Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:12 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 498 FP additions, 324 FP multiplications, | |
32 * (or, 300 additions, 126 multiplications, 198 fused multiply/add), | |
33 * 113 stack variables, 8 constants, and 128 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hc2cf.h" | |
36 | |
37 static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
40 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT m; | |
49 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { | |
50 E T3B, T89, T61, T8l, T2F, T8t, T4B, T7p, T1n, T7L, T5e, T7I, T4u, T82, T5E; | |
51 E T7R, T3m, T8k, T5W, T8a, T2r, T8u, T4G, T7q, T12, T7K, T59, T7H, T4h, T81; | |
52 E T5z, T7Q, Tl, T7D, T4Y, T7A, T3Q, T5o, T7V, T84, T1K, T7t, T4M, T7s, T2V; | |
53 E T8n, T5L, T8e, T25, T7w, T4R, T7v, T38, T8o, T5Q, T8h, TG, T7E, T53, T7B; | |
54 E T43, T5t, T7Y, T85; | |
55 { | |
56 E T2E, T3z, T4y, T3y, T5Z, T3t, T3x, T2v, T2A, T3r, T3q, T5X, T3n, T3p, T2w; | |
57 E T4z, T3s, T3A; | |
58 { | |
59 E T2C, T2D, T3u, T3v, T3w; | |
60 T2C = Ip[0]; | |
61 T2D = Im[0]; | |
62 T2E = T2C - T2D; | |
63 T3z = T2C + T2D; | |
64 T3u = Rm[0]; | |
65 T3v = Rp[0]; | |
66 T3w = T3u - T3v; | |
67 T4y = T3v + T3u; | |
68 T3y = W[1]; | |
69 T5Z = T3y * T3w; | |
70 T3t = W[0]; | |
71 T3x = T3t * T3w; | |
72 { | |
73 E T2t, T2u, T3o, T2y, T2z, T2s; | |
74 T2t = Ip[WS(rs, 8)]; | |
75 T2u = Im[WS(rs, 8)]; | |
76 T2v = T2t - T2u; | |
77 T2y = Rp[WS(rs, 8)]; | |
78 T2z = Rm[WS(rs, 8)]; | |
79 T2A = T2y + T2z; | |
80 T3o = T2z - T2y; | |
81 T3r = T2t + T2u; | |
82 T3q = W[33]; | |
83 T5X = T3q * T3o; | |
84 T3n = W[32]; | |
85 T3p = T3n * T3o; | |
86 T2s = W[30]; | |
87 T2w = T2s * T2v; | |
88 T4z = T2s * T2A; | |
89 } | |
90 } | |
91 T3s = FNMS(T3q, T3r, T3p); | |
92 T3A = FNMS(T3y, T3z, T3x); | |
93 T3B = T3s + T3A; | |
94 T89 = T3A - T3s; | |
95 { | |
96 E T5Y, T60, T2B, T4A, T2x; | |
97 T5Y = FMA(T3n, T3r, T5X); | |
98 T60 = FMA(T3t, T3z, T5Z); | |
99 T61 = T5Y + T60; | |
100 T8l = T60 - T5Y; | |
101 T2x = W[31]; | |
102 T2B = FNMS(T2x, T2A, T2w); | |
103 T4A = FMA(T2x, T2v, T4z); | |
104 T2F = T2B + T2E; | |
105 T8t = T4y - T4A; | |
106 T4B = T4y + T4A; | |
107 T7p = T2E - T2B; | |
108 } | |
109 } | |
110 { | |
111 E T16, T4m, T1b, T4j, T17, T5a, T4k, T5A, T1g, T4s, T1l, T4p, T1h, T5c, T4q; | |
112 E T5C; | |
113 { | |
114 E T13, T4i, T1d, T4o; | |
115 { | |
116 E T14, T15, T19, T1a; | |
117 T14 = Ip[WS(rs, 3)]; | |
118 T15 = Im[WS(rs, 3)]; | |
119 T16 = T14 - T15; | |
120 T4m = T14 + T15; | |
121 T19 = Rp[WS(rs, 3)]; | |
122 T1a = Rm[WS(rs, 3)]; | |
123 T1b = T19 + T1a; | |
124 T4j = T19 - T1a; | |
125 } | |
126 T13 = W[10]; | |
127 T17 = T13 * T16; | |
128 T5a = T13 * T1b; | |
129 T4i = W[12]; | |
130 T4k = T4i * T4j; | |
131 T5A = T4i * T4m; | |
132 { | |
133 E T1e, T1f, T1j, T1k; | |
134 T1e = Ip[WS(rs, 11)]; | |
135 T1f = Im[WS(rs, 11)]; | |
136 T1g = T1e - T1f; | |
137 T4s = T1e + T1f; | |
138 T1j = Rp[WS(rs, 11)]; | |
139 T1k = Rm[WS(rs, 11)]; | |
140 T1l = T1j + T1k; | |
141 T4p = T1j - T1k; | |
142 } | |
143 T1d = W[42]; | |
144 T1h = T1d * T1g; | |
145 T5c = T1d * T1l; | |
146 T4o = W[44]; | |
147 T4q = T4o * T4p; | |
148 T5C = T4o * T4s; | |
149 } | |
150 { | |
151 E T1c, T5b, T1m, T5d, T18, T1i; | |
152 T18 = W[11]; | |
153 T1c = FNMS(T18, T1b, T17); | |
154 T5b = FMA(T18, T16, T5a); | |
155 T1i = W[43]; | |
156 T1m = FNMS(T1i, T1l, T1h); | |
157 T5d = FMA(T1i, T1g, T5c); | |
158 T1n = T1c + T1m; | |
159 T7L = T1c - T1m; | |
160 T5e = T5b + T5d; | |
161 T7I = T5b - T5d; | |
162 } | |
163 { | |
164 E T4n, T5B, T4t, T5D, T4l, T4r; | |
165 T4l = W[13]; | |
166 T4n = FMA(T4l, T4m, T4k); | |
167 T5B = FNMS(T4l, T4j, T5A); | |
168 T4r = W[45]; | |
169 T4t = FMA(T4r, T4s, T4q); | |
170 T5D = FNMS(T4r, T4p, T5C); | |
171 T4u = T4n + T4t; | |
172 T82 = T4t - T4n; | |
173 T5E = T5B + T5D; | |
174 T7R = T5D - T5B; | |
175 } | |
176 } | |
177 { | |
178 E T2a, T2f, T3e, T3d, T5S, T3a, T3c, T2b, T4C, T2k, T2p, T3k, T3j, T5U, T3g; | |
179 E T3i, T2l, T4E; | |
180 { | |
181 E T28, T29, T3b, T2d, T2e, T27; | |
182 T28 = Ip[WS(rs, 4)]; | |
183 T29 = Im[WS(rs, 4)]; | |
184 T2a = T28 - T29; | |
185 T2d = Rp[WS(rs, 4)]; | |
186 T2e = Rm[WS(rs, 4)]; | |
187 T2f = T2d + T2e; | |
188 T3b = T2e - T2d; | |
189 T3e = T28 + T29; | |
190 T3d = W[17]; | |
191 T5S = T3d * T3b; | |
192 T3a = W[16]; | |
193 T3c = T3a * T3b; | |
194 T27 = W[14]; | |
195 T2b = T27 * T2a; | |
196 T4C = T27 * T2f; | |
197 } | |
198 { | |
199 E T2i, T2j, T3h, T2n, T2o, T2h; | |
200 T2i = Ip[WS(rs, 12)]; | |
201 T2j = Im[WS(rs, 12)]; | |
202 T2k = T2i - T2j; | |
203 T2n = Rp[WS(rs, 12)]; | |
204 T2o = Rm[WS(rs, 12)]; | |
205 T2p = T2n + T2o; | |
206 T3h = T2o - T2n; | |
207 T3k = T2i + T2j; | |
208 T3j = W[49]; | |
209 T5U = T3j * T3h; | |
210 T3g = W[48]; | |
211 T3i = T3g * T3h; | |
212 T2h = W[46]; | |
213 T2l = T2h * T2k; | |
214 T4E = T2h * T2p; | |
215 } | |
216 { | |
217 E T3f, T3l, T5T, T5V; | |
218 T3f = FNMS(T3d, T3e, T3c); | |
219 T3l = FNMS(T3j, T3k, T3i); | |
220 T3m = T3f + T3l; | |
221 T8k = T3f - T3l; | |
222 T5T = FMA(T3a, T3e, T5S); | |
223 T5V = FMA(T3g, T3k, T5U); | |
224 T5W = T5T + T5V; | |
225 T8a = T5T - T5V; | |
226 { | |
227 E T2g, T4D, T2q, T4F, T2c, T2m; | |
228 T2c = W[15]; | |
229 T2g = FNMS(T2c, T2f, T2b); | |
230 T4D = FMA(T2c, T2a, T4C); | |
231 T2m = W[47]; | |
232 T2q = FNMS(T2m, T2p, T2l); | |
233 T4F = FMA(T2m, T2k, T4E); | |
234 T2r = T2g + T2q; | |
235 T8u = T2g - T2q; | |
236 T4G = T4D + T4F; | |
237 T7q = T4D - T4F; | |
238 } | |
239 } | |
240 } | |
241 { | |
242 E TL, T49, TQ, T46, TM, T55, T47, T5v, TV, T4f, T10, T4c, TW, T57, T4d; | |
243 E T5x; | |
244 { | |
245 E TI, T45, TS, T4b; | |
246 { | |
247 E TJ, TK, TO, TP; | |
248 TJ = Ip[WS(rs, 15)]; | |
249 TK = Im[WS(rs, 15)]; | |
250 TL = TJ - TK; | |
251 T49 = TJ + TK; | |
252 TO = Rp[WS(rs, 15)]; | |
253 TP = Rm[WS(rs, 15)]; | |
254 TQ = TO + TP; | |
255 T46 = TO - TP; | |
256 } | |
257 TI = W[58]; | |
258 TM = TI * TL; | |
259 T55 = TI * TQ; | |
260 T45 = W[60]; | |
261 T47 = T45 * T46; | |
262 T5v = T45 * T49; | |
263 { | |
264 E TT, TU, TY, TZ; | |
265 TT = Ip[WS(rs, 7)]; | |
266 TU = Im[WS(rs, 7)]; | |
267 TV = TT - TU; | |
268 T4f = TT + TU; | |
269 TY = Rp[WS(rs, 7)]; | |
270 TZ = Rm[WS(rs, 7)]; | |
271 T10 = TY + TZ; | |
272 T4c = TY - TZ; | |
273 } | |
274 TS = W[26]; | |
275 TW = TS * TV; | |
276 T57 = TS * T10; | |
277 T4b = W[28]; | |
278 T4d = T4b * T4c; | |
279 T5x = T4b * T4f; | |
280 } | |
281 { | |
282 E TR, T56, T11, T58, TN, TX; | |
283 TN = W[59]; | |
284 TR = FNMS(TN, TQ, TM); | |
285 T56 = FMA(TN, TL, T55); | |
286 TX = W[27]; | |
287 T11 = FNMS(TX, T10, TW); | |
288 T58 = FMA(TX, TV, T57); | |
289 T12 = TR + T11; | |
290 T7K = T56 - T58; | |
291 T59 = T56 + T58; | |
292 T7H = TR - T11; | |
293 } | |
294 { | |
295 E T4a, T5w, T4g, T5y, T48, T4e; | |
296 T48 = W[61]; | |
297 T4a = FMA(T48, T49, T47); | |
298 T5w = FNMS(T48, T46, T5v); | |
299 T4e = W[29]; | |
300 T4g = FMA(T4e, T4f, T4d); | |
301 T5y = FNMS(T4e, T4c, T5x); | |
302 T4h = T4a + T4g; | |
303 T81 = T5w - T5y; | |
304 T5z = T5w + T5y; | |
305 T7Q = T4g - T4a; | |
306 } | |
307 } | |
308 { | |
309 E T4, T3I, T9, T3F, T5, T4U, T3G, T5k, Te, T3O, Tj, T3L, Tf, T4W, T3M; | |
310 E T5m; | |
311 { | |
312 E T1, T3E, Tb, T3K; | |
313 { | |
314 E T2, T3, T7, T8; | |
315 T2 = Ip[WS(rs, 1)]; | |
316 T3 = Im[WS(rs, 1)]; | |
317 T4 = T2 - T3; | |
318 T3I = T2 + T3; | |
319 T7 = Rp[WS(rs, 1)]; | |
320 T8 = Rm[WS(rs, 1)]; | |
321 T9 = T7 + T8; | |
322 T3F = T7 - T8; | |
323 } | |
324 T1 = W[2]; | |
325 T5 = T1 * T4; | |
326 T4U = T1 * T9; | |
327 T3E = W[4]; | |
328 T3G = T3E * T3F; | |
329 T5k = T3E * T3I; | |
330 { | |
331 E Tc, Td, Th, Ti; | |
332 Tc = Ip[WS(rs, 9)]; | |
333 Td = Im[WS(rs, 9)]; | |
334 Te = Tc - Td; | |
335 T3O = Tc + Td; | |
336 Th = Rp[WS(rs, 9)]; | |
337 Ti = Rm[WS(rs, 9)]; | |
338 Tj = Th + Ti; | |
339 T3L = Th - Ti; | |
340 } | |
341 Tb = W[34]; | |
342 Tf = Tb * Te; | |
343 T4W = Tb * Tj; | |
344 T3K = W[36]; | |
345 T3M = T3K * T3L; | |
346 T5m = T3K * T3O; | |
347 } | |
348 { | |
349 E Ta, T4V, Tk, T4X, T6, Tg; | |
350 T6 = W[3]; | |
351 Ta = FNMS(T6, T9, T5); | |
352 T4V = FMA(T6, T4, T4U); | |
353 Tg = W[35]; | |
354 Tk = FNMS(Tg, Tj, Tf); | |
355 T4X = FMA(Tg, Te, T4W); | |
356 Tl = Ta + Tk; | |
357 T7D = T4V - T4X; | |
358 T4Y = T4V + T4X; | |
359 T7A = Ta - Tk; | |
360 } | |
361 { | |
362 E T3J, T5l, T3P, T5n, T3H, T3N, T7T, T7U; | |
363 T3H = W[5]; | |
364 T3J = FMA(T3H, T3I, T3G); | |
365 T5l = FNMS(T3H, T3F, T5k); | |
366 T3N = W[37]; | |
367 T3P = FMA(T3N, T3O, T3M); | |
368 T5n = FNMS(T3N, T3L, T5m); | |
369 T3Q = T3J + T3P; | |
370 T5o = T5l + T5n; | |
371 T7T = T3P - T3J; | |
372 T7U = T5l - T5n; | |
373 T7V = T7T - T7U; | |
374 T84 = T7U + T7T; | |
375 } | |
376 } | |
377 { | |
378 E T1t, T1y, T2N, T2M, T5H, T2J, T2L, T1u, T4I, T1D, T1I, T2T, T2S, T5J, T2P; | |
379 E T2R, T1E, T4K; | |
380 { | |
381 E T1r, T1s, T2K, T1w, T1x, T1q; | |
382 T1r = Ip[WS(rs, 2)]; | |
383 T1s = Im[WS(rs, 2)]; | |
384 T1t = T1r - T1s; | |
385 T1w = Rp[WS(rs, 2)]; | |
386 T1x = Rm[WS(rs, 2)]; | |
387 T1y = T1w + T1x; | |
388 T2K = T1x - T1w; | |
389 T2N = T1r + T1s; | |
390 T2M = W[9]; | |
391 T5H = T2M * T2K; | |
392 T2J = W[8]; | |
393 T2L = T2J * T2K; | |
394 T1q = W[6]; | |
395 T1u = T1q * T1t; | |
396 T4I = T1q * T1y; | |
397 } | |
398 { | |
399 E T1B, T1C, T2Q, T1G, T1H, T1A; | |
400 T1B = Ip[WS(rs, 10)]; | |
401 T1C = Im[WS(rs, 10)]; | |
402 T1D = T1B - T1C; | |
403 T1G = Rp[WS(rs, 10)]; | |
404 T1H = Rm[WS(rs, 10)]; | |
405 T1I = T1G + T1H; | |
406 T2Q = T1H - T1G; | |
407 T2T = T1B + T1C; | |
408 T2S = W[41]; | |
409 T5J = T2S * T2Q; | |
410 T2P = W[40]; | |
411 T2R = T2P * T2Q; | |
412 T1A = W[38]; | |
413 T1E = T1A * T1D; | |
414 T4K = T1A * T1I; | |
415 } | |
416 { | |
417 E T1z, T4J, T1J, T4L, T1v, T1F; | |
418 T1v = W[7]; | |
419 T1z = FNMS(T1v, T1y, T1u); | |
420 T4J = FMA(T1v, T1t, T4I); | |
421 T1F = W[39]; | |
422 T1J = FNMS(T1F, T1I, T1E); | |
423 T4L = FMA(T1F, T1D, T4K); | |
424 T1K = T1z + T1J; | |
425 T7t = T4J - T4L; | |
426 T4M = T4J + T4L; | |
427 T7s = T1z - T1J; | |
428 } | |
429 { | |
430 E T2O, T2U, T8c, T5I, T5K, T8d; | |
431 T2O = FNMS(T2M, T2N, T2L); | |
432 T2U = FNMS(T2S, T2T, T2R); | |
433 T8c = T2O - T2U; | |
434 T5I = FMA(T2J, T2N, T5H); | |
435 T5K = FMA(T2P, T2T, T5J); | |
436 T8d = T5I - T5K; | |
437 T2V = T2O + T2U; | |
438 T8n = T8c + T8d; | |
439 T5L = T5I + T5K; | |
440 T8e = T8c - T8d; | |
441 } | |
442 } | |
443 { | |
444 E T1O, T1T, T30, T2Z, T5M, T2W, T2Y, T1P, T4N, T1Y, T23, T36, T35, T5O, T32; | |
445 E T34, T1Z, T4P; | |
446 { | |
447 E T1M, T1N, T2X, T1R, T1S, T1L; | |
448 T1M = Ip[WS(rs, 14)]; | |
449 T1N = Im[WS(rs, 14)]; | |
450 T1O = T1M - T1N; | |
451 T1R = Rp[WS(rs, 14)]; | |
452 T1S = Rm[WS(rs, 14)]; | |
453 T1T = T1R + T1S; | |
454 T2X = T1S - T1R; | |
455 T30 = T1M + T1N; | |
456 T2Z = W[57]; | |
457 T5M = T2Z * T2X; | |
458 T2W = W[56]; | |
459 T2Y = T2W * T2X; | |
460 T1L = W[54]; | |
461 T1P = T1L * T1O; | |
462 T4N = T1L * T1T; | |
463 } | |
464 { | |
465 E T1W, T1X, T33, T21, T22, T1V; | |
466 T1W = Ip[WS(rs, 6)]; | |
467 T1X = Im[WS(rs, 6)]; | |
468 T1Y = T1W - T1X; | |
469 T21 = Rp[WS(rs, 6)]; | |
470 T22 = Rm[WS(rs, 6)]; | |
471 T23 = T21 + T22; | |
472 T33 = T22 - T21; | |
473 T36 = T1W + T1X; | |
474 T35 = W[25]; | |
475 T5O = T35 * T33; | |
476 T32 = W[24]; | |
477 T34 = T32 * T33; | |
478 T1V = W[22]; | |
479 T1Z = T1V * T1Y; | |
480 T4P = T1V * T23; | |
481 } | |
482 { | |
483 E T1U, T4O, T24, T4Q, T1Q, T20; | |
484 T1Q = W[55]; | |
485 T1U = FNMS(T1Q, T1T, T1P); | |
486 T4O = FMA(T1Q, T1O, T4N); | |
487 T20 = W[23]; | |
488 T24 = FNMS(T20, T23, T1Z); | |
489 T4Q = FMA(T20, T1Y, T4P); | |
490 T25 = T1U + T24; | |
491 T7w = T1U - T24; | |
492 T4R = T4O + T4Q; | |
493 T7v = T4O - T4Q; | |
494 } | |
495 { | |
496 E T31, T37, T8f, T5N, T5P, T8g; | |
497 T31 = FNMS(T2Z, T30, T2Y); | |
498 T37 = FNMS(T35, T36, T34); | |
499 T8f = T31 - T37; | |
500 T5N = FMA(T2W, T30, T5M); | |
501 T5P = FMA(T32, T36, T5O); | |
502 T8g = T5N - T5P; | |
503 T38 = T31 + T37; | |
504 T8o = T8g - T8f; | |
505 T5Q = T5N + T5P; | |
506 T8h = T8f + T8g; | |
507 } | |
508 } | |
509 { | |
510 E Tp, T3V, Tu, T3S, Tq, T4Z, T3T, T5p, Tz, T41, TE, T3Y, TA, T51, T3Z; | |
511 E T5r; | |
512 { | |
513 E Tm, T3R, Tw, T3X; | |
514 { | |
515 E Tn, To, Ts, Tt; | |
516 Tn = Ip[WS(rs, 5)]; | |
517 To = Im[WS(rs, 5)]; | |
518 Tp = Tn - To; | |
519 T3V = Tn + To; | |
520 Ts = Rp[WS(rs, 5)]; | |
521 Tt = Rm[WS(rs, 5)]; | |
522 Tu = Ts + Tt; | |
523 T3S = Ts - Tt; | |
524 } | |
525 Tm = W[18]; | |
526 Tq = Tm * Tp; | |
527 T4Z = Tm * Tu; | |
528 T3R = W[20]; | |
529 T3T = T3R * T3S; | |
530 T5p = T3R * T3V; | |
531 { | |
532 E Tx, Ty, TC, TD; | |
533 Tx = Ip[WS(rs, 13)]; | |
534 Ty = Im[WS(rs, 13)]; | |
535 Tz = Tx - Ty; | |
536 T41 = Tx + Ty; | |
537 TC = Rp[WS(rs, 13)]; | |
538 TD = Rm[WS(rs, 13)]; | |
539 TE = TC + TD; | |
540 T3Y = TC - TD; | |
541 } | |
542 Tw = W[50]; | |
543 TA = Tw * Tz; | |
544 T51 = Tw * TE; | |
545 T3X = W[52]; | |
546 T3Z = T3X * T3Y; | |
547 T5r = T3X * T41; | |
548 } | |
549 { | |
550 E Tv, T50, TF, T52, Tr, TB; | |
551 Tr = W[19]; | |
552 Tv = FNMS(Tr, Tu, Tq); | |
553 T50 = FMA(Tr, Tp, T4Z); | |
554 TB = W[51]; | |
555 TF = FNMS(TB, TE, TA); | |
556 T52 = FMA(TB, Tz, T51); | |
557 TG = Tv + TF; | |
558 T7E = Tv - TF; | |
559 T53 = T50 + T52; | |
560 T7B = T50 - T52; | |
561 } | |
562 { | |
563 E T3W, T5q, T42, T5s, T3U, T40, T7W, T7X; | |
564 T3U = W[21]; | |
565 T3W = FMA(T3U, T3V, T3T); | |
566 T5q = FNMS(T3U, T3S, T5p); | |
567 T40 = W[53]; | |
568 T42 = FMA(T40, T41, T3Z); | |
569 T5s = FNMS(T40, T3Y, T5r); | |
570 T43 = T3W + T42; | |
571 T5t = T5q + T5s; | |
572 T7W = T5s - T5q; | |
573 T7X = T3W - T42; | |
574 T7Y = T7W + T7X; | |
575 T85 = T7W - T7X; | |
576 } | |
577 } | |
578 { | |
579 E T1p, T6i, T2H, T68, T5g, T67, T4T, T6h, T4w, T6m, T5G, T6c, T3D, T6n, T63; | |
580 E T6f; | |
581 { | |
582 E TH, T1o, T4H, T4S; | |
583 TH = Tl + TG; | |
584 T1o = T12 + T1n; | |
585 T1p = TH + T1o; | |
586 T6i = TH - T1o; | |
587 { | |
588 E T26, T2G, T54, T5f; | |
589 T26 = T1K + T25; | |
590 T2G = T2r + T2F; | |
591 T2H = T26 + T2G; | |
592 T68 = T2G - T26; | |
593 T54 = T4Y + T53; | |
594 T5f = T59 + T5e; | |
595 T5g = T54 + T5f; | |
596 T67 = T5f - T54; | |
597 } | |
598 T4H = T4B + T4G; | |
599 T4S = T4M + T4R; | |
600 T4T = T4H + T4S; | |
601 T6h = T4H - T4S; | |
602 { | |
603 E T44, T4v, T6b, T5u, T5F, T6a; | |
604 T44 = T3Q + T43; | |
605 T4v = T4h + T4u; | |
606 T6b = T44 - T4v; | |
607 T5u = T5o + T5t; | |
608 T5F = T5z + T5E; | |
609 T6a = T5F - T5u; | |
610 T4w = T44 + T4v; | |
611 T6m = T6a - T6b; | |
612 T5G = T5u + T5F; | |
613 T6c = T6a + T6b; | |
614 } | |
615 { | |
616 E T39, T3C, T6d, T5R, T62, T6e; | |
617 T39 = T2V + T38; | |
618 T3C = T3m + T3B; | |
619 T6d = T3C - T39; | |
620 T5R = T5L + T5Q; | |
621 T62 = T5W + T61; | |
622 T6e = T62 - T5R; | |
623 T3D = T39 + T3C; | |
624 T6n = T6d + T6e; | |
625 T63 = T5R + T62; | |
626 T6f = T6d - T6e; | |
627 } | |
628 } | |
629 { | |
630 E T2I, T4x, T65, T66; | |
631 T2I = T1p + T2H; | |
632 T4x = T3D - T4w; | |
633 Ip[0] = KP500000000 * (T2I + T4x); | |
634 Im[WS(rs, 15)] = KP500000000 * (T4x - T2I); | |
635 T65 = T4T + T5g; | |
636 T66 = T5G + T63; | |
637 Rm[WS(rs, 15)] = KP500000000 * (T65 - T66); | |
638 Rp[0] = KP500000000 * (T65 + T66); | |
639 } | |
640 { | |
641 E T5h, T5i, T5j, T64; | |
642 T5h = T4T - T5g; | |
643 T5i = T4w + T3D; | |
644 Rm[WS(rs, 7)] = KP500000000 * (T5h - T5i); | |
645 Rp[WS(rs, 8)] = KP500000000 * (T5h + T5i); | |
646 T5j = T2H - T1p; | |
647 T64 = T5G - T63; | |
648 Ip[WS(rs, 8)] = KP500000000 * (T5j + T64); | |
649 Im[WS(rs, 7)] = KP500000000 * (T64 - T5j); | |
650 } | |
651 { | |
652 E T69, T6g, T6p, T6q; | |
653 T69 = T67 + T68; | |
654 T6g = T6c + T6f; | |
655 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6g, T69)); | |
656 Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6g, T69))); | |
657 T6p = T6h + T6i; | |
658 T6q = T6m + T6n; | |
659 Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T6q, T6p)); | |
660 Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6q, T6p)); | |
661 } | |
662 { | |
663 E T6j, T6k, T6l, T6o; | |
664 T6j = T6h - T6i; | |
665 T6k = T6f - T6c; | |
666 Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6k, T6j)); | |
667 Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6k, T6j)); | |
668 T6l = T68 - T67; | |
669 T6o = T6m - T6n; | |
670 Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6o, T6l)); | |
671 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6o, T6l))); | |
672 } | |
673 } | |
674 { | |
675 E T6t, T75, T6T, T7f, T6A, T7g, T6W, T76, T6I, T7k, T70, T7a, T6P, T7l, T71; | |
676 E T7d; | |
677 { | |
678 E T6r, T6s, T6R, T6S; | |
679 T6r = T4R - T4M; | |
680 T6s = T2F - T2r; | |
681 T6t = T6r + T6s; | |
682 T75 = T6s - T6r; | |
683 T6R = T4B - T4G; | |
684 T6S = T1K - T25; | |
685 T6T = T6R + T6S; | |
686 T7f = T6R - T6S; | |
687 } | |
688 { | |
689 E T6w, T6U, T6z, T6V; | |
690 { | |
691 E T6u, T6v, T6x, T6y; | |
692 T6u = Tl - TG; | |
693 T6v = T4Y - T53; | |
694 T6w = T6u - T6v; | |
695 T6U = T6v + T6u; | |
696 T6x = T59 - T5e; | |
697 T6y = T12 - T1n; | |
698 T6z = T6x + T6y; | |
699 T6V = T6x - T6y; | |
700 } | |
701 T6A = T6w + T6z; | |
702 T7g = T6w - T6z; | |
703 T6W = T6U + T6V; | |
704 T76 = T6V - T6U; | |
705 } | |
706 { | |
707 E T6E, T78, T6H, T79; | |
708 { | |
709 E T6C, T6D, T6F, T6G; | |
710 T6C = T5t - T5o; | |
711 T6D = T4u - T4h; | |
712 T6E = T6C + T6D; | |
713 T78 = T6C - T6D; | |
714 T6F = T43 - T3Q; | |
715 T6G = T5z - T5E; | |
716 T6H = T6F + T6G; | |
717 T79 = T6G - T6F; | |
718 } | |
719 T6I = FMA(KP414213562, T6H, T6E); | |
720 T7k = FNMS(KP414213562, T78, T79); | |
721 T70 = FNMS(KP414213562, T6E, T6H); | |
722 T7a = FMA(KP414213562, T79, T78); | |
723 } | |
724 { | |
725 E T6L, T7b, T6O, T7c; | |
726 { | |
727 E T6J, T6K, T6M, T6N; | |
728 T6J = T5Q - T5L; | |
729 T6K = T3B - T3m; | |
730 T6L = T6J + T6K; | |
731 T7b = T6K - T6J; | |
732 T6M = T2V - T38; | |
733 T6N = T61 - T5W; | |
734 T6O = T6M + T6N; | |
735 T7c = T6N - T6M; | |
736 } | |
737 T6P = FNMS(KP414213562, T6O, T6L); | |
738 T7l = FNMS(KP414213562, T7b, T7c); | |
739 T71 = FMA(KP414213562, T6L, T6O); | |
740 T7d = FMA(KP414213562, T7c, T7b); | |
741 } | |
742 { | |
743 E T6B, T6Q, T73, T74; | |
744 T6B = FMA(KP707106781, T6A, T6t); | |
745 T6Q = T6I + T6P; | |
746 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T6Q, T6B)); | |
747 Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T6Q, T6B))); | |
748 T73 = FMA(KP707106781, T6W, T6T); | |
749 T74 = T70 + T71; | |
750 Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T74, T73)); | |
751 Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T74, T73)); | |
752 } | |
753 { | |
754 E T6X, T6Y, T6Z, T72; | |
755 T6X = FNMS(KP707106781, T6W, T6T); | |
756 T6Y = T6P - T6I; | |
757 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T6Y, T6X)); | |
758 Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T6Y, T6X)); | |
759 T6Z = FNMS(KP707106781, T6A, T6t); | |
760 T72 = T70 - T71; | |
761 Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T72, T6Z)); | |
762 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T72, T6Z))); | |
763 } | |
764 { | |
765 E T77, T7e, T7n, T7o; | |
766 T77 = FNMS(KP707106781, T76, T75); | |
767 T7e = T7a - T7d; | |
768 Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7e, T77)); | |
769 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7e, T77))); | |
770 T7n = FNMS(KP707106781, T7g, T7f); | |
771 T7o = T7k + T7l; | |
772 Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7o, T7n)); | |
773 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7o, T7n)); | |
774 } | |
775 { | |
776 E T7h, T7i, T7j, T7m; | |
777 T7h = FMA(KP707106781, T7g, T7f); | |
778 T7i = T7a + T7d; | |
779 Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7i, T7h)); | |
780 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7i, T7h)); | |
781 T7j = FMA(KP707106781, T76, T75); | |
782 T7m = T7k - T7l; | |
783 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7m, T7j)); | |
784 Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7m, T7j))); | |
785 } | |
786 } | |
787 { | |
788 E T7z, T9T, T8L, T9x, T8z, T9J, T8V, T97, T7O, T8W, T8C, T8M, T9t, T9Y, T9E; | |
789 E T9O, T88, T90, T8G, T8Q, T9e, T9U, T9A, T9K, T9m, T9Z, T9F, T9R, T8r, T91; | |
790 E T8H, T8T; | |
791 { | |
792 E T7r, T9v, T7y, T9w, T7u, T7x; | |
793 T7r = T7p - T7q; | |
794 T9v = T8t - T8u; | |
795 T7u = T7s - T7t; | |
796 T7x = T7v + T7w; | |
797 T7y = T7u + T7x; | |
798 T9w = T7u - T7x; | |
799 T7z = FMA(KP707106781, T7y, T7r); | |
800 T9T = FNMS(KP707106781, T9w, T9v); | |
801 T8L = FNMS(KP707106781, T7y, T7r); | |
802 T9x = FMA(KP707106781, T9w, T9v); | |
803 } | |
804 { | |
805 E T8v, T95, T8y, T96, T8w, T8x; | |
806 T8v = T8t + T8u; | |
807 T95 = T7q + T7p; | |
808 T8w = T7t + T7s; | |
809 T8x = T7v - T7w; | |
810 T8y = T8w + T8x; | |
811 T96 = T8x - T8w; | |
812 T8z = FMA(KP707106781, T8y, T8v); | |
813 T9J = FNMS(KP707106781, T96, T95); | |
814 T8V = FNMS(KP707106781, T8y, T8v); | |
815 T97 = FMA(KP707106781, T96, T95); | |
816 } | |
817 { | |
818 E T7G, T8A, T7N, T8B; | |
819 { | |
820 E T7C, T7F, T7J, T7M; | |
821 T7C = T7A - T7B; | |
822 T7F = T7D + T7E; | |
823 T7G = FNMS(KP414213562, T7F, T7C); | |
824 T8A = FMA(KP414213562, T7C, T7F); | |
825 T7J = T7H - T7I; | |
826 T7M = T7K + T7L; | |
827 T7N = FMA(KP414213562, T7M, T7J); | |
828 T8B = FNMS(KP414213562, T7J, T7M); | |
829 } | |
830 T7O = T7G + T7N; | |
831 T8W = T7G - T7N; | |
832 T8C = T8A + T8B; | |
833 T8M = T8B - T8A; | |
834 } | |
835 { | |
836 E T9p, T9M, T9s, T9N; | |
837 { | |
838 E T9n, T9o, T9q, T9r; | |
839 T9n = T7R - T7Q; | |
840 T9o = T85 - T84; | |
841 T9p = FNMS(KP707106781, T9o, T9n); | |
842 T9M = FMA(KP707106781, T9o, T9n); | |
843 T9q = T81 - T82; | |
844 T9r = T7Y - T7V; | |
845 T9s = FNMS(KP707106781, T9r, T9q); | |
846 T9N = FMA(KP707106781, T9r, T9q); | |
847 } | |
848 T9t = FNMS(KP668178637, T9s, T9p); | |
849 T9Y = FNMS(KP198912367, T9M, T9N); | |
850 T9E = FMA(KP668178637, T9p, T9s); | |
851 T9O = FMA(KP198912367, T9N, T9M); | |
852 } | |
853 { | |
854 E T80, T8O, T87, T8P; | |
855 { | |
856 E T7S, T7Z, T83, T86; | |
857 T7S = T7Q + T7R; | |
858 T7Z = T7V + T7Y; | |
859 T80 = FMA(KP707106781, T7Z, T7S); | |
860 T8O = FNMS(KP707106781, T7Z, T7S); | |
861 T83 = T81 + T82; | |
862 T86 = T84 + T85; | |
863 T87 = FMA(KP707106781, T86, T83); | |
864 T8P = FNMS(KP707106781, T86, T83); | |
865 } | |
866 T88 = FMA(KP198912367, T87, T80); | |
867 T90 = FMA(KP668178637, T8O, T8P); | |
868 T8G = FNMS(KP198912367, T80, T87); | |
869 T8Q = FNMS(KP668178637, T8P, T8O); | |
870 } | |
871 { | |
872 E T9a, T9z, T9d, T9y; | |
873 { | |
874 E T98, T99, T9b, T9c; | |
875 T98 = T7K - T7L; | |
876 T99 = T7H + T7I; | |
877 T9a = FMA(KP414213562, T99, T98); | |
878 T9z = FNMS(KP414213562, T98, T99); | |
879 T9b = T7D - T7E; | |
880 T9c = T7A + T7B; | |
881 T9d = FNMS(KP414213562, T9c, T9b); | |
882 T9y = FMA(KP414213562, T9b, T9c); | |
883 } | |
884 T9e = T9a - T9d; | |
885 T9U = T9d + T9a; | |
886 T9A = T9y - T9z; | |
887 T9K = T9y + T9z; | |
888 } | |
889 { | |
890 E T9i, T9P, T9l, T9Q; | |
891 { | |
892 E T9g, T9h, T9j, T9k; | |
893 T9g = T8a + T89; | |
894 T9h = T8n - T8o; | |
895 T9i = FNMS(KP707106781, T9h, T9g); | |
896 T9P = FMA(KP707106781, T9h, T9g); | |
897 T9j = T8l - T8k; | |
898 T9k = T8h - T8e; | |
899 T9l = FNMS(KP707106781, T9k, T9j); | |
900 T9Q = FMA(KP707106781, T9k, T9j); | |
901 } | |
902 T9m = FNMS(KP668178637, T9l, T9i); | |
903 T9Z = FNMS(KP198912367, T9P, T9Q); | |
904 T9F = FMA(KP668178637, T9i, T9l); | |
905 T9R = FMA(KP198912367, T9Q, T9P); | |
906 } | |
907 { | |
908 E T8j, T8R, T8q, T8S; | |
909 { | |
910 E T8b, T8i, T8m, T8p; | |
911 T8b = T89 - T8a; | |
912 T8i = T8e + T8h; | |
913 T8j = FMA(KP707106781, T8i, T8b); | |
914 T8R = FNMS(KP707106781, T8i, T8b); | |
915 T8m = T8k + T8l; | |
916 T8p = T8n + T8o; | |
917 T8q = FMA(KP707106781, T8p, T8m); | |
918 T8S = FNMS(KP707106781, T8p, T8m); | |
919 } | |
920 T8r = FNMS(KP198912367, T8q, T8j); | |
921 T91 = FNMS(KP668178637, T8R, T8S); | |
922 T8H = FMA(KP198912367, T8j, T8q); | |
923 T8T = FMA(KP668178637, T8S, T8R); | |
924 } | |
925 { | |
926 E T7P, T8s, T8J, T8K; | |
927 T7P = FMA(KP923879532, T7O, T7z); | |
928 T8s = T88 + T8r; | |
929 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8s, T7P)); | |
930 Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T8s, T7P))); | |
931 T8J = FMA(KP923879532, T8C, T8z); | |
932 T8K = T8G + T8H; | |
933 Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T8K, T8J)); | |
934 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8K, T8J)); | |
935 } | |
936 { | |
937 E T8D, T8E, T8F, T8I; | |
938 T8D = FNMS(KP923879532, T8C, T8z); | |
939 T8E = T8r - T88; | |
940 Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T8E, T8D)); | |
941 Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8E, T8D)); | |
942 T8F = FNMS(KP923879532, T7O, T7z); | |
943 T8I = T8G - T8H; | |
944 Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8I, T8F)); | |
945 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T8I, T8F))); | |
946 } | |
947 { | |
948 E T8N, T8U, T93, T94; | |
949 T8N = FNMS(KP923879532, T8M, T8L); | |
950 T8U = T8Q + T8T; | |
951 Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T8U, T8N)); | |
952 Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T8U, T8N))); | |
953 T93 = FNMS(KP923879532, T8W, T8V); | |
954 T94 = T90 + T91; | |
955 Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T94, T93)); | |
956 Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T94, T93)); | |
957 } | |
958 { | |
959 E T8X, T8Y, T8Z, T92; | |
960 T8X = FMA(KP923879532, T8W, T8V); | |
961 T8Y = T8T - T8Q; | |
962 Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T8Y, T8X)); | |
963 Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T8Y, T8X)); | |
964 T8Z = FMA(KP923879532, T8M, T8L); | |
965 T92 = T90 - T91; | |
966 Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T92, T8Z)); | |
967 Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T92, T8Z))); | |
968 } | |
969 { | |
970 E T9f, T9u, T9H, T9I; | |
971 T9f = FMA(KP923879532, T9e, T97); | |
972 T9u = T9m - T9t; | |
973 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9u, T9f)); | |
974 Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, T9u, T9f))); | |
975 T9H = FMA(KP923879532, T9A, T9x); | |
976 T9I = T9E + T9F; | |
977 Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, T9I, T9H)); | |
978 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9I, T9H)); | |
979 } | |
980 { | |
981 E T9B, T9C, T9D, T9G; | |
982 T9B = FNMS(KP923879532, T9A, T9x); | |
983 T9C = T9t + T9m; | |
984 Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, T9C, T9B)); | |
985 Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9C, T9B)); | |
986 T9D = FNMS(KP923879532, T9e, T97); | |
987 T9G = T9E - T9F; | |
988 Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9G, T9D)); | |
989 Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, T9G, T9D))); | |
990 } | |
991 { | |
992 E T9L, T9S, Ta1, Ta2; | |
993 T9L = FMA(KP923879532, T9K, T9J); | |
994 T9S = T9O - T9R; | |
995 Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, T9S, T9L)); | |
996 Im[0] = -(KP500000000 * (FNMS(KP980785280, T9S, T9L))); | |
997 Ta1 = FMA(KP923879532, T9U, T9T); | |
998 Ta2 = T9Y + T9Z; | |
999 Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, Ta2, Ta1)); | |
1000 Rm[0] = KP500000000 * (FMA(KP980785280, Ta2, Ta1)); | |
1001 } | |
1002 { | |
1003 E T9V, T9W, T9X, Ta0; | |
1004 T9V = FNMS(KP923879532, T9U, T9T); | |
1005 T9W = T9O + T9R; | |
1006 Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, T9W, T9V)); | |
1007 Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, T9W, T9V)); | |
1008 T9X = FNMS(KP923879532, T9K, T9J); | |
1009 Ta0 = T9Y - T9Z; | |
1010 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Ta0, T9X)); | |
1011 Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, Ta0, T9X))); | |
1012 } | |
1013 } | |
1014 } | |
1015 } | |
1016 } | |
1017 | |
1018 static const tw_instr twinstr[] = { | |
1019 {TW_FULL, 1, 32}, | |
1020 {TW_NEXT, 1, 0} | |
1021 }; | |
1022 | |
1023 static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {300, 126, 198, 0} }; | |
1024 | |
1025 void X(codelet_hc2cfdft_32) (planner *p) { | |
1026 X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); | |
1027 } | |
1028 #else | |
1029 | |
1030 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include rdft/scalar/hc2cf.h */ | |
1031 | |
1032 /* | |
1033 * This function contains 498 FP additions, 228 FP multiplications, | |
1034 * (or, 404 additions, 134 multiplications, 94 fused multiply/add), | |
1035 * 106 stack variables, 9 constants, and 128 memory accesses | |
1036 */ | |
1037 #include "rdft/scalar/hc2cf.h" | |
1038 | |
1039 static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
1040 { | |
1041 DK(KP277785116, +0.277785116509801112371415406974266437187468595); | |
1042 DK(KP415734806, +0.415734806151272618539394188808952878369280406); | |
1043 DK(KP097545161, +0.097545161008064133924142434238511120463845809); | |
1044 DK(KP490392640, +0.490392640201615224563091118067119518486966865); | |
1045 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1046 DK(KP191341716, +0.191341716182544885864229992015199433380672281); | |
1047 DK(KP461939766, +0.461939766255643378064091594698394143411208313); | |
1048 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
1049 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
1050 { | |
1051 INT m; | |
1052 for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { | |
1053 E T2S, T5K, T52, T5N, T7p, T8r, T7i, T8o, T2q, T7t, T45, T6L, T2d, T7u, T48; | |
1054 E T6M, T1A, T4c, T4f, T1T, T3f, T5M, T7e, T7l, T6J, T7x, T4V, T5J, T7b, T7k; | |
1055 E T6G, T7w, Tj, TC, T5r, T4k, T4n, T5s, T3D, T5C, T6V, T72, T4G, T5F, T6u; | |
1056 E T86, T6S, T71, T6r, T85, TW, T1f, T5v, T4r, T4u, T5u, T40, T5G, T76, T8k; | |
1057 E T4N, T5D, T6B, T89, T6Z, T8h, T6y, T88; | |
1058 { | |
1059 E T1Y, T22, T2L, T4W, T2p, T43, T2A, T50, T27, T2b, T2Q, T4X, T2h, T2l, T2F; | |
1060 E T4Z; | |
1061 { | |
1062 E T1W, T1X, T2K, T20, T21, T2I, T2H, T2J; | |
1063 T1W = Ip[WS(rs, 4)]; | |
1064 T1X = Im[WS(rs, 4)]; | |
1065 T2K = T1W + T1X; | |
1066 T20 = Rp[WS(rs, 4)]; | |
1067 T21 = Rm[WS(rs, 4)]; | |
1068 T2I = T20 - T21; | |
1069 T1Y = T1W - T1X; | |
1070 T22 = T20 + T21; | |
1071 T2H = W[16]; | |
1072 T2J = W[17]; | |
1073 T2L = FMA(T2H, T2I, T2J * T2K); | |
1074 T4W = FNMS(T2J, T2I, T2H * T2K); | |
1075 } | |
1076 { | |
1077 E T2n, T2o, T2z, T2v, T2w, T2x, T2u, T2y; | |
1078 T2n = Ip[0]; | |
1079 T2o = Im[0]; | |
1080 T2z = T2n + T2o; | |
1081 T2v = Rm[0]; | |
1082 T2w = Rp[0]; | |
1083 T2x = T2v - T2w; | |
1084 T2p = T2n - T2o; | |
1085 T43 = T2w + T2v; | |
1086 T2u = W[0]; | |
1087 T2y = W[1]; | |
1088 T2A = FNMS(T2y, T2z, T2u * T2x); | |
1089 T50 = FMA(T2y, T2x, T2u * T2z); | |
1090 } | |
1091 { | |
1092 E T25, T26, T2P, T29, T2a, T2N, T2M, T2O; | |
1093 T25 = Ip[WS(rs, 12)]; | |
1094 T26 = Im[WS(rs, 12)]; | |
1095 T2P = T25 + T26; | |
1096 T29 = Rp[WS(rs, 12)]; | |
1097 T2a = Rm[WS(rs, 12)]; | |
1098 T2N = T29 - T2a; | |
1099 T27 = T25 - T26; | |
1100 T2b = T29 + T2a; | |
1101 T2M = W[48]; | |
1102 T2O = W[49]; | |
1103 T2Q = FMA(T2M, T2N, T2O * T2P); | |
1104 T4X = FNMS(T2O, T2N, T2M * T2P); | |
1105 } | |
1106 { | |
1107 E T2f, T2g, T2E, T2j, T2k, T2C, T2B, T2D; | |
1108 T2f = Ip[WS(rs, 8)]; | |
1109 T2g = Im[WS(rs, 8)]; | |
1110 T2E = T2f + T2g; | |
1111 T2j = Rp[WS(rs, 8)]; | |
1112 T2k = Rm[WS(rs, 8)]; | |
1113 T2C = T2j - T2k; | |
1114 T2h = T2f - T2g; | |
1115 T2l = T2j + T2k; | |
1116 T2B = W[32]; | |
1117 T2D = W[33]; | |
1118 T2F = FMA(T2B, T2C, T2D * T2E); | |
1119 T4Z = FNMS(T2D, T2C, T2B * T2E); | |
1120 } | |
1121 { | |
1122 E T2G, T2R, T7g, T7h; | |
1123 T2G = T2A - T2F; | |
1124 T2R = T2L + T2Q; | |
1125 T2S = T2G - T2R; | |
1126 T5K = T2R + T2G; | |
1127 { | |
1128 E T4Y, T51, T7n, T7o; | |
1129 T4Y = T4W + T4X; | |
1130 T51 = T4Z + T50; | |
1131 T52 = T4Y + T51; | |
1132 T5N = T51 - T4Y; | |
1133 T7n = T2Q - T2L; | |
1134 T7o = T50 - T4Z; | |
1135 T7p = T7n + T7o; | |
1136 T8r = T7o - T7n; | |
1137 } | |
1138 T7g = T2F + T2A; | |
1139 T7h = T4W - T4X; | |
1140 T7i = T7g - T7h; | |
1141 T8o = T7h + T7g; | |
1142 { | |
1143 E T2m, T44, T2e, T2i; | |
1144 T2e = W[30]; | |
1145 T2i = W[31]; | |
1146 T2m = FNMS(T2i, T2l, T2e * T2h); | |
1147 T44 = FMA(T2e, T2l, T2i * T2h); | |
1148 T2q = T2m + T2p; | |
1149 T7t = T43 - T44; | |
1150 T45 = T43 + T44; | |
1151 T6L = T2p - T2m; | |
1152 } | |
1153 { | |
1154 E T23, T46, T2c, T47; | |
1155 { | |
1156 E T1V, T1Z, T24, T28; | |
1157 T1V = W[14]; | |
1158 T1Z = W[15]; | |
1159 T23 = FNMS(T1Z, T22, T1V * T1Y); | |
1160 T46 = FMA(T1V, T22, T1Z * T1Y); | |
1161 T24 = W[46]; | |
1162 T28 = W[47]; | |
1163 T2c = FNMS(T28, T2b, T24 * T27); | |
1164 T47 = FMA(T24, T2b, T28 * T27); | |
1165 } | |
1166 T2d = T23 + T2c; | |
1167 T7u = T23 - T2c; | |
1168 T48 = T46 + T47; | |
1169 T6M = T46 - T47; | |
1170 } | |
1171 } | |
1172 } | |
1173 { | |
1174 E T1q, T4a, T2X, T4P, T1S, T4e, T3d, T4T, T1z, T4b, T32, T4Q, T1J, T4d, T38; | |
1175 E T4S; | |
1176 { | |
1177 E T1l, T2W, T1p, T2U; | |
1178 { | |
1179 E T1j, T1k, T1n, T1o; | |
1180 T1j = Ip[WS(rs, 2)]; | |
1181 T1k = Im[WS(rs, 2)]; | |
1182 T1l = T1j - T1k; | |
1183 T2W = T1j + T1k; | |
1184 T1n = Rp[WS(rs, 2)]; | |
1185 T1o = Rm[WS(rs, 2)]; | |
1186 T1p = T1n + T1o; | |
1187 T2U = T1n - T1o; | |
1188 } | |
1189 { | |
1190 E T1i, T1m, T2T, T2V; | |
1191 T1i = W[6]; | |
1192 T1m = W[7]; | |
1193 T1q = FNMS(T1m, T1p, T1i * T1l); | |
1194 T4a = FMA(T1i, T1p, T1m * T1l); | |
1195 T2T = W[8]; | |
1196 T2V = W[9]; | |
1197 T2X = FMA(T2T, T2U, T2V * T2W); | |
1198 T4P = FNMS(T2V, T2U, T2T * T2W); | |
1199 } | |
1200 } | |
1201 { | |
1202 E T1N, T3c, T1R, T3a; | |
1203 { | |
1204 E T1L, T1M, T1P, T1Q; | |
1205 T1L = Ip[WS(rs, 6)]; | |
1206 T1M = Im[WS(rs, 6)]; | |
1207 T1N = T1L - T1M; | |
1208 T3c = T1L + T1M; | |
1209 T1P = Rp[WS(rs, 6)]; | |
1210 T1Q = Rm[WS(rs, 6)]; | |
1211 T1R = T1P + T1Q; | |
1212 T3a = T1P - T1Q; | |
1213 } | |
1214 { | |
1215 E T1K, T1O, T39, T3b; | |
1216 T1K = W[22]; | |
1217 T1O = W[23]; | |
1218 T1S = FNMS(T1O, T1R, T1K * T1N); | |
1219 T4e = FMA(T1K, T1R, T1O * T1N); | |
1220 T39 = W[24]; | |
1221 T3b = W[25]; | |
1222 T3d = FMA(T39, T3a, T3b * T3c); | |
1223 T4T = FNMS(T3b, T3a, T39 * T3c); | |
1224 } | |
1225 } | |
1226 { | |
1227 E T1u, T31, T1y, T2Z; | |
1228 { | |
1229 E T1s, T1t, T1w, T1x; | |
1230 T1s = Ip[WS(rs, 10)]; | |
1231 T1t = Im[WS(rs, 10)]; | |
1232 T1u = T1s - T1t; | |
1233 T31 = T1s + T1t; | |
1234 T1w = Rp[WS(rs, 10)]; | |
1235 T1x = Rm[WS(rs, 10)]; | |
1236 T1y = T1w + T1x; | |
1237 T2Z = T1w - T1x; | |
1238 } | |
1239 { | |
1240 E T1r, T1v, T2Y, T30; | |
1241 T1r = W[38]; | |
1242 T1v = W[39]; | |
1243 T1z = FNMS(T1v, T1y, T1r * T1u); | |
1244 T4b = FMA(T1r, T1y, T1v * T1u); | |
1245 T2Y = W[40]; | |
1246 T30 = W[41]; | |
1247 T32 = FMA(T2Y, T2Z, T30 * T31); | |
1248 T4Q = FNMS(T30, T2Z, T2Y * T31); | |
1249 } | |
1250 } | |
1251 { | |
1252 E T1E, T37, T1I, T35; | |
1253 { | |
1254 E T1C, T1D, T1G, T1H; | |
1255 T1C = Ip[WS(rs, 14)]; | |
1256 T1D = Im[WS(rs, 14)]; | |
1257 T1E = T1C - T1D; | |
1258 T37 = T1C + T1D; | |
1259 T1G = Rp[WS(rs, 14)]; | |
1260 T1H = Rm[WS(rs, 14)]; | |
1261 T1I = T1G + T1H; | |
1262 T35 = T1G - T1H; | |
1263 } | |
1264 { | |
1265 E T1B, T1F, T34, T36; | |
1266 T1B = W[54]; | |
1267 T1F = W[55]; | |
1268 T1J = FNMS(T1F, T1I, T1B * T1E); | |
1269 T4d = FMA(T1B, T1I, T1F * T1E); | |
1270 T34 = W[56]; | |
1271 T36 = W[57]; | |
1272 T38 = FMA(T34, T35, T36 * T37); | |
1273 T4S = FNMS(T36, T35, T34 * T37); | |
1274 } | |
1275 } | |
1276 { | |
1277 E T33, T3e, T4R, T4U; | |
1278 T1A = T1q + T1z; | |
1279 T4c = T4a + T4b; | |
1280 T4f = T4d + T4e; | |
1281 T1T = T1J + T1S; | |
1282 T33 = T2X + T32; | |
1283 T3e = T38 + T3d; | |
1284 T3f = T33 + T3e; | |
1285 T5M = T3e - T33; | |
1286 { | |
1287 E T7c, T7d, T6H, T6I; | |
1288 T7c = T4S - T4T; | |
1289 T7d = T3d - T38; | |
1290 T7e = T7c + T7d; | |
1291 T7l = T7c - T7d; | |
1292 T6H = T4d - T4e; | |
1293 T6I = T1J - T1S; | |
1294 T6J = T6H + T6I; | |
1295 T7x = T6H - T6I; | |
1296 } | |
1297 T4R = T4P + T4Q; | |
1298 T4U = T4S + T4T; | |
1299 T4V = T4R + T4U; | |
1300 T5J = T4U - T4R; | |
1301 { | |
1302 E T79, T7a, T6E, T6F; | |
1303 T79 = T32 - T2X; | |
1304 T7a = T4P - T4Q; | |
1305 T7b = T79 - T7a; | |
1306 T7k = T7a + T79; | |
1307 T6E = T1q - T1z; | |
1308 T6F = T4a - T4b; | |
1309 T6G = T6E - T6F; | |
1310 T7w = T6F + T6E; | |
1311 } | |
1312 } | |
1313 } | |
1314 { | |
1315 E T9, T4i, T3l, T4A, TB, T4m, T3B, T4E, Ti, T4j, T3q, T4B, Ts, T4l, T3w; | |
1316 E T4D; | |
1317 { | |
1318 E T4, T3k, T8, T3i; | |
1319 { | |
1320 E T2, T3, T6, T7; | |
1321 T2 = Ip[WS(rs, 1)]; | |
1322 T3 = Im[WS(rs, 1)]; | |
1323 T4 = T2 - T3; | |
1324 T3k = T2 + T3; | |
1325 T6 = Rp[WS(rs, 1)]; | |
1326 T7 = Rm[WS(rs, 1)]; | |
1327 T8 = T6 + T7; | |
1328 T3i = T6 - T7; | |
1329 } | |
1330 { | |
1331 E T1, T5, T3h, T3j; | |
1332 T1 = W[2]; | |
1333 T5 = W[3]; | |
1334 T9 = FNMS(T5, T8, T1 * T4); | |
1335 T4i = FMA(T1, T8, T5 * T4); | |
1336 T3h = W[4]; | |
1337 T3j = W[5]; | |
1338 T3l = FMA(T3h, T3i, T3j * T3k); | |
1339 T4A = FNMS(T3j, T3i, T3h * T3k); | |
1340 } | |
1341 } | |
1342 { | |
1343 E Tw, T3A, TA, T3y; | |
1344 { | |
1345 E Tu, Tv, Ty, Tz; | |
1346 Tu = Ip[WS(rs, 13)]; | |
1347 Tv = Im[WS(rs, 13)]; | |
1348 Tw = Tu - Tv; | |
1349 T3A = Tu + Tv; | |
1350 Ty = Rp[WS(rs, 13)]; | |
1351 Tz = Rm[WS(rs, 13)]; | |
1352 TA = Ty + Tz; | |
1353 T3y = Ty - Tz; | |
1354 } | |
1355 { | |
1356 E Tt, Tx, T3x, T3z; | |
1357 Tt = W[50]; | |
1358 Tx = W[51]; | |
1359 TB = FNMS(Tx, TA, Tt * Tw); | |
1360 T4m = FMA(Tt, TA, Tx * Tw); | |
1361 T3x = W[52]; | |
1362 T3z = W[53]; | |
1363 T3B = FMA(T3x, T3y, T3z * T3A); | |
1364 T4E = FNMS(T3z, T3y, T3x * T3A); | |
1365 } | |
1366 } | |
1367 { | |
1368 E Td, T3p, Th, T3n; | |
1369 { | |
1370 E Tb, Tc, Tf, Tg; | |
1371 Tb = Ip[WS(rs, 9)]; | |
1372 Tc = Im[WS(rs, 9)]; | |
1373 Td = Tb - Tc; | |
1374 T3p = Tb + Tc; | |
1375 Tf = Rp[WS(rs, 9)]; | |
1376 Tg = Rm[WS(rs, 9)]; | |
1377 Th = Tf + Tg; | |
1378 T3n = Tf - Tg; | |
1379 } | |
1380 { | |
1381 E Ta, Te, T3m, T3o; | |
1382 Ta = W[34]; | |
1383 Te = W[35]; | |
1384 Ti = FNMS(Te, Th, Ta * Td); | |
1385 T4j = FMA(Ta, Th, Te * Td); | |
1386 T3m = W[36]; | |
1387 T3o = W[37]; | |
1388 T3q = FMA(T3m, T3n, T3o * T3p); | |
1389 T4B = FNMS(T3o, T3n, T3m * T3p); | |
1390 } | |
1391 } | |
1392 { | |
1393 E Tn, T3v, Tr, T3t; | |
1394 { | |
1395 E Tl, Tm, Tp, Tq; | |
1396 Tl = Ip[WS(rs, 5)]; | |
1397 Tm = Im[WS(rs, 5)]; | |
1398 Tn = Tl - Tm; | |
1399 T3v = Tl + Tm; | |
1400 Tp = Rp[WS(rs, 5)]; | |
1401 Tq = Rm[WS(rs, 5)]; | |
1402 Tr = Tp + Tq; | |
1403 T3t = Tp - Tq; | |
1404 } | |
1405 { | |
1406 E Tk, To, T3s, T3u; | |
1407 Tk = W[18]; | |
1408 To = W[19]; | |
1409 Ts = FNMS(To, Tr, Tk * Tn); | |
1410 T4l = FMA(Tk, Tr, To * Tn); | |
1411 T3s = W[20]; | |
1412 T3u = W[21]; | |
1413 T3w = FMA(T3s, T3t, T3u * T3v); | |
1414 T4D = FNMS(T3u, T3t, T3s * T3v); | |
1415 } | |
1416 } | |
1417 Tj = T9 + Ti; | |
1418 TC = Ts + TB; | |
1419 T5r = Tj - TC; | |
1420 T4k = T4i + T4j; | |
1421 T4n = T4l + T4m; | |
1422 T5s = T4k - T4n; | |
1423 { | |
1424 E T3r, T3C, T6T, T6U; | |
1425 T3r = T3l + T3q; | |
1426 T3C = T3w + T3B; | |
1427 T3D = T3r + T3C; | |
1428 T5C = T3C - T3r; | |
1429 T6T = T4E - T4D; | |
1430 T6U = T3w - T3B; | |
1431 T6V = T6T + T6U; | |
1432 T72 = T6T - T6U; | |
1433 } | |
1434 { | |
1435 E T4C, T4F, T6s, T6t; | |
1436 T4C = T4A + T4B; | |
1437 T4F = T4D + T4E; | |
1438 T4G = T4C + T4F; | |
1439 T5F = T4F - T4C; | |
1440 T6s = T4i - T4j; | |
1441 T6t = Ts - TB; | |
1442 T6u = T6s + T6t; | |
1443 T86 = T6s - T6t; | |
1444 } | |
1445 { | |
1446 E T6Q, T6R, T6p, T6q; | |
1447 T6Q = T3q - T3l; | |
1448 T6R = T4A - T4B; | |
1449 T6S = T6Q - T6R; | |
1450 T71 = T6R + T6Q; | |
1451 T6p = T9 - Ti; | |
1452 T6q = T4l - T4m; | |
1453 T6r = T6p - T6q; | |
1454 T85 = T6p + T6q; | |
1455 } | |
1456 } | |
1457 { | |
1458 E TM, T4p, T3I, T4H, T1e, T4t, T3Y, T4L, TV, T4q, T3N, T4I, T15, T4s, T3T; | |
1459 E T4K; | |
1460 { | |
1461 E TH, T3H, TL, T3F; | |
1462 { | |
1463 E TF, TG, TJ, TK; | |
1464 TF = Ip[WS(rs, 15)]; | |
1465 TG = Im[WS(rs, 15)]; | |
1466 TH = TF - TG; | |
1467 T3H = TF + TG; | |
1468 TJ = Rp[WS(rs, 15)]; | |
1469 TK = Rm[WS(rs, 15)]; | |
1470 TL = TJ + TK; | |
1471 T3F = TJ - TK; | |
1472 } | |
1473 { | |
1474 E TE, TI, T3E, T3G; | |
1475 TE = W[58]; | |
1476 TI = W[59]; | |
1477 TM = FNMS(TI, TL, TE * TH); | |
1478 T4p = FMA(TE, TL, TI * TH); | |
1479 T3E = W[60]; | |
1480 T3G = W[61]; | |
1481 T3I = FMA(T3E, T3F, T3G * T3H); | |
1482 T4H = FNMS(T3G, T3F, T3E * T3H); | |
1483 } | |
1484 } | |
1485 { | |
1486 E T19, T3X, T1d, T3V; | |
1487 { | |
1488 E T17, T18, T1b, T1c; | |
1489 T17 = Ip[WS(rs, 11)]; | |
1490 T18 = Im[WS(rs, 11)]; | |
1491 T19 = T17 - T18; | |
1492 T3X = T17 + T18; | |
1493 T1b = Rp[WS(rs, 11)]; | |
1494 T1c = Rm[WS(rs, 11)]; | |
1495 T1d = T1b + T1c; | |
1496 T3V = T1b - T1c; | |
1497 } | |
1498 { | |
1499 E T16, T1a, T3U, T3W; | |
1500 T16 = W[42]; | |
1501 T1a = W[43]; | |
1502 T1e = FNMS(T1a, T1d, T16 * T19); | |
1503 T4t = FMA(T16, T1d, T1a * T19); | |
1504 T3U = W[44]; | |
1505 T3W = W[45]; | |
1506 T3Y = FMA(T3U, T3V, T3W * T3X); | |
1507 T4L = FNMS(T3W, T3V, T3U * T3X); | |
1508 } | |
1509 } | |
1510 { | |
1511 E TQ, T3M, TU, T3K; | |
1512 { | |
1513 E TO, TP, TS, TT; | |
1514 TO = Ip[WS(rs, 7)]; | |
1515 TP = Im[WS(rs, 7)]; | |
1516 TQ = TO - TP; | |
1517 T3M = TO + TP; | |
1518 TS = Rp[WS(rs, 7)]; | |
1519 TT = Rm[WS(rs, 7)]; | |
1520 TU = TS + TT; | |
1521 T3K = TS - TT; | |
1522 } | |
1523 { | |
1524 E TN, TR, T3J, T3L; | |
1525 TN = W[26]; | |
1526 TR = W[27]; | |
1527 TV = FNMS(TR, TU, TN * TQ); | |
1528 T4q = FMA(TN, TU, TR * TQ); | |
1529 T3J = W[28]; | |
1530 T3L = W[29]; | |
1531 T3N = FMA(T3J, T3K, T3L * T3M); | |
1532 T4I = FNMS(T3L, T3K, T3J * T3M); | |
1533 } | |
1534 } | |
1535 { | |
1536 E T10, T3S, T14, T3Q; | |
1537 { | |
1538 E TY, TZ, T12, T13; | |
1539 TY = Ip[WS(rs, 3)]; | |
1540 TZ = Im[WS(rs, 3)]; | |
1541 T10 = TY - TZ; | |
1542 T3S = TY + TZ; | |
1543 T12 = Rp[WS(rs, 3)]; | |
1544 T13 = Rm[WS(rs, 3)]; | |
1545 T14 = T12 + T13; | |
1546 T3Q = T12 - T13; | |
1547 } | |
1548 { | |
1549 E TX, T11, T3P, T3R; | |
1550 TX = W[10]; | |
1551 T11 = W[11]; | |
1552 T15 = FNMS(T11, T14, TX * T10); | |
1553 T4s = FMA(TX, T14, T11 * T10); | |
1554 T3P = W[12]; | |
1555 T3R = W[13]; | |
1556 T3T = FMA(T3P, T3Q, T3R * T3S); | |
1557 T4K = FNMS(T3R, T3Q, T3P * T3S); | |
1558 } | |
1559 } | |
1560 TW = TM + TV; | |
1561 T1f = T15 + T1e; | |
1562 T5v = TW - T1f; | |
1563 T4r = T4p + T4q; | |
1564 T4u = T4s + T4t; | |
1565 T5u = T4r - T4u; | |
1566 { | |
1567 E T3O, T3Z, T74, T75; | |
1568 T3O = T3I + T3N; | |
1569 T3Z = T3T + T3Y; | |
1570 T40 = T3O + T3Z; | |
1571 T5G = T3Z - T3O; | |
1572 T74 = T4H - T4I; | |
1573 T75 = T3Y - T3T; | |
1574 T76 = T74 + T75; | |
1575 T8k = T74 - T75; | |
1576 } | |
1577 { | |
1578 E T4J, T4M, T6z, T6A; | |
1579 T4J = T4H + T4I; | |
1580 T4M = T4K + T4L; | |
1581 T4N = T4J + T4M; | |
1582 T5D = T4J - T4M; | |
1583 T6z = T4p - T4q; | |
1584 T6A = T15 - T1e; | |
1585 T6B = T6z + T6A; | |
1586 T89 = T6z - T6A; | |
1587 } | |
1588 { | |
1589 E T6X, T6Y, T6w, T6x; | |
1590 T6X = T3N - T3I; | |
1591 T6Y = T4K - T4L; | |
1592 T6Z = T6X - T6Y; | |
1593 T8h = T6X + T6Y; | |
1594 T6w = TM - TV; | |
1595 T6x = T4s - T4t; | |
1596 T6y = T6w - T6x; | |
1597 T88 = T6w + T6x; | |
1598 } | |
1599 } | |
1600 { | |
1601 E T1h, T5i, T5c, T5m, T5f, T5n, T2s, T58, T42, T4y, T4w, T57, T54, T56, T4h; | |
1602 E T5h; | |
1603 { | |
1604 E TD, T1g, T5a, T5b; | |
1605 TD = Tj + TC; | |
1606 T1g = TW + T1f; | |
1607 T1h = TD + T1g; | |
1608 T5i = TD - T1g; | |
1609 T5a = T4N - T4G; | |
1610 T5b = T3D - T40; | |
1611 T5c = T5a + T5b; | |
1612 T5m = T5a - T5b; | |
1613 } | |
1614 { | |
1615 E T5d, T5e, T1U, T2r; | |
1616 T5d = T3f + T2S; | |
1617 T5e = T52 - T4V; | |
1618 T5f = T5d - T5e; | |
1619 T5n = T5d + T5e; | |
1620 T1U = T1A + T1T; | |
1621 T2r = T2d + T2q; | |
1622 T2s = T1U + T2r; | |
1623 T58 = T2r - T1U; | |
1624 } | |
1625 { | |
1626 E T3g, T41, T4o, T4v; | |
1627 T3g = T2S - T3f; | |
1628 T41 = T3D + T40; | |
1629 T42 = T3g - T41; | |
1630 T4y = T41 + T3g; | |
1631 T4o = T4k + T4n; | |
1632 T4v = T4r + T4u; | |
1633 T4w = T4o + T4v; | |
1634 T57 = T4v - T4o; | |
1635 } | |
1636 { | |
1637 E T4O, T53, T49, T4g; | |
1638 T4O = T4G + T4N; | |
1639 T53 = T4V + T52; | |
1640 T54 = T4O - T53; | |
1641 T56 = T4O + T53; | |
1642 T49 = T45 + T48; | |
1643 T4g = T4c + T4f; | |
1644 T4h = T49 + T4g; | |
1645 T5h = T49 - T4g; | |
1646 } | |
1647 { | |
1648 E T2t, T55, T4x, T4z; | |
1649 T2t = T1h + T2s; | |
1650 Ip[0] = KP500000000 * (T2t + T42); | |
1651 Im[WS(rs, 15)] = KP500000000 * (T42 - T2t); | |
1652 T55 = T4h + T4w; | |
1653 Rm[WS(rs, 15)] = KP500000000 * (T55 - T56); | |
1654 Rp[0] = KP500000000 * (T55 + T56); | |
1655 T4x = T4h - T4w; | |
1656 Rm[WS(rs, 7)] = KP500000000 * (T4x - T4y); | |
1657 Rp[WS(rs, 8)] = KP500000000 * (T4x + T4y); | |
1658 T4z = T2s - T1h; | |
1659 Ip[WS(rs, 8)] = KP500000000 * (T4z + T54); | |
1660 Im[WS(rs, 7)] = KP500000000 * (T54 - T4z); | |
1661 } | |
1662 { | |
1663 E T59, T5g, T5p, T5q; | |
1664 T59 = KP500000000 * (T57 + T58); | |
1665 T5g = KP353553390 * (T5c + T5f); | |
1666 Ip[WS(rs, 4)] = T59 + T5g; | |
1667 Im[WS(rs, 11)] = T5g - T59; | |
1668 T5p = KP500000000 * (T5h + T5i); | |
1669 T5q = KP353553390 * (T5m + T5n); | |
1670 Rm[WS(rs, 11)] = T5p - T5q; | |
1671 Rp[WS(rs, 4)] = T5p + T5q; | |
1672 } | |
1673 { | |
1674 E T5j, T5k, T5l, T5o; | |
1675 T5j = KP500000000 * (T5h - T5i); | |
1676 T5k = KP353553390 * (T5f - T5c); | |
1677 Rm[WS(rs, 3)] = T5j - T5k; | |
1678 Rp[WS(rs, 12)] = T5j + T5k; | |
1679 T5l = KP500000000 * (T58 - T57); | |
1680 T5o = KP353553390 * (T5m - T5n); | |
1681 Ip[WS(rs, 12)] = T5l + T5o; | |
1682 Im[WS(rs, 3)] = T5o - T5l; | |
1683 } | |
1684 } | |
1685 { | |
1686 E T5x, T6g, T6a, T6k, T6d, T6l, T5A, T66, T5I, T60, T5T, T6f, T5W, T65, T5P; | |
1687 E T61; | |
1688 { | |
1689 E T5t, T5w, T68, T69; | |
1690 T5t = T5r - T5s; | |
1691 T5w = T5u + T5v; | |
1692 T5x = KP353553390 * (T5t + T5w); | |
1693 T6g = KP353553390 * (T5t - T5w); | |
1694 T68 = T5D - T5C; | |
1695 T69 = T5G - T5F; | |
1696 T6a = FMA(KP461939766, T68, KP191341716 * T69); | |
1697 T6k = FNMS(KP461939766, T69, KP191341716 * T68); | |
1698 } | |
1699 { | |
1700 E T6b, T6c, T5y, T5z; | |
1701 T6b = T5K - T5J; | |
1702 T6c = T5N - T5M; | |
1703 T6d = FNMS(KP461939766, T6c, KP191341716 * T6b); | |
1704 T6l = FMA(KP461939766, T6b, KP191341716 * T6c); | |
1705 T5y = T4f - T4c; | |
1706 T5z = T2q - T2d; | |
1707 T5A = KP500000000 * (T5y + T5z); | |
1708 T66 = KP500000000 * (T5z - T5y); | |
1709 } | |
1710 { | |
1711 E T5E, T5H, T5R, T5S; | |
1712 T5E = T5C + T5D; | |
1713 T5H = T5F + T5G; | |
1714 T5I = FMA(KP191341716, T5E, KP461939766 * T5H); | |
1715 T60 = FNMS(KP191341716, T5H, KP461939766 * T5E); | |
1716 T5R = T45 - T48; | |
1717 T5S = T1A - T1T; | |
1718 T5T = KP500000000 * (T5R + T5S); | |
1719 T6f = KP500000000 * (T5R - T5S); | |
1720 } | |
1721 { | |
1722 E T5U, T5V, T5L, T5O; | |
1723 T5U = T5s + T5r; | |
1724 T5V = T5u - T5v; | |
1725 T5W = KP353553390 * (T5U + T5V); | |
1726 T65 = KP353553390 * (T5V - T5U); | |
1727 T5L = T5J + T5K; | |
1728 T5O = T5M + T5N; | |
1729 T5P = FNMS(KP191341716, T5O, KP461939766 * T5L); | |
1730 T61 = FMA(KP191341716, T5L, KP461939766 * T5O); | |
1731 } | |
1732 { | |
1733 E T5B, T5Q, T63, T64; | |
1734 T5B = T5x + T5A; | |
1735 T5Q = T5I + T5P; | |
1736 Ip[WS(rs, 2)] = T5B + T5Q; | |
1737 Im[WS(rs, 13)] = T5Q - T5B; | |
1738 T63 = T5T + T5W; | |
1739 T64 = T60 + T61; | |
1740 Rm[WS(rs, 13)] = T63 - T64; | |
1741 Rp[WS(rs, 2)] = T63 + T64; | |
1742 } | |
1743 { | |
1744 E T5X, T5Y, T5Z, T62; | |
1745 T5X = T5T - T5W; | |
1746 T5Y = T5P - T5I; | |
1747 Rm[WS(rs, 5)] = T5X - T5Y; | |
1748 Rp[WS(rs, 10)] = T5X + T5Y; | |
1749 T5Z = T5A - T5x; | |
1750 T62 = T60 - T61; | |
1751 Ip[WS(rs, 10)] = T5Z + T62; | |
1752 Im[WS(rs, 5)] = T62 - T5Z; | |
1753 } | |
1754 { | |
1755 E T67, T6e, T6n, T6o; | |
1756 T67 = T65 + T66; | |
1757 T6e = T6a + T6d; | |
1758 Ip[WS(rs, 6)] = T67 + T6e; | |
1759 Im[WS(rs, 9)] = T6e - T67; | |
1760 T6n = T6f + T6g; | |
1761 T6o = T6k + T6l; | |
1762 Rm[WS(rs, 9)] = T6n - T6o; | |
1763 Rp[WS(rs, 6)] = T6n + T6o; | |
1764 } | |
1765 { | |
1766 E T6h, T6i, T6j, T6m; | |
1767 T6h = T6f - T6g; | |
1768 T6i = T6d - T6a; | |
1769 Rm[WS(rs, 1)] = T6h - T6i; | |
1770 Rp[WS(rs, 14)] = T6h + T6i; | |
1771 T6j = T66 - T65; | |
1772 T6m = T6k - T6l; | |
1773 Ip[WS(rs, 14)] = T6j + T6m; | |
1774 Im[WS(rs, 1)] = T6m - T6j; | |
1775 } | |
1776 } | |
1777 { | |
1778 E T6D, T7W, T6O, T7M, T7C, T7L, T7z, T7V, T7r, T81, T7H, T7T, T78, T80, T7G; | |
1779 E T7Q; | |
1780 { | |
1781 E T6v, T6C, T7v, T7y; | |
1782 T6v = FNMS(KP191341716, T6u, KP461939766 * T6r); | |
1783 T6C = FMA(KP461939766, T6y, KP191341716 * T6B); | |
1784 T6D = T6v + T6C; | |
1785 T7W = T6v - T6C; | |
1786 { | |
1787 E T6K, T6N, T7A, T7B; | |
1788 T6K = KP353553390 * (T6G + T6J); | |
1789 T6N = KP500000000 * (T6L - T6M); | |
1790 T6O = T6K + T6N; | |
1791 T7M = T6N - T6K; | |
1792 T7A = FMA(KP191341716, T6r, KP461939766 * T6u); | |
1793 T7B = FNMS(KP191341716, T6y, KP461939766 * T6B); | |
1794 T7C = T7A + T7B; | |
1795 T7L = T7B - T7A; | |
1796 } | |
1797 T7v = KP500000000 * (T7t + T7u); | |
1798 T7y = KP353553390 * (T7w + T7x); | |
1799 T7z = T7v + T7y; | |
1800 T7V = T7v - T7y; | |
1801 { | |
1802 E T7j, T7R, T7q, T7S, T7f, T7m; | |
1803 T7f = KP707106781 * (T7b + T7e); | |
1804 T7j = T7f + T7i; | |
1805 T7R = T7i - T7f; | |
1806 T7m = KP707106781 * (T7k + T7l); | |
1807 T7q = T7m + T7p; | |
1808 T7S = T7p - T7m; | |
1809 T7r = FNMS(KP097545161, T7q, KP490392640 * T7j); | |
1810 T81 = FMA(KP415734806, T7R, KP277785116 * T7S); | |
1811 T7H = FMA(KP097545161, T7j, KP490392640 * T7q); | |
1812 T7T = FNMS(KP415734806, T7S, KP277785116 * T7R); | |
1813 } | |
1814 { | |
1815 E T70, T7O, T77, T7P, T6W, T73; | |
1816 T6W = KP707106781 * (T6S + T6V); | |
1817 T70 = T6W + T6Z; | |
1818 T7O = T6Z - T6W; | |
1819 T73 = KP707106781 * (T71 + T72); | |
1820 T77 = T73 + T76; | |
1821 T7P = T76 - T73; | |
1822 T78 = FMA(KP490392640, T70, KP097545161 * T77); | |
1823 T80 = FNMS(KP415734806, T7O, KP277785116 * T7P); | |
1824 T7G = FNMS(KP097545161, T70, KP490392640 * T77); | |
1825 T7Q = FMA(KP277785116, T7O, KP415734806 * T7P); | |
1826 } | |
1827 } | |
1828 { | |
1829 E T6P, T7s, T7J, T7K; | |
1830 T6P = T6D + T6O; | |
1831 T7s = T78 + T7r; | |
1832 Ip[WS(rs, 1)] = T6P + T7s; | |
1833 Im[WS(rs, 14)] = T7s - T6P; | |
1834 T7J = T7z + T7C; | |
1835 T7K = T7G + T7H; | |
1836 Rm[WS(rs, 14)] = T7J - T7K; | |
1837 Rp[WS(rs, 1)] = T7J + T7K; | |
1838 } | |
1839 { | |
1840 E T7D, T7E, T7F, T7I; | |
1841 T7D = T7z - T7C; | |
1842 T7E = T7r - T78; | |
1843 Rm[WS(rs, 6)] = T7D - T7E; | |
1844 Rp[WS(rs, 9)] = T7D + T7E; | |
1845 T7F = T6O - T6D; | |
1846 T7I = T7G - T7H; | |
1847 Ip[WS(rs, 9)] = T7F + T7I; | |
1848 Im[WS(rs, 6)] = T7I - T7F; | |
1849 } | |
1850 { | |
1851 E T7N, T7U, T83, T84; | |
1852 T7N = T7L + T7M; | |
1853 T7U = T7Q + T7T; | |
1854 Ip[WS(rs, 5)] = T7N + T7U; | |
1855 Im[WS(rs, 10)] = T7U - T7N; | |
1856 T83 = T7V + T7W; | |
1857 T84 = T80 + T81; | |
1858 Rm[WS(rs, 10)] = T83 - T84; | |
1859 Rp[WS(rs, 5)] = T83 + T84; | |
1860 } | |
1861 { | |
1862 E T7X, T7Y, T7Z, T82; | |
1863 T7X = T7V - T7W; | |
1864 T7Y = T7T - T7Q; | |
1865 Rm[WS(rs, 2)] = T7X - T7Y; | |
1866 Rp[WS(rs, 13)] = T7X + T7Y; | |
1867 T7Z = T7M - T7L; | |
1868 T82 = T80 - T81; | |
1869 Ip[WS(rs, 13)] = T7Z + T82; | |
1870 Im[WS(rs, 2)] = T82 - T7Z; | |
1871 } | |
1872 } | |
1873 { | |
1874 E T8b, T8U, T8e, T8K, T8A, T8J, T8x, T8T, T8t, T8Z, T8F, T8R, T8m, T8Y, T8E; | |
1875 E T8O; | |
1876 { | |
1877 E T87, T8a, T8v, T8w; | |
1878 T87 = FNMS(KP461939766, T86, KP191341716 * T85); | |
1879 T8a = FMA(KP191341716, T88, KP461939766 * T89); | |
1880 T8b = T87 + T8a; | |
1881 T8U = T87 - T8a; | |
1882 { | |
1883 E T8c, T8d, T8y, T8z; | |
1884 T8c = KP353553390 * (T7x - T7w); | |
1885 T8d = KP500000000 * (T6M + T6L); | |
1886 T8e = T8c + T8d; | |
1887 T8K = T8d - T8c; | |
1888 T8y = FMA(KP461939766, T85, KP191341716 * T86); | |
1889 T8z = FNMS(KP461939766, T88, KP191341716 * T89); | |
1890 T8A = T8y + T8z; | |
1891 T8J = T8z - T8y; | |
1892 } | |
1893 T8v = KP500000000 * (T7t - T7u); | |
1894 T8w = KP353553390 * (T6G - T6J); | |
1895 T8x = T8v + T8w; | |
1896 T8T = T8v - T8w; | |
1897 { | |
1898 E T8p, T8P, T8s, T8Q, T8n, T8q; | |
1899 T8n = KP707106781 * (T7l - T7k); | |
1900 T8p = T8n + T8o; | |
1901 T8P = T8o - T8n; | |
1902 T8q = KP707106781 * (T7b - T7e); | |
1903 T8s = T8q + T8r; | |
1904 T8Q = T8r - T8q; | |
1905 T8t = FNMS(KP277785116, T8s, KP415734806 * T8p); | |
1906 T8Z = FMA(KP490392640, T8P, KP097545161 * T8Q); | |
1907 T8F = FMA(KP277785116, T8p, KP415734806 * T8s); | |
1908 T8R = FNMS(KP490392640, T8Q, KP097545161 * T8P); | |
1909 } | |
1910 { | |
1911 E T8i, T8M, T8l, T8N, T8g, T8j; | |
1912 T8g = KP707106781 * (T72 - T71); | |
1913 T8i = T8g + T8h; | |
1914 T8M = T8h - T8g; | |
1915 T8j = KP707106781 * (T6S - T6V); | |
1916 T8l = T8j + T8k; | |
1917 T8N = T8k - T8j; | |
1918 T8m = FMA(KP415734806, T8i, KP277785116 * T8l); | |
1919 T8Y = FNMS(KP490392640, T8M, KP097545161 * T8N); | |
1920 T8E = FNMS(KP277785116, T8i, KP415734806 * T8l); | |
1921 T8O = FMA(KP097545161, T8M, KP490392640 * T8N); | |
1922 } | |
1923 } | |
1924 { | |
1925 E T8f, T8u, T8H, T8I; | |
1926 T8f = T8b + T8e; | |
1927 T8u = T8m + T8t; | |
1928 Ip[WS(rs, 3)] = T8f + T8u; | |
1929 Im[WS(rs, 12)] = T8u - T8f; | |
1930 T8H = T8x + T8A; | |
1931 T8I = T8E + T8F; | |
1932 Rm[WS(rs, 12)] = T8H - T8I; | |
1933 Rp[WS(rs, 3)] = T8H + T8I; | |
1934 } | |
1935 { | |
1936 E T8B, T8C, T8D, T8G; | |
1937 T8B = T8x - T8A; | |
1938 T8C = T8t - T8m; | |
1939 Rm[WS(rs, 4)] = T8B - T8C; | |
1940 Rp[WS(rs, 11)] = T8B + T8C; | |
1941 T8D = T8e - T8b; | |
1942 T8G = T8E - T8F; | |
1943 Ip[WS(rs, 11)] = T8D + T8G; | |
1944 Im[WS(rs, 4)] = T8G - T8D; | |
1945 } | |
1946 { | |
1947 E T8L, T8S, T91, T92; | |
1948 T8L = T8J + T8K; | |
1949 T8S = T8O + T8R; | |
1950 Ip[WS(rs, 7)] = T8L + T8S; | |
1951 Im[WS(rs, 8)] = T8S - T8L; | |
1952 T91 = T8T + T8U; | |
1953 T92 = T8Y + T8Z; | |
1954 Rm[WS(rs, 8)] = T91 - T92; | |
1955 Rp[WS(rs, 7)] = T91 + T92; | |
1956 } | |
1957 { | |
1958 E T8V, T8W, T8X, T90; | |
1959 T8V = T8T - T8U; | |
1960 T8W = T8R - T8O; | |
1961 Rm[0] = T8V - T8W; | |
1962 Rp[WS(rs, 15)] = T8V + T8W; | |
1963 T8X = T8K - T8J; | |
1964 T90 = T8Y - T8Z; | |
1965 Ip[WS(rs, 15)] = T8X + T90; | |
1966 Im[0] = T90 - T8X; | |
1967 } | |
1968 } | |
1969 } | |
1970 } | |
1971 } | |
1972 | |
1973 static const tw_instr twinstr[] = { | |
1974 {TW_FULL, 1, 32}, | |
1975 {TW_NEXT, 1, 0} | |
1976 }; | |
1977 | |
1978 static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {404, 134, 94, 0} }; | |
1979 | |
1980 void X(codelet_hc2cfdft_32) (planner *p) { | |
1981 X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); | |
1982 } | |
1983 #endif |