }
1388 }
1389 {
1390 E T9h, T9w, T9F, T9I;
1391 T9h = FMA(KP881921264, T9g, T99);
1392 T9w = T9o + T9v;
1393 Cr[WS(csr, 53)] = FNMS(KP857728610, T9w, T9h);
1394 Cr[WS(csr, 11)] = FMA(KP857728610, T9w, T9h);
1395 T9F = FMA(KP881921264, T9C, T9z);
1396 T9I = T9G - T9H;
1397 Ci[WS(csi, 11)] = FMA(KP857728610, T9I, T9F);
1398 Ci[WS(csi, 53)] = FMS(KP857728610, T9I, T9F);
1399 }
1400 {
1401 E T9D, T9E, T9J, T9K;
1402 T9D = FNMS(KP881921264, T9C, T9z);
1403 T9E = T9v - T9o;
1404 Ci[WS(csi, 21)] = FMS(KP857728610, T9E, T9D);
1405 Ci[WS(csi, 43)] = FMA(KP857728610, T9E, T9D);
1406 T9J = FNMS(KP881921264, T9g, T99);
1407 T9K = T9G + T9H;
1408 Cr[WS(csr, 43)] = FMA(KP857728610, T9K, T9J);
1409 Cr[WS(csr, 21)] = FNMS(KP857728610, T9K, T9J);
1410 }
1411 {
1412 E T9N, T9U, T9Z, Ta2;
1413 T9N = FMA(KP881921264, T9M, T9L);
1414 T9U = T9Q + T9T;
1415 Cr[WS(csr, 59)] = FNMS(KP970031253, T9U, T9N);
1416 Cr[WS(csr, 5)] = FMA(KP970031253, T9U, T9N);
1417 T9Z = FMA(KP881921264, T9W, T9V);
1418 Ta2 = Ta0 - Ta1;
1419 Ci[WS(csi, 5)] = FMS(KP970031253, Ta2, T9Z);
1420 Ci[WS(csi, 59)] = FMA(KP970031253, Ta2, T9Z);
1421 }
1422 {
1423 E T9X, T9Y, Ta3, Ta4;
1424 T9X = FNMS(KP881921264, T9W, T9V);
1425 T9Y = T9T - T9Q;
1426 Ci[WS(csi, 27)] = FMA(KP970031253, T9Y, T9X);
1427 Ci[WS(csi, 37)] = FMS(KP970031253, T9Y, T9X);
1428 Ta3 = FNMS(KP881921264, T9M, T9L);
1429 Ta4 = Ta1 + Ta0;
1430 Cr[WS(csr, 37)] = FNMS(KP970031253, Ta4, Ta3);
1431 Cr[WS(csr, 27)] = FMA(KP970031253, Ta4, Ta3);
1432 }
1433 }
1434 {
1435 E T2z, T69, T3g, T6k, T60, T6a, T5X, T6j, T5L, T6p, T64, T6h, T4w, T6o, T65;
1436 E T6e;
1437 {
1438 E T2f, T2y, T5T, T5W;
1439 T2f = FMA(KP923879532, T2e, T27);
1440 T2y = T2o + T2x;
1441 T2z = FMA(KP980785280, T2y, T2f);
1442 T69 = FNMS(KP980785280, T2y, T2f);
1443 {
1444 E T2U, T3f, T5Y, T5Z;
1445 T2U = FNMS(KP098491403, T2T, T2M);
1446 T3f = FMA(KP098491403, T3e, T37);
1447 T3g = T2U + T3f;
1448 T6k = T3f - T2U;
1449 T5Y = FMA(KP098491403, T2M, T2T);
1450 T5Z = FNMS(KP098491403, T37, T3e);
1451 T60 = T5Y + T5Z;
1452 T6a = T5Y - T5Z;
1453 }
1454 T5T = FMA(KP923879532, T5S, T5P);
1455 T5W = T5U + T5V;
1456 T5X = FMA(KP980785280, T5W, T5T);
1457 T6j = FNMS(KP980785280, T5W, T5T);
1458 {
1459 E T5x, T6f, T5K, T6g, T5w, T5J;
1460 T5w = T5e + T5v;
1461 T5x = FMA(KP980785280, T5w, T4X);
1462 T6f = FNMS(KP980785280, T5w, T4X);
1463 T5J = T5H + T5I;
1464 T5K = FMA(KP980785280, T5J, T5G);
1465 T6g = FNMS(KP980785280, T5J, T5G);
1466 T5L = FNMS(KP049126849, T5K, T5x);
1467 T6p = FNMS(KP906347169, T6f, T6g);
1468 T64 = FMA(KP049126849, T5x, T5K);
1469 T6h = FMA(KP906347169, T6g, T6f);
1470 }
1471 {
1472 E T4i, T6c, T4v, T6d, T4h, T4u;
1473 T4h = T3Z + T4g;
1474 T4i = FMA(KP980785280, T4h, T3I);
1475 T6c = FNMS(KP980785280, T4h, T3I);
1476 T4u = T4s + T4t;
1477 T4v = FMA(KP980785280, T4u, T4r);
1478 T6d = FNMS(KP980785280, T4u, T4r);
1479 T4w = FNMS(KP049126849, T4v, T4i);
1480 T6o = FNMS(KP906347169, T6c, T6d);
1481 T65 = FMA(KP049126849, T4i, T4v);
1482 T6e = FMA(KP906347169, T6d, T6c);
1483 }
1484 }
1485 {
1486 E T3h, T5M, T63, T66;
1487 T3h = FMA(KP995184726, T3g, T2z);
1488 T5M = T4w + T5L;
1489 Cr[WS(csr, 63)] = FNMS(KP998795456, T5M, T3h);
1490 Cr[WS(csr, 1)] = FMA(KP998795456, T5M, T3h);
1491 T63 = FMA(KP995184726, T60, T5X);
1492 T66 = T64 - T65;
1493 Ci[WS(csi, 1)] = FMS(KP998795456, T66, T63);
1494 Ci[WS(csi, 63)] = FMA(KP998795456, T66, T63);
1495 }
1496 {
1497 E T61, T62, T67, T68;
1498 T61 = FNMS(KP995184726, T60, T5X);
1499 T62 = T5L - T4w;
1500 Ci[WS(csi, 31)] = FMA(KP998795456, T62, T61);
1501 Ci[WS(csi, 33)] = FMS(KP998795456, T62, T61);
1502 T67 = FNMS(KP995184726, T3g, T2z);
1503 T68 = T65 + T64;
1504 Cr[WS(csr, 33)] = FNMS(KP998795456, T68, T67);
1505 Cr[WS(csr, 31)] = FMA(KP998795456, T68, T67);
1506 }
1507 {
1508 E T6b, T6i, T6n, T6q;
1509 T6b = FMA(KP995184726, T6a, T69);
1510 T6i = T6e + T6h;
1511 Cr[WS(csr, 49)] = FNMS(KP740951125, T6i, T6b);
1512 Cr[WS(csr, 15)] = FMA(KP740951125, T6i, T6b);
1513 T6n = FMA(KP995184726, T6k, T6j);
1514 T6q = T6o - T6p;
1515 Ci[WS(csi, 15)] = FMA(KP740951125, T6q, T6n);
1516 Ci[WS(csi, 49)] = FMS(KP740951125, T6q, T6n);
1517 }
1518 {
1519 E T6l, T6m, T6r, T6s;
1520 T6l = FNMS(KP995184726, T6k, T6j);
1521 T6m = T6h - T6e;
1522 Ci[WS(csi, 17)] = FMS(KP740951125, T6m, T6l);
1523 Ci[WS(csi, 47)] = FMA(KP740951125, T6m, T6l);
1524 T6r = FNMS(KP995184726, T6a, T69);
1525 T6s = T6o + T6p;
1526 Cr[WS(csr, 47)] = FMA(KP740951125, T6s, T6r);
1527 Cr[WS(csr, 17)] = FNMS(KP740951125, T6s, T6r);
1528 }
1529 }
1530 {
1531 E T7B, T8N, T7Q, T8Y, T8E, T8O, T8B, T8X, T8t, T92, T8J, T8V, T8a, T93, T8I;
1532 E T8S;
1533 {
1534 E T7t, T7A, T8x, T8A;
1535 T7t = FMA(KP923879532, T7s, T7r);
1536 T7A = T7w + T7z;
1537 T7B = FMA(KP831469612, T7A, T7t);
1538 T8N = FNMS(KP831469612, T7A, T7t);
1539 {
1540 E T7I, T7P, T8C, T8D;
1541 T7I = FMA(KP303346683, T7H, T7E);
1542 T7P = FNMS(KP303346683, T7O, T7L);
1543 T7Q = T7I + T7P;
1544 T8Y = T7P - T7I;
1545 T8C = FNMS(KP303346683, T7E, T7H);
1546 T8D = FMA(KP303346683, T7L, T7O);
1547 T8E = T8C + T8D;
1548 T8O = T8D - T8C;
1549 }
1550 T8x = FMA(KP923879532, T8w, T8v);
1551 T8A = T8y + T8z;
1552 T8B = FMA(KP831469612, T8A, T8x);
1553 T8X = FNMS(KP831469612, T8A, T8x);
1554 {
1555 E T8l, T8T, T8s, T8U, T8k, T8r;
1556 T8k = T8g + T8j;
1557 T8l = FMA(KP831469612, T8k, T8d);
1558 T8T = FNMS(KP831469612, T8k, T8d);
1559 T8r = T8p + T8q;
1560 T8s = FMA(KP831469612, T8r, T8o);
1561 T8U = FNMS(KP831469612, T8r, T8o);
1562 T8t = FMA(KP148335987, T8s, T8l);
1563 T92 = FMA(KP741650546, T8T, T8U);
1564 T8J = FNMS(KP148335987, T8l, T8s);
1565 T8V = FNMS(KP741650546, T8U, T8T);
1566 }
1567 {
1568 E T82, T8Q, T89, T8R, T81, T88;
1569 T81 = T7X + T80;
1570 T82 = FMA(KP831469612, T81, T7U);
1571 T8Q = FNMS(KP831469612, T81, T7U);
1572 T88 = T86 + T87;
1573 T89 = FMA(KP831469612, T88, T85);
1574 T8R = FNMS(KP831469612, T88, T85);
1575 T8a = FMA(KP148335987, T89, T82);
1576 T93 = FMA(KP741650546, T8Q, T8R);
1577 T8I = FNMS(KP148335987, T82, T89);
1578 T8S = FNMS(KP741650546, T8R, T8Q);
1579 }
1580 }
1581 {
1582 E T7R, T8u, T8H, T8K;
1583 T7R = FMA(KP956940335, T7Q, T7B);
1584 T8u = T8a + T8t;
1585 Cr[WS(csr, 61)] = FNMS(KP989176509, T8u, T7R);
1586 Cr[WS(csr, 3)] = FMA(KP989176509, T8u, T7R);
1587 T8H = FMA(KP956940335, T8E, T8B);
1588 T8K = T8I - T8J;
1589 Ci[WS(csi, 3)] = FMA(KP989176509, T8K, T8H);
1590 Ci[WS(csi, 61)] = FMS(KP989176509, T8K, T8H);
1591 }
1592 {
1593 E T8F, T8G, T8L, T8M;
1594 T8F = FNMS(KP956940335, T8E, T8B);
1595 T8G = T8t - T8a;
1596 Ci[WS(csi, 29)] = FMS(KP989176509, T8G, T8F);
1597 Ci[WS(csi, 35)] = FMA(KP989176509, T8G, T8F);
1598 T8L = FNMS(KP956940335, T7Q, T7B);
1599 T8M = T8I + T8J;
1600 Cr[WS(csr, 35)] = FMA(KP989176509, T8M, T8L);
1601 Cr[WS(csr, 29)] = FNMS(KP989176509, T8M, T8L);
1602 }
1603 {
1604 E T8P, T8W, T91, T94;
1605 T8P = FMA(KP956940335, T8O, T8N);
1606 T8W = T8S + T8V;
1607 Cr[WS(csr, 51)] = FNMS(KP803207531, T8W, T8P);
1608 Cr[WS(csr, 13)] = FMA(KP803207531, T8W, T8P);
1609 T91 = FNMS(KP956940335, T8Y, T8X);
1610 T94 = T92 - T93;
1611 Ci[WS(csi, 13)] = FMS(KP803207531, T94, T91);
1612 Ci[WS(csi, 51)] = FMA(KP803207531, T94, T91);
1613 }
1614 {
1615 E T8Z, T90, T95, T96;
1616 T8Z = FMA(KP956940335, T8Y, T8X);
1617 T90 = T8V - T8S;
1618 Ci[WS(csi, 19)] = FMA(KP803207531, T90, T8Z);
1619 Ci[WS(csi, 45)] = FMS(KP803207531, T90, T8Z);
1620 T95 = FNMS(KP956940335, T8O, T8N);
1621 T96 = T93 + T92;
1622 Cr[WS(csr, 45)] = FNMS(KP803207531, T96, T95);
1623 Cr[WS(csr, 19)] = FMA(KP803207531, T96, T95);
1624 }
1625 }
1626 }
1627 }
1628 }
1629
1630 static const kr2c_desc desc = { 128, "r2cf_128", {440, 0, 516, 0}, &GENUS };
1631
1632 void X(codelet_r2cf_128) (planner *p) {
1633 X(kr2c_register) (p, r2cf_128, &desc);
1634 }
1635
1636 #else
1637
1638 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include rdft/scalar/r2cf.h */
1639
1640 /*
1641 * This function contains 956 FP additions, 330 FP multiplications,
1642 * (or, 812 additions, 186 multiplications, 144 fused multiply/add),
1643 * 186 stack variables, 31 constants, and 256 memory accesses
1644 */
1645 #include "rdft/scalar/r2cf.h"
1646
1647 static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
1648 {
1649 DK(KP803207531, +0.803207531480644909806676512963141923879569427);
1650 DK(KP595699304, +0.595699304492433343467036528829969889511926338);
1651 DK(KP146730474, +0.146730474455361751658850129646717819706215317);
1652 DK(KP989176509, +0.989176509964780973451673738016243063983689533);
1653 DK(KP740951125, +0.740951125354959091175616897495162729728955309);
1654 DK(KP671558954, +0.671558954847018400625376850427421803228750632);
1655 DK(KP049067674, +0.049067674327418014254954976942682658314745363);
1656 DK(KP998795456, +0.998795456205172392714771604759100694443203615);
1657 DK(KP242980179, +0.242980179903263889948274162077471118320990783);
1658 DK(KP970031253, +0.970031253194543992603984207286100251456865962);
1659 DK(KP514102744, +0.514102744193221726593693838968815772608049120);
1660 DK(KP857728610, +0.857728610000272069902269984284770137042490799);
1661 DK(KP336889853, +0.336889853392220050689253212619147570477766780);
1662 DK(KP941544065, +0.941544065183020778412509402599502357185589796);
1663 DK(KP427555093, +0.427555093430282094320966856888798534304578629);
1664 DK(KP903989293, +0.903989293123443331586200297230537048710132025);
1665 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1666 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1667 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1668 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1669 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1670 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1671 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1672 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1673 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1674 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1675 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1676 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1677 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1678 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1679 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1680 {
1681 INT i;
1682 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
1683 E TcD, TdU, T27, T7r, T5S, T8y, Tf, Ta5, Tu, Tbq, TcG, TdV, T2e, T8z, T5V;
1684 E T7s, TK, Ta6, TcK, TdX, T2o, T5X, T7w, T8B, TZ, Ta7, TcN, TdY, T2x, T5Y;
1685 E T7z, T8C, T1g, Taa, TcU, TeA, TcX, Tez, T1v, Tab, T2M, T6z, T7E, T9e, T7H;
1686 E T9d, T2T, T6A, T4X, T6L, Tdz, TeL, TdK, TeP, T5G, T6P, T8d, T9p, TaV, Tc3;
1687 E Tbi, Tc4, T8o, T9t, T3I, T6H, Tde, TeH, Tdp, TeF, T4r, T6F, T7U, T9l, Tao;
1688 E TbW, TaL, TbX, T85, T9j, T1L, Tad, Td3, Tew, Td6, Tex, T20, Tae, T37, T6x;
1689 E T7L, T9a, T7O, T9b, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeI, T4g, T4t, T80;
1690 E T87, Tdl, TeE, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I;
1691 E T8j, T8q, TdG, TeO, T8g, T8p, Tba, Tbj;
1692 {
1693 E T3, T23, Td, T25, T6, T5R, Ta, T24;
1694 {
1695 E T1, T2, Tb, Tc;
1696 T1 = R0[0];
1697 T2 = R0[WS(rs, 32)];
1698 T3 = T1 + T2;
1699 T23 = T1 - T2;
1700 Tb = R0[WS(rs, 56)];
1701 Tc = R0[WS(rs, 24)];
1702 Td = Tb + Tc;
1703 T25 = Tb - Tc;
1704 }
1705 {
1706 E T4, T5, T8, T9;
1707 T4 = R0[WS(rs, 16)];
1708 T5 = R0[WS(rs, 48)];
1709 T6 = T4 + T5;
1710 T5R = T4 - T5;
1711 T8 = R0[WS(rs, 8)];
1712 T9 = R0[WS(rs, 40)];
1713 Ta = T8 + T9;
1714 T24 = T8 - T9;
1715 }
1716 TcD = T3 - T6;
1717 TdU = Td - Ta;
1718 {
1719 E T26, T5Q, T7, Te;
1720 T26 = KP707106781 * (T24 + T25);
1721 T27 = T23 + T26;
1722 T7r = T23 - T26;
1723 T5Q = KP707106781 * (T25 - T24);
1724 T5S = T5Q - T5R;
1725 T8y = T5R + T5Q;
1726 T7 = T3 + T6;
1727 Te = Ta + Td;
1728 Tf = T7 + Te;
1729 Ta5 = T7 - Te;
1730 }
1731 }
1732 {
1733 E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b;
1734 {
1735 E Tg, Th, Tq, Tr;
1736 Tg = R0[WS(rs, 4)];
1737 Th = R0[WS(rs, 36)];
1738 Ti = Tg + Th;
1739 T28 = Tg - Th;
1740 Tq = R0[WS(rs, 12)];
1741 Tr = R0[WS(rs, 44)];
1742 Ts = Tq + Tr;
1743 T2c = Tq - Tr;
1744 }
1745 {
1746 E Tj, Tk, Tn, To;
1747 Tj = R0[WS(rs, 20)];
1748 Tk = R0[WS(rs, 52)];
1749 Tl = Tj + Tk;
1750 T29 = Tj - Tk;
1751 Tn = R0[WS(rs, 60)];
1752 To = R0[WS(rs, 28)];
1753 Tp = Tn + To;
1754 T2b = Tn - To;
1755 }
1756 {
1757 E Tm, Tt, TcE, TcF;
1758 Tm = Ti + Tl;
1759 Tt = Tp + Ts;
1760 Tu = Tm + Tt;
1761 Tbq = Tt - Tm;
1762 TcE = Ti - Tl;
1763 TcF = Tp - Ts;
1764 TcG = KP707106781 * (TcE + TcF);
1765 TdV = KP707106781 * (TcF - TcE);
1766 }
1767 {
1768 E T2a, T2d, T5T, T5U;
1769 T2a = FNMS(KP382683432, T29, KP923879532 * T28);
1770 T2d = FMA(KP923879532, T2b, KP382683432 * T2c);
1771 T2e = T2a + T2d;
1772 T8z = T2d - T2a;
1773 T5T = FNMS(KP923879532, T2c, KP382683432 * T2b);
1774 T5U = FMA(KP382683432, T28, KP923879532 * T29);
1775 T5V = T5T - T5U;
1776 T7s = T5U + T5T;
1777 }
1778 }
1779 {
1780 E Ty, T2g, TB, T2m, TF, T2l, TI, T2j;
1781 {
1782 E Tw, Tx, Tz, TA;
1783 Tw = R0[WS(rs, 2)];
1784 Tx = R0[WS(rs, 34)];
1785 Ty = Tw + Tx;
1786 T2g = Tw - Tx;
1787 Tz = R0[WS(rs, 18)];
1788 TA = R0[WS(rs, 50)];
1789 TB = Tz + TA;
1790 T2m = Tz - TA;
1791 {
1792 E TD, TE, T2h, TG, TH, T2i;
1793 TD = R0[WS(rs, 10)];
1794 TE = R0[WS(rs, 42)];
1795 T2h = TD - TE;
1796 TG = R0[WS(rs, 58)];
1797 TH = R0[WS(rs, 26)];
1798 T2i = TG - TH;
1799 TF = TD + TE;
1800 T2l = KP707106781 * (T2i - T2h);
1801 TI = TG + TH;
1802 T2j = KP707106781 * (T2h + T2i);
1803 }
1804 }
1805 {
1806 E TC, TJ, TcI, TcJ;
1807 TC = Ty + TB;
1808 TJ = TF + TI;
1809 TK = TC + TJ;
1810 Ta6 = TC - TJ;
1811 TcI = Ty - TB;
1812 TcJ = TI - TF;
1813 TcK = FMA(KP923879532, TcI, KP382683432 * TcJ);
1814 TdX = FNMS(KP382683432, TcI, KP923879532 * TcJ);
1815 }
1816 {
1817 E T2k, T2n, T7u, T7v;
1818 T2k = T2g + T2j;
1819 T2n = T2l - T2m;
1820 T2o = FMA(KP980785280, T2k, KP195090322 * T2n);
1821 T5X = FNMS(KP195090322, T2k, KP980785280 * T2n);
1822 T7u = T2g - T2j;
1823 T7v = T2m + T2l;
1824 T7w = FMA(KP831469612, T7u, KP555570233 * T7v);
1825 T8B = FNMS(KP555570233, T7u, KP831469612 * T7v);
1826 }
1827 }
1828 {
1829 E TN, T2p, TQ, T2v, TU, T2u, TX, T2s;
1830 {
1831 E TL, TM, TO, TP;
1832 TL = R0[WS(rs, 62)];
1833 TM = R0[WS(rs, 30)];
1834 TN = TL + TM;
1835 T2p = TL - TM;
1836 TO = R0[WS(rs, 14)];
1837 TP = R0[WS(rs, 46)];
1838 TQ = TO + TP;
1839 T2v = TO - TP;
1840 {
1841 E TS, TT, T2q, TV, TW, T2r;
1842 TS = R0[WS(rs, 6)];
1843 TT = R0[WS(rs, 38)];
1844 T2q = TS - TT;
1845 TV = R0[WS(rs, 54)];
1846 TW = R0[WS(rs, 22)];
1847 T2r = TV - TW;
1848 TU = TS + TT;
1849 T2u = KP707106781 * (T2r - T2q);
1850 TX = TV + TW;
1851 T2s = KP707106781 * (T2q + T2r);
1852 }
1853 }
1854 {
1855 E TR, TY, TcL, TcM;
1856 TR = TN + TQ;
1857 TY = TU + TX;
1858 TZ = TR + TY;
1859 Ta7 = TR - TY;
1860 TcL = TN - TQ;
1861 TcM = TX - TU;
1862 TcN = FNMS(KP382683432, TcM, KP923879532 * TcL);
1863 TdY = FMA(KP382683432, TcL, KP923879532 * TcM);
1864 }
1865 {
1866 E T2t, T2w, T7x, T7y;
1867 T2t = T2p + T2s;
1868 T2w = T2u - T2v;
1869 T2x = FNMS(KP195090322, T2w, KP980785280 * T2t);
1870 T5Y = FMA(KP195090322, T2t, KP980785280 * T2w);
1871 T7x = T2p - T2s;
1872 T7y = T2v + T2u;
1873 T7z = FNMS(KP555570233, T7y, KP831469612 * T7x);
1874 T8C = FMA(KP555570233, T7x, KP831469612 * T7y);
1875 }
1876 }
1877 {
1878 E T14, T2N, T17, T2D, T1b, T2O, T1e, T2C, T1j, T1m, T2K, TcR, T2Q, T1q, T1t;
1879 E T2H, TcS, T2R;
1880 {
1881 E T12, T13, T15, T16;
1882 T12 = R0[WS(rs, 1)];
1883 T13 = R0[WS(rs, 33)];
1884 T14 = T12 + T13;
1885 T2N = T12 - T13;
1886 T15 = R0[WS(rs, 17)];
1887 T16 = R0[WS(rs, 49)];
1888 T17 = T15 + T16;
1889 T2D = T15 - T16;
1890 }
1891 {
1892 E T19, T1a, T2B, T1c, T1d, T2A;
1893 T19 = R0[WS(rs, 9)];
1894 T1a = R0[WS(rs, 41)];
1895 T2B = T19 - T1a;
1896 T1c = R0[WS(rs, 57)];
1897 T1d = R0[WS(rs, 25)];
1898 T2A = T1c - T1d;
1899 T1b = T19 + T1a;
1900 T2O = KP707106781 * (T2B + T2A);
1901 T1e = T1c + T1d;
1902 T2C = KP707106781 * (T2A - T2B);
1903 }
1904 {
1905 E T2I, T2J, T2F, T2G;
1906 {
1907 E T1h, T1i, T1k, T1l;
1908 T1h = R0[WS(rs, 5)];
1909 T1i = R0[WS(rs, 37)];
1910 T1j = T1h + T1i;
1911 T2I = T1h - T1i;
1912 T1k = R0[WS(rs, 21)];
1913 T1l = R0[WS(rs, 53)];
1914 T1m = T1k + T1l;
1915 T2J = T1k - T1l;
1916 }
1917 T2K = FMA(KP382683432, T2I, KP923879532 * T2J);
1918 TcR = T1j - T1m;
1919 T2Q = FNMS(KP382683432, T2J, KP923879532 * T2I);
1920 {
1921 E T1o, T1p, T1r, T1s;
1922 T1o = R0[WS(rs, 61)];
1923 T1p = R0[WS(rs, 29)];
1924 T1q = T1o + T1p;
1925 T2F = T1o - T1p;
1926 T1r = R0[WS(rs, 13)];
1927 T1s = R0[WS(rs, 45)];
1928 T1t = T1r + T1s;
1929 T2G = T1r - T1s;
1930 }
1931 T2H = FNMS(KP923879532, T2G, KP382683432 * T2F);
1932 TcS = T1q - T1t;
1933 T2R = FMA(KP923879532, T2F, KP382683432 * T2G);
1934 }
1935 {
1936 E T18, T1f, TcQ, TcT;
1937 T18 = T14 + T17;
1938 T1f = T1b + T1e;
1939 T1g = T18 + T1f;
1940 Taa = T18 - T1f;
1941 TcQ = T14 - T17;
1942 TcT = KP707106781 * (TcR + TcS);
1943 TcU = TcQ + TcT;
1944 TeA = TcQ - TcT;
1945 }
1946 {
1947 E TcV, TcW, T1n, T1u;
1948 TcV = T1e - T1b;
1949 TcW = KP707106781 * (TcS - TcR);
1950 TcX = TcV + TcW;
1951 Tez = TcW - TcV;
1952 T1n = T1j + T1m;
1953 T1u = T1q + T1t;
1954 T1v = T1n + T1u;
1955 Tab = T1u - T1n;
1956 }
1957 {
1958 E T2E, T2L, T7C, T7D;
1959 T2E = T2C - T2D;
1960 T2L = T2H - T2K;
1961 T2M = T2E + T2L;
1962 T6z = T2L - T2E;
1963 T7C = T2N - T2O;
1964 T7D = T2K + T2H;
1965 T7E = T7C + T7D;
1966 T9e = T7C - T7D;
1967 }
1968 {
1969 E T7F, T7G, T2P, T2S;
1970 T7F = T2D + T2C;
1971 T7G = T2R - T2Q;
1972 T7H = T7F + T7G;
1973 T9d = T7G - T7F;
1974 T2P = T2N + T2O;
1975 T2S = T2Q + T2R;
1976 T2T = T2P + T2S;
1977 T6A = T2P - T2S;
1978 }
1979 }
1980 {
1981 E T4z, TaP, T5B, TaQ, T4G, TaT, T5y, TaS, Tbf, Tbg, T4O, Tdw, T5E, Tbc, Tbd;
1982 E T4V, Tdx, T5D;
1983 {
1984 E T4x, T4y, T5z, T5A;
1985 T4x = R1[WS(rs, 63)];
1986 T4y = R1[WS(rs, 31)];
1987 T4z = T4x - T4y;
1988 TaP = T4x + T4y;
1989 T5z = R1[WS(rs, 15)];
1990 T5A = R1[WS(rs, 47)];
1991 T5B = T5z - T5A;
1992 TaQ = T5z + T5A;
1993 }
1994 {
1995 E T4A, T4B, T4C, T4D, T4E, T4F;
1996 T4A = R1[WS(rs, 7)];
1997 T4B = R1[WS(rs, 39)];
1998 T4C = T4A - T4B;
1999 T4D = R1[WS(rs, 55)];
2000 T4E = R1[WS(rs, 23)];
2001 T4F = T4D - T4E;
2002 T4G = KP707106781 * (T4C + T4F);
2003 TaT = T4D + T4E;
2004 T5y = KP707106781 * (T4F - T4C);
2005 TaS = T4A + T4B;
2006 }
2007 {
2008 E T4K, T4N, T4R, T4U;
2009 {
2010 E T4I, T4J, T4L, T4M;
2011 T4I = R1[WS(rs, 3)];
2012 T4J = R1[WS(rs, 35)];
2013 T4K = T4I - T4J;
2014 Tbf = T4I + T4J;
2015 T4L = R1[WS(rs, 19)];
2016 T4M = R1[WS(rs, 51)];
2017 T4N = T4L - T4M;
2018 Tbg = T4L + T4M;
2019 }
2020 T4O = FNMS(KP382683432, T4N, KP923879532 * T4K);
2021 Tdw = Tbf - Tbg;
2022 T5E = FMA(KP382683432, T4K, KP923879532 * T4N);
2023 {
2024 E T4P, T4Q, T4S, T4T;
2025 T4P = R1[WS(rs, 59)];
2026 T4Q = R1[WS(rs, 27)];
2027 T4R = T4P - T4Q;
2028 Tbc = T4P + T4Q;
2029 T4S = R1[WS(rs, 11)];
2030 T4T = R1[WS(rs, 43)];
2031 T4U = T4S - T4T;
2032 Tbd = T4S + T4T;
2033 }
2034 T4V = FMA(KP923879532, T4R, KP382683432 * T4U);
2035 Tdx = Tbc - Tbd;
2036 T5D = FNMS(KP923879532, T4U, KP382683432 * T4R);
2037 }
2038 {
2039 E T4H, T4W, Tdv, Tdy;
2040 T4H = T4z + T4G;
2041 T4W = T4O + T4V;
2042 T4X = T4H + T4W;
2043 T6L = T4H - T4W;
2044 Tdv = TaP - TaQ;
2045 Tdy = KP707106781 * (Tdw + Tdx);
2046 Tdz = Tdv + Tdy;
2047 TeL = Tdv - Tdy;
2048 }
2049 {
2050 E TdI, TdJ, T5C, T5F;
2051 TdI = TaT - TaS;
2052 TdJ = KP707106781 * (Tdx - Tdw);
2053 TdK = TdI + TdJ;
2054 TeP = TdJ - TdI;
2055 T5C = T5y - T5B;
2056 T5F = T5D - T5E;
2057 T5G = T5C + T5F;
2058 T6P = T5F - T5C;
2059 }
2060 {
2061 E T8b, T8c, TaR, TaU;
2062 T8b = T4z - T4G;
2063 T8c = T5E + T5D;
2064 T8d = T8b + T8c;
2065 T9p = T8b - T8c;
2066 TaR = TaP + TaQ;
2067 TaU = TaS + TaT;
2068 TaV = TaR - TaU;
2069 Tc3 = TaR + TaU;
2070 }
2071 {
2072 E Tbe, Tbh, T8m, T8n;
2073 Tbe = Tbc + Tbd;
2074 Tbh = Tbf + Tbg;
2075 Tbi = Tbe - Tbh;
2076 Tc4 = Tbh + Tbe;
2077 T8m = T5B + T5y;
2078 T8n = T4V - T4O;
2079 T8o = T8m + T8n;
2080 T9t = T8n - T8m;
2081 }
2082 }
2083 {
2084 E T3k, Tai, T4m, Taj, T3r, Tam, T4j, Tal, TaI, TaJ, T3z, Tdb, T4p, TaF, TaG;
2085 E T3G, Tdc, T4o;
2086 {
2087 E T3i, T3j, T4k, T4l;
2088 T3i = R1[0];
2089 T3j = R1[WS(rs, 32)];
2090 T3k = T3i - T3j;
2091 Tai = T3i + T3j;
2092 T4k = R1[WS(rs, 16)];
2093 T4l = R1[WS(rs, 48)];
2094 T4m = T4k - T4l;
2095 Taj = T4k + T4l;
2096 }
2097 {
2098 E T3l, T3m, T3n, T3o, T3p, T3q;
2099 T3l = R1[WS(rs, 8)];
2100 T3m = R1[WS(rs, 40)];
2101 T3n = T3l - T3m;
2102 T3o = R1[WS(rs, 56)];
2103 T3p = R1[WS(rs, 24)];
2104 T3q = T3o - T3p;
2105 T3r = KP707106781 * (T3n + T3q);
2106 Tam = T3o + T3p;
2107 T4j = KP707106781 * (T3q - T3n);
2108 Tal = T3l + T3m;
2109 }
2110 {
2111 E T3v, T3y, T3C, T3F;
2112 {
2113 E T3t, T3u, T3w, T3x;
2114 T3t = R1[WS(rs, 4)];
2115 T3u = R1[WS(rs, 36)];
2116 T3v = T3t - T3u;
2117 TaI = T3t + T3u;
2118 T3w = R1[WS(rs, 20)];
2119 T3x = R1[WS(rs, 52)];
2120 T3y = T3w - T3x;
2121 TaJ = T3w + T3x;
2122 }
2123 T3z = FNMS(KP382683432, T3y, KP923879532 * T3v);
2124 Tdb = TaI - TaJ;
2125 T4p = FMA(KP382683432, T3v, KP923879532 * T3y);
2126 {
2127 E T3A, T3B, T3D, T3E;
2128 T3A = R1[WS(rs, 60)];
2129 T3B = R1[WS(rs, 28)];
2130 T3C = T3A - T3B;
2131 TaF = T3A + T3B;
2132 T3D = R1[WS(rs, 12)];
2133 T3E = R1[WS(rs, 44)];
2134 T3F = T3D - T3E;
2135 TaG = T3D + T3E;
2136 }
2137 T3G = FMA(KP923879532, T3C, KP382683432 * T3F);
2138 Tdc = TaF - TaG;
2139 T4o = FNMS(KP923879532, T3F, KP382683432 * T3C);
2140 }
2141 {
2142 E T3s, T3H, Tda, Tdd;
2143 T3s = T3k + T3r;
2144 T3H = T3z + T3G;
2145 T3I = T3s + T3H;
2146 T6H = T3s - T3H;
2147 Tda = Tai - Taj;
2148 Tdd = KP707106781 * (Tdb + Tdc);
2149 Tde = Tda + Tdd;
2150 TeH = Tda - Tdd;
2151 }
2152 {
2153 E Tdn, Tdo, T4n, T4q;
2154 Tdn = Tam - Tal;
2155 Tdo = KP707106781 * (Tdc - Tdb);
2156 Tdp = Tdn + Tdo;
2157 TeF = Tdo - Tdn;
2158 T4n = T4j - T4m;
2159 T4q = T4o - T4p;
2160 T4r = T4n + T4q;
2161 T6F = T4q - T4n;
2162 }
2163 {
2164 E T7S, T7T, Tak, Tan;
2165 T7S = T3k - T3r;
2166 T7T = T4p + T4o;
2167 T7U = T7S + T7T;
2168 T9l = T7S - T7T;
2169 Tak = Tai + Taj;
2170 Tan = Tal + Tam;
2171 Tao = Tak - Tan;
2172 TbW = Tak + Tan;
2173 }
2174 {
2175 E TaH, TaK, T83, T84;
2176 TaH = TaF + TaG;
2177 TaK = TaI + TaJ;
2178 TaL = TaH - TaK;
2179 TbX = TaK + TaH;
2180 T83 = T4m + T4j;
2181 T84 = T3G - T3z;
2182 T85 = T83 + T84;
2183 T9j = T84 - T83;
2184 }
2185 }
2186 {
2187 E T1z, T2V, T1C, T39, T1G, T38, T1J, T2Y, T1O, T1R, T32, Td0, T3c, T1V, T1Y;
2188 E T35, Td1, T3b;
2189 {
2190 E T1x, T1y, T1A, T1B;
2191 T1x = R0[WS(rs, 63)];
2192 T1y = R0[WS(rs, 31)];
2193 T1z = T1x + T1y;
2194 T2V = T1x - T1y;
2195 T1A = R0[WS(rs, 15)];
2196 T1B = R0[WS(rs, 47)];
2197 T1C = T1A + T1B;
2198 T39 = T1A - T1B;
2199 }
2200 {
2201 E T1E, T1F, T2W, T1H, T1I, T2X;
2202 T1E = R0[WS(rs, 7)];
2203 T1F = R0[WS(rs, 39)];
2204 T2W = T1E - T1F;
2205 T1H = R0[WS(rs, 55)];
2206 T1I = R0[WS(rs, 23)];
2207 T2X = T1H - T1I;
2208 T1G = T1E + T1F;
2209 T38 = KP707106781 * (T2X - T2W);
2210 T1J = T1H + T1I;
2211 T2Y = KP707106781 * (T2W + T2X);
2212 }
2213 {
2214 E T30, T31, T33, T34;
2215 {
2216 E T1M, T1N, T1P, T1Q;
2217 T1M = R0[WS(rs, 3)];
2218 T1N = R0[WS(rs, 35)];
2219 T1O = T1M + T1N;
2220 T30 = T1M - T1N;
2221 T1P = R0[WS(rs, 19)];
2222 T1Q = R0[WS(rs, 51)];
2223 T1R = T1P + T1Q;
2224 T31 = T1P - T1Q;
2225 }
2226 T32 = FNMS(KP382683432, T31, KP923879532 * T30);
2227 Td0 = T1O - T1R;
2228 T3c = FMA(KP382683432, T30, KP923879532 * T31);
2229 {
2230 E T1T, T1U, T1W, T1X;
2231 T1T = R0[WS(rs, 59)];
2232 T1U = R0[WS(rs, 27)];
2233 T1V = T1T + T1U;
2234 T33 = T1T - T1U;
2235 T1W = R0[WS(rs, 11)];
2236 T1X = R0[WS(rs, 43)];
2237 T1Y = T1W + T1X;
2238 T34 = T1W - T1X;
2239 }
2240 T35 = FMA(KP923879532, T33, KP382683432 * T34);
2241 Td1 = T1V - T1Y;
2242 T3b = FNMS(KP923879532, T34, KP382683432 * T33);
2243 }
2244 {
2245 E T1D, T1K, TcZ, Td2;
2246 T1D = T1z + T1C;
2247 T1K = T1G + T1J;
2248 T1L = T1D + T1K;
2249 Tad = T1D - T1K;
2250 TcZ = T1z - T1C;
2251 Td2 = KP707106781 * (Td0 + Td1);
2252 Td3 = TcZ + Td2;
2253 Tew = TcZ - Td2;
2254 }
2255 {
2256 E Td4, Td5, T1S, T1Z;
2257 Td4 = T1J - T1G;
2258 Td5 = KP707106781 * (Td1 - Td0);
2259 Td6 = Td4 + Td5;
2260 Tex = Td5 - Td4;
2261 T1S = T1O + T1R;
2262 T1Z = T1V + T1Y;
2263 T20 = T1S + T1Z;
2264 Tae = T1Z - T1S;
2265 }
2266 {
2267 E T2Z, T36, T7J, T7K;
2268 T2Z = T2V + T2Y;
2269 T36 = T32 + T35;
2270 T37 = T2Z + T36;
2271 T6x = T2Z - T36;
2272 T7J = T2V - T2Y;
2273 T7K = T3c + T3b;
2274 T7L = T7J + T7K;
2275 T9a = T7J - T7K;
2276 }
2277 {
2278 E T7M, T7N, T3a, T3d;
2279 T7M = T39 + T38;
2280 T7N = T35 - T32;
2281 T7O = T7M + T7N;
2282 T9b = T7N - T7M;
2283 T3a = T38 - T39;
2284 T3d = T3b - T3c;
2285 T3e = T3a + T3d;
2286 T6w = T3d - T3a;
2287 }
2288 }
2289 {
2290 E T3L, Tdf, T3X, Tar, T42, Tdi, T4e, Tay, T3S, Tdg, T3U, Tau, T49, Tdj, T4b;
2291 E TaB, Tdh, Tdk;
2292 {
2293 E T3J, T3K, Tap, T3V, T3W, Taq;
2294 T3J = R1[WS(rs, 2)];
2295 T3K = R1[WS(rs, 34)];
2296 Tap = T3J + T3K;
2297 T3V = R1[WS(rs, 18)];
2298 T3W = R1[WS(rs, 50)];
2299 Taq = T3V + T3W;
2300 T3L = T3J - T3K;
2301 Tdf = Tap - Taq;
2302 T3X = T3V - T3W;
2303 Tar = Tap + Taq;
2304 }
2305 {
2306 E T40, T41, Taw, T4c, T4d, Tax;
2307 T40 = R1[WS(rs, 62)];
2308 T41 = R1[WS(rs, 30)];
2309 Taw = T40 + T41;
2310 T4c = R1[WS(rs, 14)];
2311 T4d = R1[WS(rs, 46)];
2312 Tax = T4c + T4d;
2313 T42 = T40 - T41;
2314 Tdi = Taw - Tax;
2315 T4e = T4c - T4d;
2316 Tay = Taw + Tax;
2317 }
2318 {
2319 E T3O, Tas, T3R, Tat;
2320 {
2321 E T3M, T3N, T3P, T3Q;
2322 T3M = R1[WS(rs, 10)];
2323 T3N = R1[WS(rs, 42)];
2324 T3O = T3M - T3N;
2325 Tas = T3M + T3N;
2326 T3P = R1[WS(rs, 58)];
2327 T3Q = R1[WS(rs, 26)];
2328 T3R = T3P - T3Q;
2329 Tat = T3P + T3Q;
2330 }
2331 T3S = KP707106781 * (T3O + T3R);
2332 Tdg = Tat - Tas;
2333 T3U = KP707106781 * (T3R - T3O);
2334 Tau = Tas + Tat;
2335 }
2336 {
2337 E T45, Taz, T48, TaA;
2338 {
2339 E T43, T44, T46, T47;
2340 T43 = R1[WS(rs, 6)];
2341 T44 = R1[WS(rs, 38)];
2342 T45 = T43 - T44;
2343 Taz = T43 + T44;
2344 T46 = R1[WS(rs, 54)];
2345 T47 = R1[WS(rs, 22)];
2346 T48 = T46 - T47;
2347 TaA = T46 + T47;
2348 }
2349 T49 = KP707106781 * (T45 + T48);
2350 Tdj = TaA - Taz;
2351 T4b = KP707106781 * (T48 - T45);
2352 TaB = Taz + TaA;
2353 }
2354 TbZ = Tar + Tau;
2355 Tc0 = Tay + TaB;
2356 {
2357 E T3T, T3Y, Tdq, Tdr;
2358 T3T = T3L + T3S;
2359 T3Y = T3U - T3X;
2360 T3Z = FMA(KP980785280, T3T, KP195090322 * T3Y);
2361 T4s = FNMS(KP195090322, T3T, KP980785280 * T3Y);
2362 Tdq = FNMS(KP382683432, Tdf, KP923879532 * Tdg);
2363 Tdr = FMA(KP382683432, Tdi, KP923879532 * Tdj);
2364 Tds = Tdq + Tdr;
2365 TeI = Tdr - Tdq;
2366 }
2367 {
2368 E T4a, T4f, T7Y, T7Z;
2369 T4a = T42 + T49;
2370 T4f = T4b - T4e;
2371 T4g = FNMS(KP195090322, T4f, KP980785280 * T4a);
2372 T4t = FMA(KP195090322, T4a, KP980785280 * T4f);
2373 T7Y = T42 - T49;
2374 T7Z = T4e + T4b;
2375 T80 = FNMS(KP555570233, T7Z, KP831469612 * T7Y);
2376 T87 = FMA(KP555570233, T7Y, KP831469612 * T7Z);
2377 }
2378 Tdh = FMA(KP923879532, Tdf, KP382683432 * Tdg);
2379 Tdk = FNMS(KP382683432, Tdj, KP923879532 * Tdi);
2380 Tdl = Tdh + Tdk;
2381 TeE = Tdk - Tdh;
2382 {
2383 E T7V, T7W, Tav, TaC;
2384 T7V = T3L - T3S;
2385 T7W = T3X + T3U;
2386 T7X = FMA(KP831469612, T7V, KP555570233 * T7W);
2387 T86 = FNMS(KP555570233, T7V, KP831469612 * T7W);
2388 Tav = Tar - Tau;
2389 TaC = Tay - TaB;
2390 TaD = KP707106781 * (Tav + TaC);
2391 TaM = KP707106781 * (TaC - Tav);
2392 }
2393 }
2394 {
2395 E T50, TdA, T5c, TaY, T5h, TdD, T5t, Tb5, T57, TdB, T59, Tb1, T5o, TdE, T5q;
2396 E Tb8, TdC, TdF;
2397 {
2398 E T4Y, T4Z, TaW, T5a, T5b, TaX;
2399 T4Y = R1[WS(rs, 1)];
2400 T4Z = R1[WS(rs, 33)];
2401 TaW = T4Y + T4Z;
2402 T5a = R1[WS(rs, 17)];
2403 T5b = R1[WS(rs, 49)];
2404 TaX = T5a + T5b;
2405 T50 = T4Y - T4Z;
2406 TdA = TaW - TaX;
2407 T5c = T5a - T5b;
2408 TaY = TaW + TaX;
2409 }
2410 {
2411 E T5f, T5g, Tb3, T5r, T5s, Tb4;
2412 T5f = R1[WS(rs, 61)];
2413 T5g = R1[WS(rs, 29)];
2414 Tb3 = T5f + T5g;
2415 T5r = R1[WS(rs, 13)];
2416 T5s = R1[WS(rs, 45)];
2417 Tb4 = T5r + T5s;
2418 T5h = T5f - T5g;
2419 TdD = Tb3 - Tb4;
2420 T5t = T5r - T5s;
2421 Tb5 = Tb3 + Tb4;
2422 }
2423 {
2424 E T53, TaZ, T56, Tb0;
2425 {
2426 E T51, T52, T54, T55;
2427 T51 = R1[WS(rs, 9)];
2428 T52 = R1[WS(rs, 41)];
2429 T53 = T51 - T52;
2430 TaZ = T51 + T52;
2431 T54 = R1[WS(rs, 57)];
2432 T55 = R1[WS(rs, 25)];
2433 T56 = T54 - T55;
2434 Tb0 = T54 + T55;
2435 }
2436 T57 = KP707106781 * (T53 + T56);
2437 TdB = Tb0 - TaZ;
2438 T59 = KP707106781 * (T56 - T53);
2439 Tb1 = TaZ + Tb0;
2440 }
2441 {
2442 E T5k, Tb6, T5n, Tb7;
2443 {
2444 E T5i, T5j, T5l, T5m;
2445 T5i = R1[WS(rs, 5)];
2446 T5j = R1[WS(rs, 37)];
2447 T5k = T5i - T5j;
2448 Tb6 = T5i + T5j;
2449 T5l = R1[WS(rs, 53)];
2450 T5m = R1[WS(rs, 21)];
2451 T5n = T5l - T5m;
2452 Tb7 = T5l + T5m;
2453 }
2454 T5o = KP707106781 * (T5k + T5n);
2455 TdE = Tb7 - Tb6;
2456 T5q = KP707106781 * (T5n - T5k);
2457 Tb8 = Tb6 + Tb7;
2458 }
2459 Tc6 = TaY + Tb1;
2460 Tc7 = Tb5 + Tb8;
2461 {
2462 E T58, T5d, TdL, TdM;
2463 T58 = T50 + T57;
2464 T5d = T59 - T5c;
2465 T5e = FMA(KP980785280, T58, KP195090322 * T5d);
2466 T5H = FNMS(KP195090322, T58, KP980785280 * T5d);
2467 TdL = FNMS(KP382683432, TdA, KP923879532 * TdB);
2468 TdM = FMA(KP382683432, TdD, KP923879532 * TdE);
2469 TdN = TdL + TdM;
2470 TeM = TdM - TdL;
2471 }
2472 {
2473 E T5p, T5u, T8h, T8i;
2474 T5p = T5h + T5o;
2475 T5u = T5q - T5t;
2476 T5v = FNMS(KP195090322, T5u, KP980785280 * T5p);
2477 T5I = FMA(KP195090322, T5p, KP980785280 * T5u);
2478 T8h = T5h - T5o;
2479 T8i = T5t + T5q;
2480 T8j = FNMS(KP555570233, T8i, KP831469612 * T8h);
2481 T8q = FMA(KP555570233, T8h, KP831469612 * T8i);
2482 }
2483 TdC = FMA(KP923879532, TdA, KP382683432 * TdB);
2484 TdF = FNMS(KP382683432, TdE, KP923879532 * TdD);
2485 TdG = TdC + TdF;
2486 TeO = TdF - TdC;
2487 {
2488 E T8e, T8f, Tb2, Tb9;
2489 T8e = T50 - T57;
2490 T8f = T5c + T59;
2491 T8g = FMA(KP831469612, T8e, KP555570233 * T8f);
2492 T8p = FNMS(KP555570233, T8e, KP831469612 * T8f);
2493 Tb2 = TaY - Tb1;
2494 Tb9 = Tb5 - Tb8;
2495 Tba = KP707106781 * (Tb2 + Tb9);
2496 Tbj = KP707106781 * (Tb9 - Tb2);
2497 }
2498 }
2499 {
2500 E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce;
2501 {
2502 E Tv, T10, Tc5, Tc8;
2503 Tv = Tf + Tu;
2504 T10 = TK + TZ;
2505 T11 = Tv + T10;
2506 TbV = Tv - T10;
2507 Tc5 = Tc3 + Tc4;
2508 Tc8 = Tc6 + Tc7;
2509 Tc9 = Tc5 - Tc8;
2510 Tcf = Tc5 + Tc8;
2511 }
2512 {
2513 E T1w, T21, TbY, Tc1;
2514 T1w = T1g + T1v;
2515 T21 = T1L + T20;
2516 T22 = T1w + T21;
2517 Tcb = T21 - T1w;
2518 TbY = TbW + TbX;
2519 Tc1 = TbZ + Tc0;
2520 Tc2 = TbY - Tc1;
2521 Tce = TbY + Tc1;
2522 }
2523 Cr[WS(csr, 32)] = T11 - T22;
2524 Ci[WS(csi, 32)] = Tcf - Tce;
2525 {
2526 E Tca, Tcc, Tcd, Tcg;
2527 Tca = KP707106781 * (Tc2 + Tc9);
2528 Cr[WS(csr, 48)] = TbV - Tca;
2529 Cr[WS(csr, 16)] = TbV + Tca;
2530 Tcc = KP707106781 * (Tc9 - Tc2);
2531 Ci[WS(csi, 16)] = Tcb + Tcc;
2532 Ci[WS(csi, 48)] = Tcc - Tcb;
2533 Tcd = T11 + T22;
2534 Tcg = Tce + Tcf;
2535 Cr[WS(csr, 64)] = Tcd - Tcg;
2536 Cr[0] = Tcd + Tcg;
2537 }
2538 }
2539 {
2540 E Tch, Tcu, Tck, Tct, Tco, Tcy, Tcr, Tcz, Tci, Tcj;
2541 Tch = Tf - Tu;
2542 Tcu = TZ - TK;
2543 Tci = T1g - T1v;
2544 Tcj = T1L - T20;
2545 Tck = KP707106781 * (Tci + Tcj);
2546 Tct = KP707106781 * (Tcj - Tci);
2547 {
2548 E Tcm, Tcn, Tcp, Tcq;
2549 Tcm = TbW - TbX;
2550 Tcn = Tc0 - TbZ;
2551 Tco = FMA(KP923879532, Tcm, KP382683432 * Tcn);
2552 Tcy = FNMS(KP382683432, Tcm, KP923879532 * Tcn);
2553 Tcp = Tc3 - Tc4;
2554 Tcq = Tc7 - Tc6;
2555 Tcr = FNMS(KP382683432, Tcq, KP923879532 * Tcp);
2556 Tcz = FMA(KP382683432, Tcp, KP923879532 * Tcq);
2557 }
2558 {
2559 E Tcl, Tcs, Tcx, TcA;
2560 Tcl = Tch + Tck;
2561 Tcs = Tco + Tcr;
2562 Cr[WS(csr, 56)] = Tcl - Tcs;
2563 Cr[WS(csr, 8)] = Tcl + Tcs;
2564 Tcx = Tcu + Tct;
2565 TcA = Tcy + Tcz;
2566 Ci[WS(csi, 8)] = Tcx + TcA;
2567 Ci[WS(csi, 56)] = TcA - Tcx;
2568 }
2569 {
2570 E Tcv, Tcw, TcB, TcC;
2571 Tcv = Tct - Tcu;
2572 Tcw = Tcr - Tco;
2573 Ci[WS(csi, 24)] = Tcv + Tcw;
2574 Ci[WS(csi, 40)] = Tcw - Tcv;
2575 TcB = Tch - Tck;
2576 TcC = Tcz - Tcy;
2577 Cr[WS(csr, 40)] = TcB - TcC;
2578 Cr[WS(csr, 24)] = TcB + TcC;
2579 }
2580 }
2581 {
2582 E Ta9, TbB, Tbs, TbM, Tag, TbL, TbJ, TbR, TaO, Tbw, Tbp, TbC, TbG, TbQ, Tbl;
2583 E Tbx, Ta8, Tbr;
2584 Ta8 = KP707106781 * (Ta6 + Ta7);
2585 Ta9 = Ta5 + Ta8;
2586 TbB = Ta5 - Ta8;
2587 Tbr = KP707106781 * (Ta7 - Ta6);
2588 Tbs = Tbq + Tbr;
2589 TbM = Tbr - Tbq;
2590 {
2591 E Tac, Taf, TbH, TbI;
2592 Tac = FMA(KP923879532, Taa, KP382683432 * Tab);
2593 Taf = FNMS(KP382683432, Tae, KP923879532 * Tad);
2594 Tag = Tac + Taf;
2595 TbL = Taf - Tac;
2596 TbH = TaV - Tba;
2597 TbI = Tbj - Tbi;
2598 TbJ = FNMS(KP555570233, TbI, KP831469612 * TbH);
2599 TbR = FMA(KP555570233, TbH, KP831469612 * TbI);
2600 }
2601 {
2602 E TaE, TaN, Tbn, Tbo;
2603 TaE = Tao + TaD;
2604 TaN = TaL + TaM;
2605 TaO = FMA(KP980785280, TaE, KP195090322 * TaN);
2606 Tbw = FNMS(KP195090322, TaE, KP980785280 * TaN);
2607 Tbn = FNMS(KP382683432, Taa, KP923879532 * Tab);
2608 Tbo = FMA(KP382683432, Tad, KP923879532 * Tae);
2609 Tbp = Tbn + Tbo;
2610 TbC = Tbo - Tbn;
2611 }
2612 {
2613 E TbE, TbF, Tbb, Tbk;
2614 TbE = Tao - TaD;
2615 TbF = TaM - TaL;
2616 TbG = FMA(KP831469612, TbE, KP555570233 * TbF);
2617 TbQ = FNMS(KP555570233, TbE, KP831469612 * TbF);
2618 Tbb = TaV + Tba;
2619 Tbk = Tbi + Tbj;
2620 Tbl = FNMS(KP195090322, Tbk, KP980785280 * Tbb);
2621 Tbx = FMA(KP195090322, Tbb, KP980785280 * Tbk);
2622 }
2623 {
2624 E Tah, Tbm, Tbv, Tby;
2625 Tah = Ta9 + Tag;
2626 Tbm = TaO + Tbl;
2627 Cr[WS(csr, 60)] = Tah - Tbm;
2628 Cr[WS(csr, 4)] = Tah + Tbm;
2629 Tbv = Tbs + Tbp;
2630 Tby = Tbw + Tbx;
2631 Ci[WS(csi, 4)] = Tbv + Tby;
2632 Ci[WS(csi, 60)] = Tby - Tbv;
2633 }
2634 {
2635 E Tbt, Tbu, Tbz, TbA;
2636 Tbt = Tbp - Tbs;
2637 Tbu = Tbl - TaO;
2638 Ci[WS(csi, 28)] = Tbt + Tbu;
2639 Ci[WS(csi, 36)] = Tbu - Tbt;
2640 Tbz = Ta9 - Tag;
2641 TbA = Tbx - Tbw;
2642 Cr[WS(csr, 36)] = Tbz - TbA;
2643 Cr[WS(csr, 28)] = Tbz + TbA;
2644 }
2645 {
2646 E TbD, TbK, TbP, TbS;
2647 TbD = TbB + TbC;
2648 TbK = TbG + TbJ;
2649 Cr[WS(csr, 52)] = TbD - TbK;
2650 Cr[WS(csr, 12)] = TbD + TbK;
2651 TbP = TbM + TbL;
2652 TbS = TbQ + TbR;
2653 Ci[WS(csi, 12)] = TbP + TbS;
2654 Ci[WS(csi, 52)] = TbS - TbP;
2655 }
2656 {
2657 E TbN, TbO, TbT, TbU;
2658 TbN = TbL - TbM;
2659 TbO = TbJ - TbG;
2660 Ci[WS(csi, 20)] = TbN + TbO;
2661 Ci[WS(csi, 44)] = TbO - TbN;
2662 TbT = TbB - TbC;
2663 TbU = TbR - TbQ;
2664 Cr[WS(csr, 44)] = TbT - TbU;
2665 Cr[WS(csr, 20)] = TbT + TbU;
2666 }
2667 }
2668 {
2669 E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfh, TeK, Tf2, TeV, Tf8, TeY, Tfi, TeR;
2670 E Tf3;
2671 {
2672 E Tet, Teu, Tfa, Tfb;
2673 Tet = TcD - TcG;
2674 Teu = TdY - TdX;
2675 Tev = Tet - Teu;
2676 Tf7 = Tet + Teu;
2677 Tfa = TeF + TeE;
2678 Tfb = TeH + TeI;
2679 Tfc = FMA(KP290284677, Tfa, KP956940335 * Tfb);
2680 Tfm = FNMS(KP290284677, Tfb, KP956940335 * Tfa);
2681 }
2682 {
2683 E Tfd, Tfe, Tey, TeB;
2684 Tfd = TeL + TeM;
2685 Tfe = TeP + TeO;
2686 Tff = FNMS(KP290284677, Tfe, KP956940335 * Tfd);
2687 Tfn = FMA(KP956940335, Tfe, KP290284677 * Tfd);
2688 Tey = FMA(KP555570233, Tew, KP831469612 * Tex);
2689 TeB = FNMS(KP555570233, TeA, KP831469612 * Tez);
2690 TeC = Tey - TeB;
2691 Tfh = TeB + Tey;
2692 }
2693 {
2694 E TeG, TeJ, TeT, TeU;
2695 TeG = TeE - TeF;
2696 TeJ = TeH - TeI;
2697 TeK = FMA(KP471396736, TeG, KP881921264 * TeJ);
2698 Tf2 = FNMS(KP471396736, TeJ, KP881921264 * TeG);
2699 TeT = FNMS(KP555570233, Tex, KP831469612 * Tew);
2700 TeU = FMA(KP831469612, TeA, KP555570233 * Tez);
2701 TeV = TeT - TeU;
2702 Tf8 = TeU + TeT;
2703 }
2704 {
2705 E TeW, TeX, TeN, TeQ;
2706 TeW = TcN - TcK;
2707 TeX = TdV - TdU;
2708 TeY = TeW - TeX;
2709 Tfi = TeX + TeW;
2710 TeN = TeL - TeM;
2711 TeQ = TeO - TeP;
2712 TeR = FNMS(KP471396736, TeQ, KP881921264 * TeN);
2713 Tf3 = FMA(KP881921264, TeQ, KP471396736 * TeN);
2714 }
2715 {
2716 E TeD, TeS, Tf1, Tf4;
2717 TeD = Tev + TeC;
2718 TeS = TeK + TeR;
2719 Cr[WS(csr, 54)] = TeD - TeS;
2720 Cr[WS(csr, 10)] = TeD + TeS;
2721 Tf1 = TeY + TeV;
2722 Tf4 = Tf2 + Tf3;
2723 Ci[WS(csi, 10)] = Tf1 + Tf4;
2724 Ci[WS(csi, 54)] = Tf4 - Tf1;
2725 }
2726 {
2727 E TeZ, Tf0, Tf5, Tf6;
2728 TeZ = TeV - TeY;
2729 Tf0 = TeR - TeK;
2730 Ci[WS(csi, 22)] = TeZ + Tf0;
2731 Ci[WS(csi, 42)] = Tf0 - TeZ;
2732 Tf5 = Tev - TeC;
2733 Tf6 = Tf3 - Tf2;
2734 Cr[WS(csr, 42)] = Tf5 - Tf6;
2735 Cr[WS(csr, 22)] = Tf5 + Tf6;
2736 }
2737 {
2738 E Tf9, Tfg, Tfl, Tfo;
2739 Tf9 = Tf7 + Tf8;
2740 Tfg = Tfc + Tff;
2741 Cr[WS(csr, 58)] = Tf9 - Tfg;
2742 Cr[WS(csr, 6)] = Tf9 + Tfg;
2743 Tfl = Tfi + Tfh;
2744 Tfo = Tfm + Tfn;
2745 Ci[WS(csi, 6)] = Tfl + Tfo;
2746 Ci[WS(csi, 58)] = Tfo - Tfl;
2747 }
2748 {
2749 E Tfj, Tfk, Tfp, Tfq;
2750 Tfj = Tfh - Tfi;
2751 Tfk = Tff - Tfc;
2752 Ci[WS(csi, 26)] = Tfj + Tfk;
2753 Ci[WS(csi, 38)] = Tfk - Tfj;
2754 Tfp = Tf7 - Tf8;
2755 Tfq = Tfn - Tfm;
2756 Cr[WS(csr, 38)] = Tfp - Tfq;
2757 Cr[WS(csr, 26)] = Tfp + Tfq;
2758 }
2759 }
2760 {
2761 E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tej, Tdu, Te4, TdT, Tea, Te0, Tek, TdP;
2762 E Te5;
2763 {
2764 E TcH, TcO, Tec, Ted;
2765 TcH = TcD + TcG;
2766 TcO = TcK + TcN;
2767 TcP = TcH + TcO;
2768 Te9 = TcH - TcO;
2769 Tec = Tde - Tdl;
2770 Ted = Tds - Tdp;
2771 Tee = FMA(KP773010453, Tec, KP634393284 * Ted);
2772 Teo = FNMS(KP634393284, Tec, KP773010453 * Ted);
2773 }
2774 {
2775 E Tef, Teg, TcY, Td7;
2776 Tef = Tdz - TdG;
2777 Teg = TdN - TdK;
2778 Teh = FNMS(KP634393284, Teg, KP773010453 * Tef);
2779 Tep = FMA(KP634393284, Tef, KP773010453 * Teg);
2780 TcY = FMA(KP980785280, TcU, KP195090322 * TcX);
2781 Td7 = FNMS(KP195090322, Td6, KP980785280 * Td3);
2782 Td8 = TcY + Td7;
2783 Tej = Td7 - TcY;
2784 }
2785 {
2786 E Tdm, Tdt, TdR, TdS;
2787 Tdm = Tde + Tdl;
2788 Tdt = Tdp + Tds;
2789 Tdu = FMA(KP995184726, Tdm, KP098017140 * Tdt);
2790 Te4 = FNMS(KP098017140, Tdm, KP995184726 * Tdt);
2791 TdR = FNMS(KP195090322, TcU, KP980785280 * TcX);
2792 TdS = FMA(KP195090322, Td3, KP980785280 * Td6);
2793 TdT = TdR + TdS;
2794 Tea = TdS - TdR;
2795 }
2796 {
2797 E TdW, TdZ, TdH, TdO;
2798 TdW = TdU + TdV;
2799 TdZ = TdX + TdY;
2800 Te0 = TdW + TdZ;
2801 Tek = TdZ - TdW;
2802 TdH = Tdz + TdG;
2803 TdO = TdK + TdN;
2804 TdP = FNMS(KP098017140, TdO, KP995184726 * TdH);
2805 Te5 = FMA(KP098017140, TdH, KP995184726 * TdO);
2806 }
2807 {
2808 E Td9, TdQ, Te3, Te6;
2809 Td9 = TcP + Td8;
2810 TdQ = Tdu + TdP;
2811 Cr[WS(csr, 62)] = Td9 - TdQ;
2812 Cr[WS(csr, 2)] = Td9 + TdQ;
2813 Te3 = Te0 + TdT;
2814 Te6 = Te4 + Te5;
2815 Ci[WS(csi, 2)] = Te3 + Te6;
2816 Ci[WS(csi, 62)] = Te6 - Te3;
2817 }
2818 {
2819 E Te1, Te2, Te7, Te8;
2820 Te1 = TdT - Te0;
2821 Te2 = TdP - Tdu;
2822 Ci[WS(csi, 30)] = Te1 + Te2;
2823 Ci[WS(csi, 34)] = Te2 - Te1;
2824 Te7 = TcP - Td8;
2825 Te8 = Te5 - Te4;
2826 Cr[WS(csr, 34)] = Te7 - Te8;
2827 Cr[WS(csr, 30)] = Te7 + Te8;
2828 }
2829 {
2830 E Teb, Tei, Ten, Teq;
2831 Teb = Te9 + Tea;
2832 Tei = Tee + Teh;
2833 Cr[WS(csr, 50)] = Teb - Tei;
2834 Cr[WS(csr, 14)] = Teb + Tei;
2835 Ten = Tek + Tej;
2836 Teq = Teo + Tep;
2837 Ci[WS(csi, 14)] = Ten + Teq;
2838 Ci[WS(csi, 50)] = Teq - Ten;
2839 }
2840 {
2841 E Tel, Tem, Ter, Tes;
2842 Tel = Tej - Tek;
2843 Tem = Teh - Tee;
2844 Ci[WS(csi, 18)] = Tel + Tem;
2845 Ci[WS(csi, 46)] = Tem - Tel;
2846 Ter = Te9 - Tea;
2847 Tes = Tep - Teo;
2848 Cr[WS(csr, 46)] = Ter - Tes;
2849 Cr[WS(csr, 18)] = Ter + Tes;
2850 }
2851 }
2852 {
2853 E T6v, T77, T6C, T7h, T6Y, T7i, T6V, T78, T6R, T7n, T73, T7f, T6K, T7m, T72;
2854 E T7c;
2855 {
2856 E T6t, T6u, T6T, T6U;
2857 T6t = T27 - T2e;
2858 T6u = T5Y - T5X;
2859 T6v = T6t - T6u;
2860 T77 = T6t + T6u;
2861 {
2862 E T6y, T6B, T6W, T6X;
2863 T6y = FMA(KP773010453, T6w, KP634393284 * T6x);
2864 T6B = FNMS(KP634393284, T6A, KP773010453 * T6z);
2865 T6C = T6y - T6B;
2866 T7h = T6B + T6y;
2867 T6W = T2x - T2o;
2868 T6X = T5V - T5S;
2869 T6Y = T6W - T6X;
2870 T7i = T6X + T6W;
2871 }
2872 T6T = FNMS(KP634393284, T6w, KP773010453 * T6x);
2873 T6U = FMA(KP634393284, T6z, KP773010453 * T6A);
2874 T6V = T6T - T6U;
2875 T78 = T6U + T6T;
2876 {
2877 E T6N, T7d, T6Q, T7e, T6M, T6O;
2878 T6M = T5I - T5H;
2879 T6N = T6L - T6M;
2880 T7d = T6L + T6M;
2881 T6O = T5v - T5e;
2882 T6Q = T6O - T6P;
2883 T7e = T6P + T6O;
2884 T6R = FNMS(KP427555093, T6Q, KP903989293 * T6N);
2885 T7n = FMA(KP941544065, T7e, KP336889853 * T7d);
2886 T73 = FMA(KP903989293, T6Q, KP427555093 * T6N);
2887 T7f = FNMS(KP336889853, T7e, KP941544065 * T7d);
2888 }
2889 {
2890 E T6G, T7a, T6J, T7b, T6E, T6I;
2891 T6E = T4g - T3Z;
2892 T6G = T6E - T6F;
2893 T7a = T6F + T6E;
2894 T6I = T4t - T4s;
2895 T6J = T6H - T6I;
2896 T7b = T6H + T6I;
2897 T6K = FMA(KP427555093, T6G, KP903989293 * T6J);
2898 T7m = FNMS(KP336889853, T7b, KP941544065 * T7a);
2899 T72 = FNMS(KP427555093, T6J, KP903989293 * T6G);
2900 T7c = FMA(KP336889853, T7a, KP941544065 * T7b);
2901 }
2902 }
2903 {
2904 E T6D, T6S, T71, T74;
2905 T6D = T6v + T6C;
2906 T6S = T6K + T6R;
2907 Cr[WS(csr, 55)] = T6D - T6S;
2908 Cr[WS(csr, 9)] = T6D + T6S;
2909 T71 = T6Y + T6V;
2910 T74 = T72 + T73;
2911 Ci[WS(csi, 9)] = T71 + T74;
2912 Ci[WS(csi, 55)] = T74 - T71;
2913 }
2914 {
2915 E T6Z, T70, T75, T76;
2916 T6Z = T6V - T6Y;
2917 T70 = T6R - T6K;
2918 Ci[WS(csi, 23)] = T6Z + T70;
2919 Ci[WS(csi, 41)] = T70 - T6Z;
2920 T75 = T6v - T6C;
2921 T76 = T73 - T72;
2922 Cr[WS(csr, 41)] = T75 - T76;
2923 Cr[WS(csr, 23)] = T75 + T76;
2924 }
2925 {
2926 E T79, T7g, T7l, T7o;
2927 T79 = T77 + T78;
2928 T7g = T7c + T7f;
2929 Cr[WS(csr, 57)] = T79 - T7g;
2930 Cr[WS(csr, 7)] = T79 + T7g;
2931 T7l = T7i + T7h;
2932 T7o = T7m + T7n;
2933 Ci[WS(csi, 7)] = T7l + T7o;
2934 Ci[WS(csi, 57)] = T7o - T7l;
2935 }
2936 {
2937 E T7j, T7k, T7p, T7q;
2938 T7j = T7h - T7i;
2939 T7k = T7f - T7c;
2940 Ci[WS(csi, 25)] = T7j + T7k;
2941 Ci[WS(csi, 39)] = T7k - T7j;
2942 T7p = T77 - T78;
2943 T7q = T7n - T7m;
2944 Cr[WS(csr, 39)] = T7p - T7q;
2945 Cr[WS(csr, 25)] = T7p + T7q;
2946 }
2947 }
2948 {
2949 E T99, T9L, T9g, T9V, T9C, T9W, T9z, T9M, T9v, Ta1, T9H, T9T, T9o, Ta0, T9G;
2950 E T9Q;
2951 {
2952 E T97, T98, T9x, T9y;
2953 T97 = T7r - T7s;
2954 T98 = T8C - T8B;
2955 T99 = T97 - T98;
2956 T9L = T97 + T98;
2957 {
2958 E T9c, T9f, T9A, T9B;
2959 T9c = FMA(KP471396736, T9a, KP881921264 * T9b);
2960 T9f = FNMS(KP471396736, T9e, KP881921264 * T9d);
2961 T9g = T9c - T9f;
2962 T9V = T9f + T9c;
2963 T9A = T7z - T7w;
2964 T9B = T8z - T8y;
2965 T9C = T9A - T9B;
2966 T9W = T9B + T9A;
2967 }
2968 T9x = FNMS(KP471396736, T9b, KP881921264 * T9a);
2969 T9y = FMA(KP881921264, T9e, KP471396736 * T9d);
2970 T9z = T9x - T9y;
2971 T9M = T9y + T9x;
2972 {
2973 E T9r, T9R, T9u, T9S, T9q, T9s;
2974 T9q = T8q - T8p;
2975 T9r = T9p - T9q;
2976 T9R = T9p + T9q;
2977 T9s = T8j - T8g;
2978 T9u = T9s - T9t;
2979 T9S = T9t + T9s;
2980 T9v = FNMS(KP514102744, T9u, KP857728610 * T9r);
2981 Ta1 = FMA(KP970031253, T9S, KP242980179 * T9R);
2982 T9H = FMA(KP857728610, T9u, KP514102744 * T9r);
2983 T9T = FNMS(KP242980179, T9S, KP970031253 * T9R);
2984 }
2985 {
2986 E T9k, T9O, T9n, T9P, T9i, T9m;
2987 T9i = T80 - T7X;
2988 T9k = T9i - T9j;
2989 T9O = T9j + T9i;
2990 T9m = T87 - T86;
2991 T9n = T9l - T9m;
2992 T9P = T9l + T9m;
2993 T9o = FMA(KP514102744, T9k, KP857728610 * T9n);
2994 Ta0 = FNMS(KP242980179, T9P, KP970031253 * T9O);
2995 T9G = FNMS(KP514102744, T9n, KP857728610 * T9k);
2996 T9Q = FMA(KP242980179, T9O, KP970031253 * T9P);
2997 }
2998 }
2999 {
3000 E T9h, T9w, T9F, T9I;
3001 T9h = T99 + T9g;
3002 T9w = T9o + T9v;
3003 Cr[WS(csr, 53)] = T9h - T9w;
3004 Cr[WS(csr, 11)] = T9h + T9w;
3005 T9F = T9C + T9z;
3006 T9I = T9G + T9H;
3007 Ci[WS(csi, 11)] = T9F + T9I;
3008 Ci[WS(csi, 53)] = T9I - T9F;
3009 }
3010 {
3011 E T9D, T9E, T9J, T9K;
3012 T9D = T9z - T9C;
3013 T9E = T9v - T9o;
3014 Ci[WS(csi, 21)] = T9D + T9E;
3015 Ci[WS(csi, 43)] = T9E - T9D;
3016 T9J = T99 - T9g;
3017 T9K = T9H - T9G;
3018 Cr[WS(csr, 43)] = T9J - T9K;
3019 Cr[WS(csr, 21)] = T9J + T9K;
3020 }
3021 {
3022 E T9N, T9U, T9Z, Ta2;
3023 T9N = T9L + T9M;
3024 T9U = T9Q + T9T;
3025 Cr[WS(csr, 59)] = T9N - T9U;
3026 Cr[WS(csr, 5)] = T9N + T9U;
3027 T9Z = T9W + T9V;
3028 Ta2 = Ta0 + Ta1;
3029 Ci[WS(csi, 5)] = T9Z + Ta2;
3030 Ci[WS(csi, 59)] = Ta2 - T9Z;
3031 }
3032 {
3033 E T9X, T9Y, Ta3, Ta4;
3034 T9X = T9V - T9W;
3035 T9Y = T9T - T9Q;
3036 Ci[WS(csi, 27)] = T9X + T9Y;
3037 Ci[WS(csi, 37)] = T9Y - T9X;
3038 Ta3 = T9L - T9M;
3039 Ta4 = Ta1 - Ta0;
3040 Cr[WS(csr, 37)] = Ta3 - Ta4;
3041 Cr[WS(csr, 27)] = Ta3 + Ta4;
3042 }
3043 }
3044 {
3045 E T2z, T69, T3g, T6j, T60, T6k, T5P, T6a, T5L, T6p, T65, T6h, T4w, T6o, T64;
3046 E T6e;
3047 {
3048 E T2f, T2y, T5N, T5O;
3049 T2f = T27 + T2e;
3050 T2y = T2o + T2x;
3051 T2z = T2f + T2y;
3052 T69 = T2f - T2y;
3053 {
3054 E T2U, T3f, T5W, T5Z;
3055 T2U = FMA(KP098017140, T2M, KP995184726 * T2T);
3056 T3f = FNMS(KP098017140, T3e, KP995184726 * T37);
3057 T3g = T2U + T3f;
3058 T6j = T3f - T2U;
3059 T5W = T5S + T5V;
3060 T5Z = T5X + T5Y;
3061 T60 = T5W + T5Z;
3062 T6k = T5Z - T5W;
3063 }
3064 T5N = FNMS(KP098017140, T2T, KP995184726 * T2M);
3065 T5O = FMA(KP995184726, T3e, KP098017140 * T37);
3066 T5P = T5N + T5O;
3067 T6a = T5O - T5N;
3068 {
3069 E T5x, T6f, T5K, T6g, T5w, T5J;
3070 T5w = T5e + T5v;
3071 T5x = T4X + T5w;
3072 T6f = T4X - T5w;
3073 T5J = T5H + T5I;
3074 T5K = T5G + T5J;
3075 T6g = T5J - T5G;
3076 T5L = FNMS(KP049067674, T5K, KP998795456 * T5x);
3077 T6p = FMA(KP671558954, T6f, KP740951125 * T6g);
3078 T65 = FMA(KP049067674, T5x, KP998795456 * T5K);
3079 T6h = FNMS(KP671558954, T6g, KP740951125 * T6f);
3080 }
3081 {
3082 E T4i, T6c, T4v, T6d, T4h, T4u;
3083 T4h = T3Z + T4g;
3084 T4i = T3I + T4h;
3085 T6c = T3I - T4h;
3086 T4u = T4s + T4t;
3087 T4v = T4r + T4u;
3088 T6d = T4u - T4r;
3089 T4w = FMA(KP998795456, T4i, KP049067674 * T4v);
3090 T6o = FNMS(KP671558954, T6c, KP740951125 * T6d);
3091 T64 = FNMS(KP049067674, T4i, KP998795456 * T4v);
3092 T6e = FMA(KP740951125, T6c, KP671558954 * T6d);
3093 }
3094 }
3095 {
3096 E T3h, T5M, T63, T66;
3097 T3h = T2z + T3g;
3098 T5M = T4w + T5L;
3099 Cr[WS(csr, 63)] = T3h - T5M;
3100 Cr[WS(csr, 1)] = T3h + T5M;
3101 T63 = T60 + T5P;
3102 T66 = T64 + T65;
3103 Ci[WS(csi, 1)] = T63 + T66;
3104 Ci[WS(csi, 63)] = T66 - T63;
3105 }
3106 {
3107 E T61, T62, T67, T68;
3108 T61 = T5P - T60;
3109 T62 = T5L - T4w;
3110 Ci[WS(csi, 31)] = T61 + T62;
3111 Ci[WS(csi, 33)] = T62 - T61;
3112 T67 = T2z - T3g;
3113 T68 = T65 - T64;
3114 Cr[WS(csr, 33)] = T67 - T68;
3115 Cr[WS(csr, 31)] = T67 + T68;
3116 }
3117 {
3118 E T6b, T6i, T6n, T6q;
3119 T6b = T69 + T6a;
3120 T6i = T6e + T6h;
3121 Cr[WS(csr, 49)] = T6b - T6i;
3122 Cr[WS(csr, 15)] = T6b + T6i;
3123 T6n = T6k + T6j;
3124 T6q = T6o + T6p;
3125 Ci[WS(csi, 15)] = T6n + T6q;
3126 Ci[WS(csi, 49)] = T6q - T6n;
3127 }
3128 {
3129 E T6l, T6m, T6r, T6s;
3130 T6l = T6j - T6k;
3131 T6m = T6h - T6e;
3132 Ci[WS(csi, 17)] = T6l + T6m;
3133 Ci[WS(csi, 47)] = T6m - T6l;
3134 T6r = T69 - T6a;
3135 T6s = T6p - T6o;
3136 Cr[WS(csr, 47)] = T6r - T6s;
3137 Cr[WS(csr, 17)] = T6r + T6s;
3138 }
3139 }
3140 {
3141 E T7B, T8N, T7Q, T8X, T8E, T8Y, T8x, T8O, T8t, T93, T8J, T8V, T8a, T92, T8I;
3142 E T8S;
3143 {
3144 E T7t, T7A, T8v, T8w;
3145 T7t = T7r + T7s;
3146 T7A = T7w + T7z;
3147 T7B = T7t + T7A;
3148 T8N = T7t - T7A;
3149 {
3150 E T7I, T7P, T8A, T8D;
3151 T7I = FMA(KP956940335, T7E, KP290284677 * T7H);
3152 T7P = FNMS(KP290284677, T7O, KP956940335 * T7L);
3153 T7Q = T7I + T7P;
3154 T8X = T7P - T7I;
3155 T8A = T8y + T8z;
3156 T8D = T8B + T8C;
3157 T8E = T8A + T8D;
3158 T8Y = T8D - T8A;
3159 }
3160 T8v = FNMS(KP290284677, T7E, KP956940335 * T7H);
3161 T8w = FMA(KP290284677, T7L, KP956940335 * T7O);
3162 T8x = T8v + T8w;
3163 T8O = T8w - T8v;
3164 {
3165 E T8l, T8T, T8s, T8U, T8k, T8r;
3166 T8k = T8g + T8j;
3167 T8l = T8d + T8k;
3168 T8T = T8d - T8k;
3169 T8r = T8p + T8q;
3170 T8s = T8o + T8r;
3171 T8U = T8r - T8o;
3172 T8t = FNMS(KP146730474, T8s, KP989176509 * T8l);
3173 T93 = FMA(KP595699304, T8T, KP803207531 * T8U);
3174 T8J = FMA(KP146730474, T8l, KP989176509 * T8s);
3175 T8V = FNMS(KP595699304, T8U, KP803207531 * T8T);
3176 }
3177 {
3178 E T82, T8Q, T89, T8R, T81, T88;
3179 T81 = T7X + T80;
3180 T82 = T7U + T81;
3181 T8Q = T7U - T81;
3182 T88 = T86 + T87;
3183 T89 = T85 + T88;
3184 T8R = T88 - T85;
3185 T8a = FMA(KP989176509, T82, KP146730474 * T89);
3186 T92 = FNMS(KP595699304, T8Q, KP803207531 * T8R);
3187 T8I = FNMS(KP146730474, T82, KP989176509 * T89);
3188 T8S = FMA(KP803207531, T8Q, KP595699304 * T8R);
3189 }
3190 }
3191 {
3192 E T7R, T8u, T8H, T8K;
3193 T7R = T7B + T7Q;
3194 T8u = T8a + T8t;
3195 Cr[WS(csr, 61)] = T7R - T8u;
3196 Cr[WS(csr, 3)] = T7R + T8u;
3197 T8H = T8E + T8x;
3198 T8K = T8I + T8J;
3199 Ci[WS(csi, 3)] = T8H + T8K;
3200 Ci[WS(csi, 61)] = T8K - T8H;
3201 }
3202 {
3203 E T8F, T8G, T8L, T8M;
3204 T8F = T8x - T8E;
3205 T8G = T8t - T8a;
3206 Ci[WS(csi, 29)] = T8F + T8G;
3207 Ci[WS(csi, 35)] = T8G - T8F;
3208 T8L = T7B - T7Q;
3209 T8M = T8J - T8I;
3210 Cr[WS(csr, 35)] = T8L - T8M;
3211 Cr[WS(csr, 29)] = T8L + T8M;
3212 }
3213 {
3214 E T8P, T8W, T91, T94;
3215 T8P = T8N + T8O;
3216 T8W = T8S + T8V;
3217 Cr[WS(csr, 51)] = T8P - T8W;
3218 Cr[WS(csr, 13)] = T8P + T8W;
3219 T91 = T8Y + T8X;
3220 T94 = T92 + T93;
3221 Ci[WS(csi, 13)] = T91 + T94;
3222 Ci[WS(csi, 51)] = T94 - T91;
3223 }
3224 {
3225 E T8Z, T90, T95, T96;
3226 T8Z = T8X - T8Y;
3227 T90 = T8V - T8S;
3228 Ci[WS(csi, 19)] = T8Z + T90;
3229 Ci[WS(csi, 45)] = T90 - T8Z;
3230 T95 = T8N - T8O;
3231 T96 = T93 - T92;
3232 Cr[WS(csr, 45)] = T95 - T96;
3233 Cr[WS(csr, 19)] = T95 + T96;
3234 }
3235 }
3236 }
3237 }
3238 }
3239
3240 static const kr2c_desc desc = { 128, "r2cf_128", {812, 186, 144, 0}, &GENUS };
3241
3242 void X(codelet_r2cf_128) (planner *p) {
3243 X(kr2c_register) (p, r2cf_128, &desc);
3244 }
3245
3246 #endif