comparison src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_25.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:06:49 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cfII_25 -dft-II -include rdft/scalar/r2cfII.h */
29
30 /*
31 * This function contains 212 FP additions, 177 FP multiplications,
32 * (or, 47 additions, 12 multiplications, 165 fused multiply/add),
33 * 131 stack variables, 67 constants, and 50 memory accesses
34 */
35 #include "rdft/scalar/r2cfII.h"
36
37 static void r2cfII_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP876091699, +0.876091699473550838204498029706869638173524346);
40 DK(KP792626838, +0.792626838241819413632131824093538848057784557);
41 DK(KP690668130, +0.690668130712929053565177988380887884042527623);
42 DK(KP809385824, +0.809385824416008241660603814668679683846476688);
43 DK(KP860541664, +0.860541664367944677098261680920518816412804187);
44 DK(KP681693190, +0.681693190061530575150324149145440022633095390);
45 DK(KP560319534, +0.560319534973832390111614715371676131169633784);
46 DK(KP237294955, +0.237294955877110315393888866460840817927895961);
47 DK(KP897376177, +0.897376177523557693138608077137219684419427330);
48 DK(KP584303379, +0.584303379262766050358567120694562180043261496);
49 DK(KP653711795, +0.653711795629256296299985401753308353544378892);
50 DK(KP997675361, +0.997675361079556513670859573984492383596555031);
51 DK(KP645989928, +0.645989928319777763844272876603899665178054552);
52 DK(KP591287873, +0.591287873858343558732323717242372865934480959);
53 DK(KP952936919, +0.952936919628306576880750665357914584765951388);
54 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
55 DK(KP956723877, +0.956723877038460305821989399535483155872969262);
56 DK(KP945422727, +0.945422727388575946270360266328811958657216298);
57 DK(KP734762448, +0.734762448793050413546343770063151342619912334);
58 DK(KP772036680, +0.772036680810363904029489473607579825330539880);
59 DK(KP683113946, +0.683113946453479238701949862233725244439656928);
60 DK(KP559154169, +0.559154169276087864842202529084232643714075927);
61 DK(KP242145790, +0.242145790282157779872542093866183953459003101);
62 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
63 DK(KP999754674, +0.999754674276473633366203429228112409535557487);
64 DK(KP904730450, +0.904730450839922351881287709692877908104763647);
65 DK(KP916574801, +0.916574801383451584742370439148878693530976769);
66 DK(KP829049696, +0.829049696159252993975487806364305442437946767);
67 DK(KP831864738, +0.831864738706457140726048799369896829771167132);
68 DK(KP876306680, +0.876306680043863587308115903922062583399064238);
69 DK(KP949179823, +0.949179823508441261575555465843363271711583843);
70 DK(KP669429328, +0.669429328479476605641803240971985825917022098);
71 DK(KP262346850, +0.262346850930607871785420028382979691334784273);
72 DK(KP923225144, +0.923225144846402650453449441572664695995209956);
73 DK(KP906616052, +0.906616052148196230441134447086066874408359177);
74 DK(KP921078979, +0.921078979742360627699756128143719920817673854);
75 DK(KP982009705, +0.982009705009746369461829878184175962711969869);
76 DK(KP845997307, +0.845997307939530944175097360758058292389769300);
77 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
78 DK(KP803003575, +0.803003575438660414833440593570376004635464850);
79 DK(KP763583905, +0.763583905359130246362948588764067237776594106);
80 DK(KP248028675, +0.248028675328619457762448260696444630363259177);
81 DK(KP904508497, +0.904508497187473712051146708591409529430077295);
82 DK(KP894834959, +0.894834959464455102997960030820114611498661386);
83 DK(KP958953096, +0.958953096729998668045963838399037225970891871);
84 DK(KP867381224, +0.867381224396525206773171885031575671309956167);
85 DK(KP912575812, +0.912575812670962425556968549836277086778922727);
86 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
87 DK(KP869845200, +0.869845200362138853122720822420327157933056305);
88 DK(KP120146378, +0.120146378570687701782758537356596213647956445);
89 DK(KP132830569, +0.132830569247582714407653942074819768844536507);
90 DK(KP786782374, +0.786782374965295178365099601674911834788448471);
91 DK(KP893101515, +0.893101515366181661711202267938416198338079437);
92 DK(KP987388751, +0.987388751065621252324603216482382109400433949);
93 DK(KP244189809, +0.244189809627953270309879511234821255780225091);
94 DK(KP269969613, +0.269969613759572083574752974412347470060951301);
95 DK(KP494780565, +0.494780565770515410344588413655324772219443730);
96 DK(KP066152395, +0.066152395967733048213034281011006031460903353);
97 DK(KP059835404, +0.059835404262124915169548397419498386427871950);
98 DK(KP447533225, +0.447533225982656890041886979663652563063114397);
99 DK(KP522847744, +0.522847744331509716623755382187077770911012542);
100 DK(KP667278218, +0.667278218140296670899089292254759909713898805);
101 DK(KP603558818, +0.603558818296015001454675132653458027918768137);
102 DK(KP578046249, +0.578046249379945007321754579646815604023525655);
103 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
104 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
105 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
106 {
107 INT i;
108 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
109 E T2v, TJ, T2A, T1K, T2y, T2z, TB, T15, T2d, T2l, T1g, T1s, T1N, T21, T1D;
110 E T9, TQ, T2g, T2o, T1j, T1u, T1X, T25, T1z, Ti, TX, T2f, T2p, T1k, T1v;
111 E T1U, T24, T1A, Ts, T1c, T2c, T2k, T1h, T1r, T1Q, T22, T1C, Tj, TC;
112 {
113 E TI, T2x, TF, T2w;
114 T2v = R0[0];
115 {
116 E TG, TH, TD, TE;
117 TG = R0[WS(rs, 10)];
118 TH = R1[WS(rs, 2)];
119 TI = TG + TH;
120 T2x = TG - TH;
121 TD = R0[WS(rs, 5)];
122 TE = R1[WS(rs, 7)];
123 TF = TD + TE;
124 T2w = TD - TE;
125 }
126 TJ = FMA(KP618033988, TI, TF);
127 T2A = T2w - T2x;
128 T1K = FNMS(KP618033988, TF, TI);
129 T2y = T2w + T2x;
130 T2z = FNMS(KP250000000, T2y, T2v);
131 }
132 {
133 E Tt, TA, T13, TZ, T10;
134 Tt = R0[WS(rs, 2)];
135 {
136 E Tu, Tv, Tw, Tx, Ty, Tz;
137 Tu = R0[WS(rs, 7)];
138 Tv = R1[WS(rs, 9)];
139 Tw = Tu - Tv;
140 Tx = R0[WS(rs, 12)];
141 Ty = R1[WS(rs, 4)];
142 Tz = Tx - Ty;
143 TA = Tw + Tz;
144 T13 = Tz - Tw;
145 TZ = Tu + Tv;
146 T10 = Tx + Ty;
147 }
148 TB = Tt + TA;
149 {
150 E T11, T1M, T14, T1L, T12;
151 T11 = FMA(KP618033988, T10, TZ);
152 T1M = FNMS(KP618033988, TZ, T10);
153 T12 = FNMS(KP250000000, TA, Tt);
154 T14 = FNMS(KP559016994, T13, T12);
155 T1L = FMA(KP559016994, T13, T12);
156 T15 = FMA(KP578046249, T14, T11);
157 T2d = FNMS(KP603558818, T1M, T1L);
158 T2l = FMA(KP667278218, T1L, T1M);
159 T1g = FNMS(KP522847744, T11, T14);
160 T1s = FMA(KP447533225, T11, T14);
161 T1N = FMA(KP059835404, T1M, T1L);
162 T21 = FNMS(KP066152395, T1L, T1M);
163 T1D = FNMS(KP494780565, T14, T11);
164 }
165 }
166 {
167 E T1, T8, TO, TK, TL;
168 T1 = R0[WS(rs, 1)];
169 {
170 E T2, T3, T4, T5, T6, T7;
171 T2 = R0[WS(rs, 6)];
172 T3 = R1[WS(rs, 8)];
173 T4 = T2 - T3;
174 T5 = R0[WS(rs, 11)];
175 T6 = R1[WS(rs, 3)];
176 T7 = T5 - T6;
177 T8 = T4 + T7;
178 TO = T4 - T7;
179 TK = T2 + T3;
180 TL = T5 + T6;
181 }
182 T9 = T1 + T8;
183 {
184 E TM, T1V, TP, T1W, TN;
185 TM = FMA(KP618033988, TL, TK);
186 T1V = FNMS(KP618033988, TK, TL);
187 TN = FNMS(KP250000000, T8, T1);
188 TP = FMA(KP559016994, TO, TN);
189 T1W = FNMS(KP559016994, TO, TN);
190 TQ = FMA(KP269969613, TP, TM);
191 T2g = FNMS(KP578046249, T1W, T1V);
192 T2o = FMA(KP522847744, T1V, T1W);
193 T1j = FNMS(KP244189809, TM, TP);
194 T1u = FNMS(KP603558818, TM, TP);
195 T1X = FMA(KP987388751, T1W, T1V);
196 T25 = FNMS(KP893101515, T1V, T1W);
197 T1z = FMA(KP667278218, TP, TM);
198 }
199 }
200 {
201 E Th, Tg, TV, TS, TU;
202 Th = R0[WS(rs, 4)];
203 {
204 E Ta, Tb, Tc, Td, Te, Tf;
205 Ta = R0[WS(rs, 9)];
206 Tb = R1[WS(rs, 11)];
207 Tc = Ta - Tb;
208 Td = R1[WS(rs, 6)];
209 Te = R1[WS(rs, 1)];
210 Tf = Td + Te;
211 Tg = Tc - Tf;
212 TV = Te - Td;
213 TS = Tc + Tf;
214 TU = Ta + Tb;
215 }
216 Ti = Tg + Th;
217 {
218 E TW, T1S, TT, T1T, TR;
219 TW = FNMS(KP618033988, TV, TU);
220 T1S = FMA(KP618033988, TU, TV);
221 TR = FNMS(KP250000000, Tg, Th);
222 TT = FMA(KP559016994, TS, TR);
223 T1T = FNMS(KP559016994, TS, TR);
224 TX = FMA(KP603558818, TW, TT);
225 T2f = FNMS(KP447533225, T1S, T1T);
226 T2p = FMA(KP494780565, T1T, T1S);
227 T1k = FNMS(KP667278218, TT, TW);
228 T1v = FNMS(KP786782374, TW, TT);
229 T1U = FMA(KP132830569, T1T, T1S);
230 T24 = FNMS(KP120146378, T1S, T1T);
231 T1A = FMA(KP869845200, TT, TW);
232 }
233 }
234 {
235 E Tk, Tr, T1a, T16, T17;
236 Tk = R0[WS(rs, 3)];
237 {
238 E Tl, Tm, Tn, To, Tp, Tq;
239 Tl = R0[WS(rs, 8)];
240 Tm = R1[WS(rs, 10)];
241 Tn = Tl - Tm;
242 To = R1[0];
243 Tp = R1[WS(rs, 5)];
244 Tq = To + Tp;
245 Tr = Tn - Tq;
246 T1a = Tn + Tq;
247 T16 = Tl + Tm;
248 T17 = Tp - To;
249 }
250 Ts = Tk + Tr;
251 {
252 E T18, T1P, T1b, T1O, T19;
253 T18 = FMA(KP618033988, T17, T16);
254 T1P = FNMS(KP618033988, T16, T17);
255 T19 = FNMS(KP250000000, Tr, Tk);
256 T1b = FMA(KP559016994, T1a, T19);
257 T1O = FNMS(KP559016994, T1a, T19);
258 T1c = FMA(KP987388751, T1b, T18);
259 T2c = FNMS(KP059835404, T1P, T1O);
260 T2k = FMA(KP066152395, T1O, T1P);
261 T1h = FNMS(KP893101515, T18, T1b);
262 T1r = FMA(KP132830569, T1b, T18);
263 T1Q = FNMS(KP786782374, T1P, T1O);
264 T22 = FMA(KP869845200, T1O, T1P);
265 T1C = FNMS(KP120146378, T18, T1b);
266 }
267 }
268 Tj = T9 - Ti;
269 TC = Ts - TB;
270 Ci[WS(csi, 2)] = -(KP951056516 * (FNMS(KP618033988, TC, Tj)));
271 Ci[WS(csi, 7)] = KP951056516 * (FMA(KP618033988, Tj, TC));
272 {
273 E T3l, T3o, T3q, T3m, T3n, T3p;
274 T3l = T2v + T2y;
275 T3m = T9 + Ti;
276 T3n = TB + Ts;
277 T3o = T3m + T3n;
278 T3q = T3m - T3n;
279 Cr[WS(csr, 12)] = T3o + T3l;
280 T3p = FNMS(KP250000000, T3o, T3l);
281 Cr[WS(csr, 2)] = FMA(KP559016994, T3q, T3p);
282 Cr[WS(csr, 7)] = FNMS(KP559016994, T3q, T3p);
283 }
284 {
285 E T1B, T1E, T1x, T1I, T1G, T1t, T1w, T1F, T1y, T1J, T1H;
286 T1B = FMA(KP912575812, T1A, T1z);
287 T1E = FMA(KP867381224, T1D, T1C);
288 T1t = FMA(KP958953096, T1s, T1r);
289 T1w = FNMS(KP912575812, T1v, T1u);
290 T1F = FNMS(KP894834959, T1w, T1t);
291 T1x = FMA(KP894834959, T1w, T1t);
292 T1I = FNMS(KP894834959, T1B, T1F);
293 T1G = FNMS(KP904508497, T1F, T1E);
294 T1y = FMA(KP248028675, T1x, TJ);
295 T1J = FMA(KP559016994, T1I, T1E);
296 T1H = FMA(KP763583905, T1G, T1B);
297 Ci[WS(csi, 4)] = KP951056516 * (FNMS(KP803003575, T1H, T1y));
298 Ci[WS(csi, 9)] = KP951056516 * (FNMS(KP992114701, T1J, T1y));
299 }
300 {
301 E T2m, T2q, T2i, T2t, T2r, T2e, T2h, T2n, T2j, T2u, T2s;
302 T2m = FNMS(KP845997307, T2l, T2k);
303 T2q = FMA(KP982009705, T2p, T2o);
304 T2e = FMA(KP845997307, T2d, T2c);
305 T2h = FNMS(KP921078979, T2g, T2f);
306 T2n = FNMS(KP906616052, T2h, T2e);
307 T2i = FMA(KP906616052, T2h, T2e);
308 T2t = T2m + T2n;
309 T2r = FNMS(KP923225144, T2q, T2n);
310 T2j = FMA(KP262346850, T2i, T1K);
311 T2u = FNMS(KP669429328, T2t, T2q);
312 T2s = FNMS(KP618033988, T2r, T2m);
313 Ci[WS(csi, 8)] = KP951056516 * (FMA(KP949179823, T2s, T2j));
314 Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP876306680, T2u, T2j));
315 }
316 {
317 E T1i, T1l, T1e, T1p, T1n, TY, T1d, T1m, T1f, T1q, T1o;
318 T1i = FNMS(KP831864738, T1h, T1g);
319 T1l = FMA(KP829049696, T1k, T1j);
320 TY = FMA(KP916574801, TX, TQ);
321 T1d = FMA(KP831864738, T1c, T15);
322 T1m = FNMS(KP904730450, T1d, TY);
323 T1e = FMA(KP904730450, T1d, TY);
324 T1p = FNMS(KP999754674, T1m, T1i);
325 T1n = FNMS(KP904508497, T1m, T1l);
326 Ci[0] = -(KP951056516 * (FMA(KP968583161, T1e, TJ)));
327 T1f = FNMS(KP242145790, T1e, TJ);
328 T1q = FMA(KP559154169, T1p, T1l);
329 T1o = FNMS(KP683113946, T1n, T1i);
330 Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP876306680, T1o, T1f)));
331 Ci[WS(csi, 10)] = -(KP951056516 * (FNMS(KP968583161, T1q, T1f)));
332 }
333 {
334 E T23, T26, T1Z, T2a, T28, T1R, T1Y, T27, T20, T2b, T29;
335 T23 = FNMS(KP772036680, T22, T21);
336 T26 = FMA(KP734762448, T25, T24);
337 T1R = FMA(KP772036680, T1Q, T1N);
338 T1Y = FMA(KP734762448, T1X, T1U);
339 T27 = FNMS(KP945422727, T1Y, T1R);
340 T1Z = FMA(KP945422727, T1Y, T1R);
341 T2a = T27 - T23;
342 T28 = FMA(KP956723877, T27, T26);
343 Ci[WS(csi, 1)] = -(KP998026728 * (FMA(KP952936919, T1K, T1Z)));
344 T20 = FNMS(KP262346850, T1Z, T1K);
345 T2b = FMA(KP591287873, T2a, T26);
346 T29 = FMA(KP645989928, T28, T23);
347 Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP949179823, T29, T20)));
348 Ci[WS(csi, 11)] = -(KP951056516 * (FNMS(KP992114701, T2b, T20)));
349 }
350 {
351 E T2Y, T33, T31, T38, T36, T3e, T3f, T3c, T3j, T3h, T3a, T3b, T3g;
352 T2Y = FNMS(KP559016994, T2A, T2z);
353 T33 = FNMS(KP772036680, T1Q, T1N);
354 {
355 E T34, T2Z, T30, T35;
356 T34 = FNMS(KP734762448, T1X, T1U);
357 T2Z = FNMS(KP734762448, T25, T24);
358 T30 = FMA(KP772036680, T22, T21);
359 T35 = FNMS(KP956723877, T30, T2Z);
360 T31 = FMA(KP956723877, T30, T2Z);
361 T38 = FMA(KP618033988, T35, T34);
362 T36 = T34 + T35;
363 }
364 T3e = FMA(KP921078979, T2g, T2f);
365 T3f = FNMS(KP845997307, T2d, T2c);
366 T3a = FMA(KP845997307, T2l, T2k);
367 T3b = FNMS(KP982009705, T2p, T2o);
368 T3g = FNMS(KP923225144, T3b, T3a);
369 T3c = FMA(KP923225144, T3b, T3a);
370 T3j = FNMS(KP997675361, T3g, T3e);
371 T3h = FNMS(KP904508497, T3g, T3f);
372 Cr[WS(csr, 1)] = FNMS(KP992114701, T31, T2Y);
373 {
374 E T32, T39, T37, T3d, T3k, T3i;
375 T32 = FMA(KP248028675, T31, T2Y);
376 T39 = FNMS(KP653711795, T33, T38);
377 T37 = FMA(KP584303379, T36, T33);
378 Cr[WS(csr, 6)] = FMA(KP949179823, T37, T32);
379 Cr[WS(csr, 11)] = FNMS(KP897376177, T39, T32);
380 T3d = FNMS(KP237294955, T3c, T2Y);
381 T3k = FNMS(KP560319534, T3j, T3f);
382 T3i = FMA(KP681693190, T3h, T3e);
383 Cr[WS(csr, 3)] = FMA(KP860541664, T3i, T3d);
384 Cr[WS(csr, 8)] = FMA(KP949179823, T3k, T3d);
385 }
386 }
387 {
388 E T2B, T2R, T2T, T2P, T2W, T2U, T2G, T2H, T2E, T2L, T2J;
389 T2B = FMA(KP559016994, T2A, T2z);
390 {
391 E T2N, T2O, T2S, T2C, T2D, T2I;
392 T2R = FNMS(KP958953096, T1s, T1r);
393 T2T = FMA(KP912575812, T1v, T1u);
394 T2N = FNMS(KP867381224, T1D, T1C);
395 T2O = FNMS(KP912575812, T1A, T1z);
396 T2S = FMA(KP809385824, T2O, T2N);
397 T2P = FNMS(KP809385824, T2O, T2N);
398 T2W = T2R + T2S;
399 T2U = FNMS(KP894834959, T2T, T2S);
400 T2G = FNMS(KP831864738, T1c, T15);
401 T2H = FNMS(KP916574801, TX, TQ);
402 T2C = FNMS(KP829049696, T1k, T1j);
403 T2D = FMA(KP831864738, T1h, T1g);
404 T2I = FNMS(KP904730450, T2D, T2C);
405 T2E = FMA(KP904730450, T2D, T2C);
406 T2L = FMA(KP904730450, T2G, T2I);
407 T2J = T2H + T2I;
408 }
409 Cr[0] = FMA(KP968583161, T2E, T2B);
410 {
411 E T2Q, T2X, T2V, T2F, T2M, T2K;
412 T2Q = FMA(KP248028675, T2P, T2B);
413 T2X = FNMS(KP690668130, T2W, T2T);
414 T2V = FNMS(KP618033988, T2U, T2R);
415 Cr[WS(csr, 9)] = FMA(KP897376177, T2V, T2Q);
416 Cr[WS(csr, 4)] = FNMS(KP803003575, T2X, T2Q);
417 T2F = FNMS(KP242145790, T2E, T2B);
418 T2M = FMA(KP618033988, T2L, T2H);
419 T2K = FNMS(KP683113946, T2J, T2G);
420 Cr[WS(csr, 5)] = FMA(KP792626838, T2K, T2F);
421 Cr[WS(csr, 10)] = FMA(KP876091699, T2M, T2F);
422 }
423 }
424 }
425 }
426 }
427
428 static const kr2c_desc desc = { 25, "r2cfII_25", {47, 12, 165, 0}, &GENUS };
429
430 void X(codelet_r2cfII_25) (planner *p) {
431 X(kr2c_register) (p, r2cfII_25, &desc);
432 }
433
434 #else
435
436 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cfII_25 -dft-II -include rdft/scalar/r2cfII.h */
437
438 /*
439 * This function contains 213 FP additions, 148 FP multiplications,
440 * (or, 126 additions, 61 multiplications, 87 fused multiply/add),
441 * 94 stack variables, 38 constants, and 50 memory accesses
442 */
443 #include "rdft/scalar/r2cfII.h"
444
445 static void r2cfII_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
446 {
447 DK(KP1_996053456, +1.996053456856543123904673613726901106673810439);
448 DK(KP062790519, +0.062790519529313376076178224565631133122484832);
449 DK(KP125581039, +0.125581039058626752152356449131262266244969664);
450 DK(KP998026728, +0.998026728428271561952336806863450553336905220);
451 DK(KP1_369094211, +1.369094211857377347464566715242418539779038465);
452 DK(KP728968627, +0.728968627421411523146730319055259111372571664);
453 DK(KP963507348, +0.963507348203430549974383005744259307057084020);
454 DK(KP876306680, +0.876306680043863587308115903922062583399064238);
455 DK(KP497379774, +0.497379774329709576484567492012895936835134813);
456 DK(KP968583161, +0.968583161128631119490168375464735813836012403);
457 DK(KP1_457937254, +1.457937254842823046293460638110518222745143328);
458 DK(KP684547105, +0.684547105928688673732283357621209269889519233);
459 DK(KP1_752613360, +1.752613360087727174616231807844125166798128477);
460 DK(KP481753674, +0.481753674101715274987191502872129653528542010);
461 DK(KP1_937166322, +1.937166322257262238980336750929471627672024806);
462 DK(KP248689887, +0.248689887164854788242283746006447968417567406);
463 DK(KP992114701, +0.992114701314477831049793042785778521453036709);
464 DK(KP250666467, +0.250666467128608490746237519633017587885836494);
465 DK(KP1_809654104, +1.809654104932039055427337295865395187940827822);
466 DK(KP425779291, +0.425779291565072648862502445744251703979973042);
467 DK(KP1_541026485, +1.541026485551578461606019272792355694543335344);
468 DK(KP637423989, +0.637423989748689710176712811676016195434917298);
469 DK(KP1_688655851, +1.688655851004030157097116127933363010763318483);
470 DK(KP535826794, +0.535826794978996618271308767867639978063575346);
471 DK(KP851558583, +0.851558583130145297725004891488503407959946084);
472 DK(KP904827052, +0.904827052466019527713668647932697593970413911);
473 DK(KP1_984229402, +1.984229402628955662099586085571557042906073418);
474 DK(KP125333233, +0.125333233564304245373118759816508793942918247);
475 DK(KP1_274847979, +1.274847979497379420353425623352032390869834596);
476 DK(KP770513242, +0.770513242775789230803009636396177847271667672);
477 DK(KP844327925, +0.844327925502015078548558063966681505381659241);
478 DK(KP1_071653589, +1.071653589957993236542617535735279956127150691);
479 DK(KP293892626, +0.293892626146236564584352977319536384298826219);
480 DK(KP475528258, +0.475528258147576786058219666689691071702849317);
481 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
482 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
483 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
484 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
485 {
486 INT i;
487 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) {
488 E TE, TR, T2i, T1z, TL, TS, TB, T2d, T1l, T1i, T2c, T9, T23, TZ, TW;
489 E T22, Ti, T26, T16, T13, T25, Ts, T2a, T1e, T1b, T29, TP, TQ;
490 {
491 E TK, T1y, TH, T1x;
492 TE = R0[0];
493 {
494 E TI, TJ, TF, TG;
495 TI = R0[WS(rs, 10)];
496 TJ = R1[WS(rs, 2)];
497 TK = TI - TJ;
498 T1y = TI + TJ;
499 TF = R0[WS(rs, 5)];
500 TG = R1[WS(rs, 7)];
501 TH = TF - TG;
502 T1x = TF + TG;
503 }
504 TR = KP559016994 * (TH - TK);
505 T2i = FNMS(KP587785252, T1x, KP951056516 * T1y);
506 T1z = FMA(KP951056516, T1x, KP587785252 * T1y);
507 TL = TH + TK;
508 TS = FNMS(KP250000000, TL, TE);
509 }
510 {
511 E Tt, Tw, Tz, TA, T1k, T1j, T1g, T1h;
512 Tt = R0[WS(rs, 3)];
513 {
514 E Tu, Tv, Tx, Ty;
515 Tu = R0[WS(rs, 8)];
516 Tv = R1[WS(rs, 10)];
517 Tw = Tu - Tv;
518 Tx = R1[0];
519 Ty = R1[WS(rs, 5)];
520 Tz = Tx + Ty;
521 TA = Tw - Tz;
522 T1k = Ty - Tx;
523 T1j = Tu + Tv;
524 }
525 TB = Tt + TA;
526 T2d = FNMS(KP293892626, T1j, KP475528258 * T1k);
527 T1l = FMA(KP475528258, T1j, KP293892626 * T1k);
528 T1g = FNMS(KP250000000, TA, Tt);
529 T1h = KP559016994 * (Tw + Tz);
530 T1i = T1g + T1h;
531 T2c = T1g - T1h;
532 }
533 {
534 E T1, T4, T7, T8, TY, TX, TU, TV;
535 T1 = R0[WS(rs, 1)];
536 {
537 E T2, T3, T5, T6;
538 T2 = R0[WS(rs, 6)];
539 T3 = R1[WS(rs, 8)];
540 T4 = T2 - T3;
541 T5 = R0[WS(rs, 11)];
542 T6 = R1[WS(rs, 3)];
543 T7 = T5 - T6;
544 T8 = T4 + T7;
545 TY = T5 + T6;
546 TX = T2 + T3;
547 }
548 T9 = T1 + T8;
549 T23 = FNMS(KP293892626, TX, KP475528258 * TY);
550 TZ = FMA(KP475528258, TX, KP293892626 * TY);
551 TU = KP559016994 * (T4 - T7);
552 TV = FNMS(KP250000000, T8, T1);
553 TW = TU + TV;
554 T22 = TV - TU;
555 }
556 {
557 E Ta, Td, Tg, Th, T15, T14, T11, T12;
558 Ta = R0[WS(rs, 4)];
559 {
560 E Tb, Tc, Te, Tf;
561 Tb = R0[WS(rs, 9)];
562 Tc = R1[WS(rs, 11)];
563 Td = Tb - Tc;
564 Te = R1[WS(rs, 1)];
565 Tf = R1[WS(rs, 6)];
566 Tg = Te + Tf;
567 Th = Td - Tg;
568 T15 = Tf - Te;
569 T14 = Tb + Tc;
570 }
571 Ti = Ta + Th;
572 T26 = FNMS(KP293892626, T14, KP475528258 * T15);
573 T16 = FMA(KP475528258, T14, KP293892626 * T15);
574 T11 = FNMS(KP250000000, Th, Ta);
575 T12 = KP559016994 * (Td + Tg);
576 T13 = T11 + T12;
577 T25 = T11 - T12;
578 }
579 {
580 E Tk, Tn, Tq, Tr, T1d, T1c, T19, T1a;
581 Tk = R0[WS(rs, 2)];
582 {
583 E Tl, Tm, To, Tp;
584 Tl = R0[WS(rs, 7)];
585 Tm = R1[WS(rs, 9)];
586 Tn = Tl - Tm;
587 To = R0[WS(rs, 12)];
588 Tp = R1[WS(rs, 4)];
589 Tq = To - Tp;
590 Tr = Tn + Tq;
591 T1d = To + Tp;
592 T1c = Tl + Tm;
593 }
594 Ts = Tk + Tr;
595 T2a = FNMS(KP293892626, T1c, KP475528258 * T1d);
596 T1e = FMA(KP475528258, T1c, KP293892626 * T1d);
597 T19 = KP559016994 * (Tn - Tq);
598 T1a = FNMS(KP250000000, Tr, Tk);
599 T1b = T19 + T1a;
600 T29 = T1a - T19;
601 }
602 TP = TB - Ts;
603 TQ = T9 - Ti;
604 Ci[WS(csi, 2)] = FNMS(KP951056516, TQ, KP587785252 * TP);
605 Ci[WS(csi, 7)] = FMA(KP587785252, TQ, KP951056516 * TP);
606 {
607 E TM, TD, TN, Tj, TC, TO;
608 TM = TE + TL;
609 Tj = T9 + Ti;
610 TC = Ts + TB;
611 TD = KP559016994 * (Tj - TC);
612 TN = Tj + TC;
613 Cr[WS(csr, 12)] = TM + TN;
614 TO = FNMS(KP250000000, TN, TM);
615 Cr[WS(csr, 2)] = TD + TO;
616 Cr[WS(csr, 7)] = TO - TD;
617 }
618 {
619 E TT, T1J, T1Y, T1U, T1X, T1P, T1V, T1M, T1W, T1A, T1B, T1r, T1C, T1v, T18;
620 E T1n, T1o, T1G, T1D;
621 TT = TR + TS;
622 {
623 E T1H, T1I, T1S, T1T;
624 T1H = FNMS(KP844327925, TW, KP1_071653589 * TZ);
625 T1I = FNMS(KP1_274847979, T16, KP770513242 * T13);
626 T1J = T1H - T1I;
627 T1Y = T1H + T1I;
628 T1S = FMA(KP125333233, T1i, KP1_984229402 * T1l);
629 T1T = FMA(KP904827052, T1b, KP851558583 * T1e);
630 T1U = T1S - T1T;
631 T1X = T1T + T1S;
632 }
633 {
634 E T1N, T1O, T1K, T1L;
635 T1N = FMA(KP535826794, TW, KP1_688655851 * TZ);
636 T1O = FMA(KP637423989, T13, KP1_541026485 * T16);
637 T1P = T1N - T1O;
638 T1V = T1N + T1O;
639 T1K = FNMS(KP1_809654104, T1e, KP425779291 * T1b);
640 T1L = FNMS(KP992114701, T1i, KP250666467 * T1l);
641 T1M = T1K - T1L;
642 T1W = T1K + T1L;
643 }
644 {
645 E T1p, T1q, T1t, T1u;
646 T1p = FMA(KP844327925, T13, KP1_071653589 * T16);
647 T1q = FMA(KP248689887, TW, KP1_937166322 * TZ);
648 T1A = T1q + T1p;
649 T1t = FMA(KP481753674, T1b, KP1_752613360 * T1e);
650 T1u = FMA(KP684547105, T1i, KP1_457937254 * T1l);
651 T1B = T1t + T1u;
652 T1r = T1p - T1q;
653 T1C = T1A + T1B;
654 T1v = T1t - T1u;
655 }
656 {
657 E T10, T17, T1f, T1m;
658 T10 = FNMS(KP497379774, TZ, KP968583161 * TW);
659 T17 = FNMS(KP1_688655851, T16, KP535826794 * T13);
660 T18 = T10 + T17;
661 T1f = FNMS(KP963507348, T1e, KP876306680 * T1b);
662 T1m = FNMS(KP1_369094211, T1l, KP728968627 * T1i);
663 T1n = T1f + T1m;
664 T1o = T18 + T1n;
665 T1G = T10 - T17;
666 T1D = T1f - T1m;
667 }
668 {
669 E T1R, T1Q, T20, T1Z;
670 Cr[0] = TT + T1o;
671 Ci[0] = -(T1z + T1C);
672 T1R = KP559016994 * (T1P + T1M);
673 T1Q = FMA(KP250000000, T1M - T1P, TT);
674 Cr[WS(csr, 4)] = FMA(KP951056516, T1J, T1Q) + FMA(KP587785252, T1U, T1R);
675 Cr[WS(csr, 9)] = FMA(KP951056516, T1U, T1Q) + FNMA(KP587785252, T1J, T1R);
676 T20 = KP559016994 * (T1Y + T1X);
677 T1Z = FMA(KP250000000, T1X - T1Y, T1z);
678 Ci[WS(csi, 9)] = FMA(KP587785252, T1V, KP951056516 * T1W) + T1Z - T20;
679 Ci[WS(csi, 4)] = FMA(KP587785252, T1W, T1Z) + FNMS(KP951056516, T1V, T20);
680 {
681 E T1E, T1F, T1s, T1w;
682 T1E = FMS(KP250000000, T1C, T1z);
683 T1F = KP559016994 * (T1B - T1A);
684 Ci[WS(csi, 5)] = FMA(KP951056516, T1D, T1E) + FNMA(KP587785252, T1G, T1F);
685 Ci[WS(csi, 10)] = FMA(KP951056516, T1G, KP587785252 * T1D) + T1E + T1F;
686 T1s = FNMS(KP250000000, T1o, TT);
687 T1w = KP559016994 * (T18 - T1n);
688 Cr[WS(csr, 5)] = FMA(KP587785252, T1r, T1s) + FMS(KP951056516, T1v, T1w);
689 Cr[WS(csr, 10)] = T1w + FMA(KP587785252, T1v, T1s) - (KP951056516 * T1r);
690 }
691 }
692 }
693 {
694 E T21, T2z, T2L, T2K, T2M, T2F, T2P, T2C, T2Q, T2l, T2o, T2p, T2w, T2u, T28;
695 E T2f, T2g, T2s, T2h;
696 T21 = TS - TR;
697 {
698 E T2x, T2y, T2I, T2J;
699 T2x = FNMS(KP844327925, T29, KP1_071653589 * T2a);
700 T2y = FNMS(KP125581039, T2d, KP998026728 * T2c);
701 T2z = T2x + T2y;
702 T2L = T2y - T2x;
703 T2I = FNMS(KP481753674, T22, KP1_752613360 * T23);
704 T2J = FMA(KP904827052, T25, KP851558583 * T26);
705 T2K = T2I + T2J;
706 T2M = T2I - T2J;
707 }
708 {
709 E T2D, T2E, T2A, T2B;
710 T2D = FMA(KP535826794, T29, KP1_688655851 * T2a);
711 T2E = FMA(KP062790519, T2c, KP1_996053456 * T2d);
712 T2F = T2D + T2E;
713 T2P = T2E - T2D;
714 T2A = FMA(KP876306680, T22, KP963507348 * T23);
715 T2B = FNMS(KP425779291, T25, KP1_809654104 * T26);
716 T2C = T2A + T2B;
717 T2Q = T2A - T2B;
718 }
719 {
720 E T2j, T2k, T2m, T2n;
721 T2j = FNMS(KP125333233, T25, KP1_984229402 * T26);
722 T2k = FMA(KP684547105, T22, KP1_457937254 * T23);
723 T2l = T2j - T2k;
724 T2m = FNMS(KP770513242, T2c, KP1_274847979 * T2d);
725 T2n = FMA(KP998026728, T29, KP125581039 * T2a);
726 T2o = T2m - T2n;
727 T2p = T2l + T2o;
728 T2w = T2k + T2j;
729 T2u = T2n + T2m;
730 }
731 {
732 E T24, T27, T2b, T2e;
733 T24 = FNMS(KP1_369094211, T23, KP728968627 * T22);
734 T27 = FMA(KP992114701, T25, KP250666467 * T26);
735 T28 = T24 - T27;
736 T2b = FNMS(KP1_996053456, T2a, KP062790519 * T29);
737 T2e = FMA(KP637423989, T2c, KP1_541026485 * T2d);
738 T2f = T2b - T2e;
739 T2g = T28 + T2f;
740 T2s = T24 + T27;
741 T2h = T2b + T2e;
742 }
743 {
744 E T2H, T2G, T2O, T2N;
745 Cr[WS(csr, 1)] = T21 + T2g;
746 Ci[WS(csi, 1)] = T2p - T2i;
747 T2H = KP559016994 * (T2C - T2F);
748 T2G = FNMS(KP250000000, T2C + T2F, T21);
749 Cr[WS(csr, 8)] = FMA(KP951056516, T2z, T2G) + FNMA(KP587785252, T2K, T2H);
750 Cr[WS(csr, 3)] = FMA(KP951056516, T2K, KP587785252 * T2z) + T2G + T2H;
751 T2O = KP559016994 * (T2M + T2L);
752 T2N = FMA(KP250000000, T2L - T2M, T2i);
753 Ci[WS(csi, 3)] = T2N + FMA(KP587785252, T2P, T2O) - (KP951056516 * T2Q);
754 Ci[WS(csi, 8)] = FMA(KP587785252, T2Q, T2N) + FMS(KP951056516, T2P, T2O);
755 {
756 E T2t, T2v, T2q, T2r;
757 T2t = FNMS(KP250000000, T2g, T21);
758 T2v = KP559016994 * (T28 - T2f);
759 Cr[WS(csr, 6)] = FMA(KP951056516, T2u, T2t) + FNMA(KP587785252, T2w, T2v);
760 Cr[WS(csr, 11)] = FMA(KP951056516, T2w, T2v) + FMA(KP587785252, T2u, T2t);
761 T2q = KP250000000 * T2p;
762 T2r = KP559016994 * (T2l - T2o);
763 Ci[WS(csi, 6)] = FMS(KP951056516, T2h, T2i + T2q) + FNMA(KP587785252, T2s, T2r);
764 Ci[WS(csi, 11)] = FMA(KP951056516, T2s, KP587785252 * T2h) + T2r - (T2i + T2q);
765 }
766 }
767 }
768 }
769 }
770 }
771
772 static const kr2c_desc desc = { 25, "r2cfII_25", {126, 61, 87, 0}, &GENUS };
773
774 void X(codelet_r2cfII_25) (planner *p) {
775 X(kr2c_register) (p, r2cfII_25, &desc);
776 }
777
778 #endif