Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:10 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 82 FP additions, 52 FP multiplications, | |
32 * (or, 60 additions, 30 multiplications, 22 fused multiply/add), | |
33 * 31 stack variables, 2 constants, and 32 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hc2cf.h" | |
36 | |
37 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | |
44 E Ty, T14, TO, T1o, Tv, T16, TG, T1m, Ta, T19, TV, T1h, Tk, T1b, T11; | |
45 E T1j; | |
46 { | |
47 E Tw, Tx, TN, TI, TJ, TK; | |
48 Tw = Ip[0]; | |
49 Tx = Im[0]; | |
50 TN = Tw + Tx; | |
51 TI = Rm[0]; | |
52 TJ = Rp[0]; | |
53 TK = TI - TJ; | |
54 Ty = Tw - Tx; | |
55 T14 = TJ + TI; | |
56 { | |
57 E TH, TL, TM, T1n; | |
58 TH = W[0]; | |
59 TL = TH * TK; | |
60 TM = W[1]; | |
61 T1n = TM * TK; | |
62 TO = FNMS(TM, TN, TL); | |
63 T1o = FMA(TH, TN, T1n); | |
64 } | |
65 } | |
66 { | |
67 E Tp, TF, Tu, TC; | |
68 { | |
69 E Tn, To, Ts, Tt; | |
70 Tn = Ip[WS(rs, 2)]; | |
71 To = Im[WS(rs, 2)]; | |
72 Tp = Tn - To; | |
73 TF = Tn + To; | |
74 Ts = Rp[WS(rs, 2)]; | |
75 Tt = Rm[WS(rs, 2)]; | |
76 Tu = Ts + Tt; | |
77 TC = Tt - Ts; | |
78 } | |
79 { | |
80 E Tq, T15, Tm, Tr; | |
81 Tm = W[6]; | |
82 Tq = Tm * Tp; | |
83 T15 = Tm * Tu; | |
84 Tr = W[7]; | |
85 Tv = FNMS(Tr, Tu, Tq); | |
86 T16 = FMA(Tr, Tp, T15); | |
87 } | |
88 { | |
89 E TB, TD, TE, T1l; | |
90 TB = W[8]; | |
91 TD = TB * TC; | |
92 TE = W[9]; | |
93 T1l = TE * TC; | |
94 TG = FNMS(TE, TF, TD); | |
95 T1m = FMA(TB, TF, T1l); | |
96 } | |
97 } | |
98 { | |
99 E T4, TU, T9, TR; | |
100 { | |
101 E T2, T3, T7, T8; | |
102 T2 = Ip[WS(rs, 1)]; | |
103 T3 = Im[WS(rs, 1)]; | |
104 T4 = T2 - T3; | |
105 TU = T2 + T3; | |
106 T7 = Rp[WS(rs, 1)]; | |
107 T8 = Rm[WS(rs, 1)]; | |
108 T9 = T7 + T8; | |
109 TR = T7 - T8; | |
110 } | |
111 { | |
112 E T5, T18, T1, T6; | |
113 T1 = W[2]; | |
114 T5 = T1 * T4; | |
115 T18 = T1 * T9; | |
116 T6 = W[3]; | |
117 Ta = FNMS(T6, T9, T5); | |
118 T19 = FMA(T6, T4, T18); | |
119 } | |
120 { | |
121 E TS, T1g, TQ, TT; | |
122 TQ = W[4]; | |
123 TS = TQ * TR; | |
124 T1g = TQ * TU; | |
125 TT = W[5]; | |
126 TV = FMA(TT, TU, TS); | |
127 T1h = FNMS(TT, TR, T1g); | |
128 } | |
129 } | |
130 { | |
131 E Te, T10, Tj, TX; | |
132 { | |
133 E Tc, Td, Th, Ti; | |
134 Tc = Ip[WS(rs, 3)]; | |
135 Td = Im[WS(rs, 3)]; | |
136 Te = Tc - Td; | |
137 T10 = Tc + Td; | |
138 Th = Rp[WS(rs, 3)]; | |
139 Ti = Rm[WS(rs, 3)]; | |
140 Tj = Th + Ti; | |
141 TX = Th - Ti; | |
142 } | |
143 { | |
144 E Tf, T1a, Tb, Tg; | |
145 Tb = W[10]; | |
146 Tf = Tb * Te; | |
147 T1a = Tb * Tj; | |
148 Tg = W[11]; | |
149 Tk = FNMS(Tg, Tj, Tf); | |
150 T1b = FMA(Tg, Te, T1a); | |
151 } | |
152 { | |
153 E TY, T1i, TW, TZ; | |
154 TW = W[12]; | |
155 TY = TW * TX; | |
156 T1i = TW * T10; | |
157 TZ = W[13]; | |
158 T11 = FMA(TZ, T10, TY); | |
159 T1j = FNMS(TZ, TX, T1i); | |
160 } | |
161 } | |
162 { | |
163 E TA, T1f, T1q, T1s, T13, T1e, T1d, T1r; | |
164 { | |
165 E Tl, Tz, T1k, T1p; | |
166 Tl = Ta + Tk; | |
167 Tz = Tv + Ty; | |
168 TA = Tl + Tz; | |
169 T1f = Tz - Tl; | |
170 T1k = T1h + T1j; | |
171 T1p = T1m + T1o; | |
172 T1q = T1k - T1p; | |
173 T1s = T1k + T1p; | |
174 } | |
175 { | |
176 E TP, T12, T17, T1c; | |
177 TP = TG + TO; | |
178 T12 = TV + T11; | |
179 T13 = TP - T12; | |
180 T1e = T12 + TP; | |
181 T17 = T14 + T16; | |
182 T1c = T19 + T1b; | |
183 T1d = T17 - T1c; | |
184 T1r = T17 + T1c; | |
185 } | |
186 Ip[0] = KP500000000 * (TA + T13); | |
187 Rp[0] = KP500000000 * (T1r + T1s); | |
188 Im[WS(rs, 3)] = KP500000000 * (T13 - TA); | |
189 Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s); | |
190 Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e); | |
191 Im[WS(rs, 1)] = KP500000000 * (T1q - T1f); | |
192 Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e); | |
193 Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q); | |
194 } | |
195 { | |
196 E T1v, T1H, T1F, T1L, T1y, T1I, T1B, T1J; | |
197 { | |
198 E T1t, T1u, T1D, T1E; | |
199 T1t = Ty - Tv; | |
200 T1u = T19 - T1b; | |
201 T1v = T1t - T1u; | |
202 T1H = T1u + T1t; | |
203 T1D = T14 - T16; | |
204 T1E = Ta - Tk; | |
205 T1F = T1D - T1E; | |
206 T1L = T1D + T1E; | |
207 } | |
208 { | |
209 E T1w, T1x, T1z, T1A; | |
210 T1w = T1j - T1h; | |
211 T1x = TV - T11; | |
212 T1y = T1w + T1x; | |
213 T1I = T1w - T1x; | |
214 T1z = TO - TG; | |
215 T1A = T1o - T1m; | |
216 T1B = T1z - T1A; | |
217 T1J = T1z + T1A; | |
218 } | |
219 { | |
220 E T1C, T1M, T1G, T1K; | |
221 T1C = T1y + T1B; | |
222 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v)); | |
223 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v))); | |
224 T1M = T1I + T1J; | |
225 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); | |
226 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); | |
227 T1G = T1B - T1y; | |
228 Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F)); | |
229 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F)); | |
230 T1K = T1I - T1J; | |
231 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H)); | |
232 Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H))); | |
233 } | |
234 } | |
235 } | |
236 } | |
237 } | |
238 | |
239 static const tw_instr twinstr[] = { | |
240 {TW_FULL, 1, 8}, | |
241 {TW_NEXT, 1, 0} | |
242 }; | |
243 | |
244 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {60, 30, 22, 0} }; | |
245 | |
246 void X(codelet_hc2cfdft_8) (planner *p) { | |
247 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); | |
248 } | |
249 #else | |
250 | |
251 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include rdft/scalar/hc2cf.h */ | |
252 | |
253 /* | |
254 * This function contains 82 FP additions, 44 FP multiplications, | |
255 * (or, 68 additions, 30 multiplications, 14 fused multiply/add), | |
256 * 39 stack variables, 2 constants, and 32 memory accesses | |
257 */ | |
258 #include "rdft/scalar/hc2cf.h" | |
259 | |
260 static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
261 { | |
262 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
263 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
264 { | |
265 INT m; | |
266 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { | |
267 E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP; | |
268 E T16, TU, T17, T1i, T1j; | |
269 { | |
270 E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To; | |
271 Tt = Ip[0]; | |
272 Tu = Im[0]; | |
273 TD = Tt + Tu; | |
274 Tz = Rm[0]; | |
275 TA = Rp[0]; | |
276 TB = Tz - TA; | |
277 { | |
278 E Tl, Tm, Tp, Tq; | |
279 Tl = Ip[WS(rs, 2)]; | |
280 Tm = Im[WS(rs, 2)]; | |
281 Tn = Tl - Tm; | |
282 TI = Tl + Tm; | |
283 Tp = Rp[WS(rs, 2)]; | |
284 Tq = Rm[WS(rs, 2)]; | |
285 Tr = Tp + Tq; | |
286 TG = Tp - Tq; | |
287 } | |
288 Tv = Tt - Tu; | |
289 TX = TA + Tz; | |
290 Tk = W[6]; | |
291 To = W[7]; | |
292 Ts = FNMS(To, Tr, Tk * Tn); | |
293 TY = FMA(Tk, Tr, To * Tn); | |
294 { | |
295 E Ty, TC, TF, TH; | |
296 Ty = W[0]; | |
297 TC = W[1]; | |
298 TE = FNMS(TC, TD, Ty * TB); | |
299 T1a = FMA(TC, TB, Ty * TD); | |
300 TF = W[8]; | |
301 TH = W[9]; | |
302 TJ = FMA(TF, TG, TH * TI); | |
303 T19 = FNMS(TH, TG, TF * TI); | |
304 } | |
305 T1l = TJ + TE; | |
306 T1m = T1a - T19; | |
307 } | |
308 { | |
309 E T4, TO, T8, TM, Td, TT, Th, TR; | |
310 { | |
311 E T2, T3, T6, T7; | |
312 T2 = Ip[WS(rs, 1)]; | |
313 T3 = Im[WS(rs, 1)]; | |
314 T4 = T2 - T3; | |
315 TO = T2 + T3; | |
316 T6 = Rp[WS(rs, 1)]; | |
317 T7 = Rm[WS(rs, 1)]; | |
318 T8 = T6 + T7; | |
319 TM = T6 - T7; | |
320 } | |
321 { | |
322 E Tb, Tc, Tf, Tg; | |
323 Tb = Ip[WS(rs, 3)]; | |
324 Tc = Im[WS(rs, 3)]; | |
325 Td = Tb - Tc; | |
326 TT = Tb + Tc; | |
327 Tf = Rp[WS(rs, 3)]; | |
328 Tg = Rm[WS(rs, 3)]; | |
329 Th = Tf + Tg; | |
330 TR = Tf - Tg; | |
331 } | |
332 { | |
333 E T1, T5, Ta, Te; | |
334 T1 = W[2]; | |
335 T5 = W[3]; | |
336 T9 = FNMS(T5, T8, T1 * T4); | |
337 T10 = FMA(T1, T8, T5 * T4); | |
338 Ta = W[10]; | |
339 Te = W[11]; | |
340 Ti = FNMS(Te, Th, Ta * Td); | |
341 T11 = FMA(Ta, Th, Te * Td); | |
342 { | |
343 E TL, TN, TQ, TS; | |
344 TL = W[4]; | |
345 TN = W[5]; | |
346 TP = FMA(TL, TM, TN * TO); | |
347 T16 = FNMS(TN, TM, TL * TO); | |
348 TQ = W[12]; | |
349 TS = W[13]; | |
350 TU = FMA(TQ, TR, TS * TT); | |
351 T17 = FNMS(TS, TR, TQ * TT); | |
352 } | |
353 T1i = T17 - T16; | |
354 T1j = TP - TU; | |
355 } | |
356 } | |
357 { | |
358 E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x; | |
359 { | |
360 E T1f, T1g, T1u, T1v; | |
361 T1f = Tv - Ts; | |
362 T1g = T10 - T11; | |
363 T1h = KP500000000 * (T1f - T1g); | |
364 T1t = KP500000000 * (T1g + T1f); | |
365 T1u = T1i - T1j; | |
366 T1v = T1l + T1m; | |
367 T1w = KP353553390 * (T1u - T1v); | |
368 T1y = KP353553390 * (T1u + T1v); | |
369 } | |
370 { | |
371 E T1k, T1n, T1p, T1q; | |
372 T1k = T1i + T1j; | |
373 T1n = T1l - T1m; | |
374 T1o = KP353553390 * (T1k + T1n); | |
375 T1s = KP353553390 * (T1n - T1k); | |
376 T1p = TX - TY; | |
377 T1q = T9 - Ti; | |
378 T1r = KP500000000 * (T1p - T1q); | |
379 T1x = KP500000000 * (T1p + T1q); | |
380 } | |
381 Ip[WS(rs, 1)] = T1h + T1o; | |
382 Rp[WS(rs, 1)] = T1x + T1y; | |
383 Im[WS(rs, 2)] = T1o - T1h; | |
384 Rm[WS(rs, 2)] = T1x - T1y; | |
385 Rm[0] = T1r - T1s; | |
386 Im[0] = T1w - T1t; | |
387 Rp[WS(rs, 3)] = T1r + T1s; | |
388 Ip[WS(rs, 3)] = T1t + T1w; | |
389 } | |
390 { | |
391 E Tx, T15, T1c, T1e, TW, T14, T13, T1d; | |
392 { | |
393 E Tj, Tw, T18, T1b; | |
394 Tj = T9 + Ti; | |
395 Tw = Ts + Tv; | |
396 Tx = Tj + Tw; | |
397 T15 = Tw - Tj; | |
398 T18 = T16 + T17; | |
399 T1b = T19 + T1a; | |
400 T1c = T18 - T1b; | |
401 T1e = T18 + T1b; | |
402 } | |
403 { | |
404 E TK, TV, TZ, T12; | |
405 TK = TE - TJ; | |
406 TV = TP + TU; | |
407 TW = TK - TV; | |
408 T14 = TV + TK; | |
409 TZ = TX + TY; | |
410 T12 = T10 + T11; | |
411 T13 = TZ - T12; | |
412 T1d = TZ + T12; | |
413 } | |
414 Ip[0] = KP500000000 * (Tx + TW); | |
415 Rp[0] = KP500000000 * (T1d + T1e); | |
416 Im[WS(rs, 3)] = KP500000000 * (TW - Tx); | |
417 Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e); | |
418 Rm[WS(rs, 1)] = KP500000000 * (T13 - T14); | |
419 Im[WS(rs, 1)] = KP500000000 * (T1c - T15); | |
420 Rp[WS(rs, 2)] = KP500000000 * (T13 + T14); | |
421 Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c); | |
422 } | |
423 } | |
424 } | |
425 } | |
426 | |
427 static const tw_instr twinstr[] = { | |
428 {TW_FULL, 1, 8}, | |
429 {TW_NEXT, 1, 0} | |
430 }; | |
431 | |
432 static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {68, 30, 14, 0} }; | |
433 | |
434 void X(codelet_hc2cfdft_8) (planner *p) { | |
435 X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT); | |
436 } | |
437 #endif |