comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_16.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:07:12 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
29
30 /*
31 * This function contains 206 FP additions, 132 FP multiplications,
32 * (or, 136 additions, 62 multiplications, 70 fused multiply/add),
33 * 67 stack variables, 4 constants, and 64 memory accesses
34 */
35 #include "rdft/scalar/hc2cf.h"
36
37 static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
43 {
44 INT m;
45 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
46 E T1f, T2e, T1c, T2g, T1K, T3D, T2W, T3H, TR, T2j, T2R, T3E, T11, T2l, T1v;
47 E T3G, Ta, T2p, Tk, T2r, T3o, T3p, T1Y, T3z, T2G, T3w, Tv, T2u, TF, T2w;
48 E T3r, T3s, T2b, T3A, T2L, T3x;
49 {
50 E T1d, T1e, T1I, T16, T1A, T1D, T1E, T1C, T1G, T1H, T2U, T1b, T1z, T2S, T1w;
51 E T1y, T14, T15;
52 T1d = Ip[0];
53 T1e = Im[0];
54 T1I = T1d + T1e;
55 T14 = Ip[WS(rs, 4)];
56 T15 = Im[WS(rs, 4)];
57 T16 = T14 - T15;
58 T1A = T14 + T15;
59 {
60 E T1F, T19, T1a, T1x;
61 T1D = Rm[0];
62 T1E = Rp[0];
63 T1F = T1D - T1E;
64 T1C = W[0];
65 T1G = T1C * T1F;
66 T1H = W[1];
67 T2U = T1H * T1F;
68 T19 = Rp[WS(rs, 4)];
69 T1a = Rm[WS(rs, 4)];
70 T1x = T1a - T19;
71 T1b = T19 + T1a;
72 T1z = W[17];
73 T2S = T1z * T1x;
74 T1w = W[16];
75 T1y = T1w * T1x;
76 }
77 T1f = T1d - T1e;
78 T2e = T1E + T1D;
79 {
80 E T17, T2f, T13, T18;
81 T13 = W[14];
82 T17 = T13 * T16;
83 T2f = T13 * T1b;
84 T18 = W[15];
85 T1c = FNMS(T18, T1b, T17);
86 T2g = FMA(T18, T16, T2f);
87 }
88 {
89 E T1B, T1J, T2T, T2V;
90 T1B = FNMS(T1z, T1A, T1y);
91 T1J = FNMS(T1H, T1I, T1G);
92 T1K = T1B + T1J;
93 T3D = T1J - T1B;
94 T2T = FMA(T1w, T1A, T2S);
95 T2V = FMA(T1C, T1I, T2U);
96 T2W = T2T + T2V;
97 T3H = T2V - T2T;
98 }
99 }
100 {
101 E TL, T1n, TQ, T1m, T2N, T1j, T1l, TV, T1t, T10, T1s, T2P, T1p, T1r;
102 {
103 E TJ, TK, TO, TP, T1k;
104 TJ = Ip[WS(rs, 2)];
105 TK = Im[WS(rs, 2)];
106 TL = TJ - TK;
107 T1n = TJ + TK;
108 TO = Rp[WS(rs, 2)];
109 TP = Rm[WS(rs, 2)];
110 T1k = TP - TO;
111 TQ = TO + TP;
112 T1m = W[9];
113 T2N = T1m * T1k;
114 T1j = W[8];
115 T1l = T1j * T1k;
116 }
117 {
118 E TT, TU, TY, TZ, T1q;
119 TT = Ip[WS(rs, 6)];
120 TU = Im[WS(rs, 6)];
121 TV = TT - TU;
122 T1t = TT + TU;
123 TY = Rp[WS(rs, 6)];
124 TZ = Rm[WS(rs, 6)];
125 T1q = TZ - TY;
126 T10 = TY + TZ;
127 T1s = W[25];
128 T2P = T1s * T1q;
129 T1p = W[24];
130 T1r = T1p * T1q;
131 }
132 {
133 E T2O, T2Q, T1o, T1u;
134 {
135 E TM, T2i, TI, TN;
136 TI = W[6];
137 TM = TI * TL;
138 T2i = TI * TQ;
139 TN = W[7];
140 TR = FNMS(TN, TQ, TM);
141 T2j = FMA(TN, TL, T2i);
142 }
143 T2O = FMA(T1j, T1n, T2N);
144 T2Q = FMA(T1p, T1t, T2P);
145 T2R = T2O + T2Q;
146 T3E = T2O - T2Q;
147 {
148 E TW, T2k, TS, TX;
149 TS = W[22];
150 TW = TS * TV;
151 T2k = TS * T10;
152 TX = W[23];
153 T11 = FNMS(TX, T10, TW);
154 T2l = FMA(TX, TV, T2k);
155 }
156 T1o = FNMS(T1m, T1n, T1l);
157 T1u = FNMS(T1s, T1t, T1r);
158 T1v = T1o + T1u;
159 T3G = T1o - T1u;
160 }
161 }
162 {
163 E T4, T1Q, T9, T1N, T5, T2o, T1O, T2C, Te, T1W, Tj, T1T, Tf, T2q, T1U;
164 E T2E, T6, Tg;
165 {
166 E T1, T1M, Tb, T1S;
167 {
168 E T2, T3, T7, T8;
169 T2 = Ip[WS(rs, 1)];
170 T3 = Im[WS(rs, 1)];
171 T4 = T2 - T3;
172 T1Q = T2 + T3;
173 T7 = Rp[WS(rs, 1)];
174 T8 = Rm[WS(rs, 1)];
175 T9 = T7 + T8;
176 T1N = T7 - T8;
177 }
178 T1 = W[2];
179 T5 = T1 * T4;
180 T2o = T1 * T9;
181 T1M = W[4];
182 T1O = T1M * T1N;
183 T2C = T1M * T1Q;
184 {
185 E Tc, Td, Th, Ti;
186 Tc = Ip[WS(rs, 5)];
187 Td = Im[WS(rs, 5)];
188 Te = Tc - Td;
189 T1W = Tc + Td;
190 Th = Rp[WS(rs, 5)];
191 Ti = Rm[WS(rs, 5)];
192 Tj = Th + Ti;
193 T1T = Th - Ti;
194 }
195 Tb = W[18];
196 Tf = Tb * Te;
197 T2q = Tb * Tj;
198 T1S = W[20];
199 T1U = T1S * T1T;
200 T2E = T1S * T1W;
201 }
202 T6 = W[3];
203 Ta = FNMS(T6, T9, T5);
204 T2p = FMA(T6, T4, T2o);
205 Tg = W[19];
206 Tk = FNMS(Tg, Tj, Tf);
207 T2r = FMA(Tg, Te, T2q);
208 T3o = Ta - Tk;
209 T3p = T2p - T2r;
210 {
211 E T1R, T2D, T1X, T2F, T1P, T1V;
212 T1P = W[5];
213 T1R = FMA(T1P, T1Q, T1O);
214 T2D = FNMS(T1P, T1N, T2C);
215 T1V = W[21];
216 T1X = FMA(T1V, T1W, T1U);
217 T2F = FNMS(T1V, T1T, T2E);
218 T1Y = T1R + T1X;
219 T3z = T1X - T1R;
220 T2G = T2D + T2F;
221 T3w = T2F - T2D;
222 }
223 }
224 {
225 E Tp, T23, Tu, T20, Tq, T2t, T21, T2H, Tz, T29, TE, T26, TA, T2v, T27;
226 E T2J, Tr, TB;
227 {
228 E Tm, T1Z, Tw, T25;
229 {
230 E Tn, To, Ts, Tt;
231 Tn = Ip[WS(rs, 7)];
232 To = Im[WS(rs, 7)];
233 Tp = Tn - To;
234 T23 = Tn + To;
235 Ts = Rp[WS(rs, 7)];
236 Tt = Rm[WS(rs, 7)];
237 Tu = Ts + Tt;
238 T20 = Ts - Tt;
239 }
240 Tm = W[26];
241 Tq = Tm * Tp;
242 T2t = Tm * Tu;
243 T1Z = W[28];
244 T21 = T1Z * T20;
245 T2H = T1Z * T23;
246 {
247 E Tx, Ty, TC, TD;
248 Tx = Ip[WS(rs, 3)];
249 Ty = Im[WS(rs, 3)];
250 Tz = Tx - Ty;
251 T29 = Tx + Ty;
252 TC = Rp[WS(rs, 3)];
253 TD = Rm[WS(rs, 3)];
254 TE = TC + TD;
255 T26 = TC - TD;
256 }
257 Tw = W[10];
258 TA = Tw * Tz;
259 T2v = Tw * TE;
260 T25 = W[12];
261 T27 = T25 * T26;
262 T2J = T25 * T29;
263 }
264 Tr = W[27];
265 Tv = FNMS(Tr, Tu, Tq);
266 T2u = FMA(Tr, Tp, T2t);
267 TB = W[11];
268 TF = FNMS(TB, TE, TA);
269 T2w = FMA(TB, Tz, T2v);
270 T3r = T2u - T2w;
271 T3s = Tv - TF;
272 {
273 E T24, T2I, T2a, T2K, T22, T28;
274 T22 = W[29];
275 T24 = FMA(T22, T23, T21);
276 T2I = FNMS(T22, T20, T2H);
277 T28 = W[13];
278 T2a = FMA(T28, T29, T27);
279 T2K = FNMS(T28, T26, T2J);
280 T2b = T24 + T2a;
281 T3A = T2I - T2K;
282 T2L = T2I + T2K;
283 T3x = T2a - T24;
284 }
285 }
286 {
287 E TH, T3c, T36, T3g, T39, T3h, T1h, T32, T2d, T2A, T2y, T31, T2Y, T30, T2n;
288 E T3b;
289 {
290 E Tl, TG, T34, T35;
291 Tl = Ta + Tk;
292 TG = Tv + TF;
293 TH = Tl + TG;
294 T3c = Tl - TG;
295 T34 = T2L - T2G;
296 T35 = T1Y - T2b;
297 T36 = T34 + T35;
298 T3g = T34 - T35;
299 }
300 {
301 E T37, T38, T12, T1g;
302 T37 = T1K - T1v;
303 T38 = T2W - T2R;
304 T39 = T37 - T38;
305 T3h = T37 + T38;
306 T12 = TR + T11;
307 T1g = T1c + T1f;
308 T1h = T12 + T1g;
309 T32 = T1g - T12;
310 }
311 {
312 E T1L, T2c, T2s, T2x;
313 T1L = T1v + T1K;
314 T2c = T1Y + T2b;
315 T2d = T1L - T2c;
316 T2A = T2c + T1L;
317 T2s = T2p + T2r;
318 T2x = T2u + T2w;
319 T2y = T2s + T2x;
320 T31 = T2x - T2s;
321 }
322 {
323 E T2M, T2X, T2h, T2m;
324 T2M = T2G + T2L;
325 T2X = T2R + T2W;
326 T2Y = T2M - T2X;
327 T30 = T2M + T2X;
328 T2h = T2e + T2g;
329 T2m = T2j + T2l;
330 T2n = T2h + T2m;
331 T3b = T2h - T2m;
332 }
333 {
334 E T1i, T2Z, T2z, T2B;
335 T1i = TH + T1h;
336 Ip[0] = KP500000000 * (T1i + T2d);
337 Im[WS(rs, 7)] = KP500000000 * (T2d - T1i);
338 T2Z = T2n + T2y;
339 Rm[WS(rs, 7)] = KP500000000 * (T2Z - T30);
340 Rp[0] = KP500000000 * (T2Z + T30);
341 T2z = T2n - T2y;
342 Rm[WS(rs, 3)] = KP500000000 * (T2z - T2A);
343 Rp[WS(rs, 4)] = KP500000000 * (T2z + T2A);
344 T2B = T1h - TH;
345 Ip[WS(rs, 4)] = KP500000000 * (T2B + T2Y);
346 Im[WS(rs, 3)] = KP500000000 * (T2Y - T2B);
347 }
348 {
349 E T33, T3a, T3j, T3k;
350 T33 = T31 + T32;
351 T3a = T36 + T39;
352 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3a, T33));
353 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3a, T33)));
354 T3j = T3b + T3c;
355 T3k = T3g + T3h;
356 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3k, T3j));
357 Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3k, T3j));
358 }
359 {
360 E T3d, T3e, T3f, T3i;
361 T3d = T3b - T3c;
362 T3e = T39 - T36;
363 Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3e, T3d));
364 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3e, T3d));
365 T3f = T32 - T31;
366 T3i = T3g - T3h;
367 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3i, T3f));
368 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3i, T3f)));
369 }
370 }
371 {
372 E T3n, T3Z, T44, T4e, T47, T4f, T3u, T4a, T3C, T3U, T3N, T49, T3Q, T40, T3J;
373 E T3V;
374 {
375 E T3l, T3m, T42, T43;
376 T3l = T1f - T1c;
377 T3m = T2j - T2l;
378 T3n = T3l - T3m;
379 T3Z = T3m + T3l;
380 T42 = T3w - T3x;
381 T43 = T3A - T3z;
382 T44 = FMA(KP414213562, T43, T42);
383 T4e = FNMS(KP414213562, T42, T43);
384 }
385 {
386 E T45, T46, T3q, T3t;
387 T45 = T3E + T3D;
388 T46 = T3H - T3G;
389 T47 = FMA(KP414213562, T46, T45);
390 T4f = FNMS(KP414213562, T45, T46);
391 T3q = T3o - T3p;
392 T3t = T3r + T3s;
393 T3u = T3q + T3t;
394 T4a = T3q - T3t;
395 }
396 {
397 E T3y, T3B, T3L, T3M;
398 T3y = T3w + T3x;
399 T3B = T3z + T3A;
400 T3C = FMA(KP414213562, T3B, T3y);
401 T3U = FNMS(KP414213562, T3y, T3B);
402 T3L = T2e - T2g;
403 T3M = TR - T11;
404 T3N = T3L + T3M;
405 T49 = T3L - T3M;
406 }
407 {
408 E T3O, T3P, T3F, T3I;
409 T3O = T3p + T3o;
410 T3P = T3r - T3s;
411 T3Q = T3O + T3P;
412 T40 = T3P - T3O;
413 T3F = T3D - T3E;
414 T3I = T3G + T3H;
415 T3J = FNMS(KP414213562, T3I, T3F);
416 T3V = FMA(KP414213562, T3F, T3I);
417 }
418 {
419 E T3v, T3K, T3X, T3Y;
420 T3v = FMA(KP707106781, T3u, T3n);
421 T3K = T3C + T3J;
422 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3K, T3v));
423 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3K, T3v)));
424 T3X = FMA(KP707106781, T3Q, T3N);
425 T3Y = T3U + T3V;
426 Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T3Y, T3X));
427 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3Y, T3X));
428 }
429 {
430 E T3R, T3S, T3T, T3W;
431 T3R = FNMS(KP707106781, T3Q, T3N);
432 T3S = T3J - T3C;
433 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T3S, T3R));
434 Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3S, T3R));
435 T3T = FNMS(KP707106781, T3u, T3n);
436 T3W = T3U - T3V;
437 Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3W, T3T));
438 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3T)));
439 }
440 {
441 E T41, T48, T4h, T4i;
442 T41 = FNMS(KP707106781, T40, T3Z);
443 T48 = T44 - T47;
444 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T48, T41));
445 Im[0] = -(KP500000000 * (FNMS(KP923879532, T48, T41)));
446 T4h = FNMS(KP707106781, T4a, T49);
447 T4i = T4e + T4f;
448 Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4i, T4h));
449 Rm[0] = KP500000000 * (FMA(KP923879532, T4i, T4h));
450 }
451 {
452 E T4b, T4c, T4d, T4g;
453 T4b = FMA(KP707106781, T4a, T49);
454 T4c = T44 + T47;
455 Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4c, T4b));
456 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4c, T4b));
457 T4d = FMA(KP707106781, T40, T3Z);
458 T4g = T4e - T4f;
459 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4g, T4d));
460 Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4g, T4d)));
461 }
462 }
463 }
464 }
465 }
466
467 static const tw_instr twinstr[] = {
468 {TW_FULL, 1, 16},
469 {TW_NEXT, 1, 0}
470 };
471
472 static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, {136, 62, 70, 0} };
473
474 void X(codelet_hc2cfdft_16) (planner *p) {
475 X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
476 }
477 #else
478
479 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
480
481 /*
482 * This function contains 206 FP additions, 100 FP multiplications,
483 * (or, 168 additions, 62 multiplications, 38 fused multiply/add),
484 * 61 stack variables, 4 constants, and 64 memory accesses
485 */
486 #include "rdft/scalar/hc2cf.h"
487
488 static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
489 {
490 DK(KP461939766, +0.461939766255643378064091594698394143411208313);
491 DK(KP191341716, +0.191341716182544885864229992015199433380672281);
492 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
493 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
494 {
495 INT m;
496 for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
497 E T19, T3h, T21, T2Y, T1o, T3d, T2s, T39, TW, T3i, T24, T2Z, T1z, T3c, T2p;
498 E T3a, Tj, T2S, T28, T2R, T1L, T36, T2i, T32, TC, T2V, T2b, T2U, T1W, T35;
499 E T2l, T33;
500 {
501 E T10, T1m, T14, T1k, T18, T1h, T1f, T1Z;
502 {
503 E TY, TZ, T12, T13;
504 TY = Ip[WS(rs, 4)];
505 TZ = Im[WS(rs, 4)];
506 T10 = TY - TZ;
507 T1m = TY + TZ;
508 T12 = Rp[WS(rs, 4)];
509 T13 = Rm[WS(rs, 4)];
510 T14 = T12 + T13;
511 T1k = T12 - T13;
512 }
513 {
514 E T16, T17, T1d, T1e;
515 T16 = Ip[0];
516 T17 = Im[0];
517 T18 = T16 - T17;
518 T1h = T16 + T17;
519 T1d = Rm[0];
520 T1e = Rp[0];
521 T1f = T1d - T1e;
522 T1Z = T1e + T1d;
523 }
524 {
525 E T15, T20, TX, T11;
526 TX = W[14];
527 T11 = W[15];
528 T15 = FNMS(T11, T14, TX * T10);
529 T20 = FMA(TX, T14, T11 * T10);
530 T19 = T15 + T18;
531 T3h = T1Z - T20;
532 T21 = T1Z + T20;
533 T2Y = T18 - T15;
534 }
535 {
536 E T1i, T2r, T1n, T2q;
537 {
538 E T1c, T1g, T1j, T1l;
539 T1c = W[0];
540 T1g = W[1];
541 T1i = FNMS(T1g, T1h, T1c * T1f);
542 T2r = FMA(T1g, T1f, T1c * T1h);
543 T1j = W[16];
544 T1l = W[17];
545 T1n = FMA(T1j, T1k, T1l * T1m);
546 T2q = FNMS(T1l, T1k, T1j * T1m);
547 }
548 T1o = T1i - T1n;
549 T3d = T2r - T2q;
550 T2s = T2q + T2r;
551 T39 = T1n + T1i;
552 }
553 }
554 {
555 E TH, T1s, TL, T1q, TQ, T1x, TU, T1v;
556 {
557 E TF, TG, TJ, TK;
558 TF = Ip[WS(rs, 2)];
559 TG = Im[WS(rs, 2)];
560 TH = TF - TG;
561 T1s = TF + TG;
562 TJ = Rp[WS(rs, 2)];
563 TK = Rm[WS(rs, 2)];
564 TL = TJ + TK;
565 T1q = TJ - TK;
566 }
567 {
568 E TO, TP, TS, TT;
569 TO = Ip[WS(rs, 6)];
570 TP = Im[WS(rs, 6)];
571 TQ = TO - TP;
572 T1x = TO + TP;
573 TS = Rp[WS(rs, 6)];
574 TT = Rm[WS(rs, 6)];
575 TU = TS + TT;
576 T1v = TS - TT;
577 }
578 {
579 E TM, T22, TV, T23;
580 {
581 E TE, TI, TN, TR;
582 TE = W[6];
583 TI = W[7];
584 TM = FNMS(TI, TL, TE * TH);
585 T22 = FMA(TE, TL, TI * TH);
586 TN = W[22];
587 TR = W[23];
588 TV = FNMS(TR, TU, TN * TQ);
589 T23 = FMA(TN, TU, TR * TQ);
590 }
591 TW = TM + TV;
592 T3i = TM - TV;
593 T24 = T22 + T23;
594 T2Z = T22 - T23;
595 }
596 {
597 E T1t, T2n, T1y, T2o;
598 {
599 E T1p, T1r, T1u, T1w;
600 T1p = W[8];
601 T1r = W[9];
602 T1t = FMA(T1p, T1q, T1r * T1s);
603 T2n = FNMS(T1r, T1q, T1p * T1s);
604 T1u = W[24];
605 T1w = W[25];
606 T1y = FMA(T1u, T1v, T1w * T1x);
607 T2o = FNMS(T1w, T1v, T1u * T1x);
608 }
609 T1z = T1t + T1y;
610 T3c = T1y - T1t;
611 T2p = T2n + T2o;
612 T3a = T2n - T2o;
613 }
614 }
615 {
616 E T4, T1E, T8, T1C, Td, T1J, Th, T1H;
617 {
618 E T2, T3, T6, T7;
619 T2 = Ip[WS(rs, 1)];
620 T3 = Im[WS(rs, 1)];
621 T4 = T2 - T3;
622 T1E = T2 + T3;
623 T6 = Rp[WS(rs, 1)];
624 T7 = Rm[WS(rs, 1)];
625 T8 = T6 + T7;
626 T1C = T6 - T7;
627 }
628 {
629 E Tb, Tc, Tf, Tg;
630 Tb = Ip[WS(rs, 5)];
631 Tc = Im[WS(rs, 5)];
632 Td = Tb - Tc;
633 T1J = Tb + Tc;
634 Tf = Rp[WS(rs, 5)];
635 Tg = Rm[WS(rs, 5)];
636 Th = Tf + Tg;
637 T1H = Tf - Tg;
638 }
639 {
640 E T9, T26, Ti, T27;
641 {
642 E T1, T5, Ta, Te;
643 T1 = W[2];
644 T5 = W[3];
645 T9 = FNMS(T5, T8, T1 * T4);
646 T26 = FMA(T1, T8, T5 * T4);
647 Ta = W[18];
648 Te = W[19];
649 Ti = FNMS(Te, Th, Ta * Td);
650 T27 = FMA(Ta, Th, Te * Td);
651 }
652 Tj = T9 + Ti;
653 T2S = T26 - T27;
654 T28 = T26 + T27;
655 T2R = T9 - Ti;
656 }
657 {
658 E T1F, T2g, T1K, T2h;
659 {
660 E T1B, T1D, T1G, T1I;
661 T1B = W[4];
662 T1D = W[5];
663 T1F = FMA(T1B, T1C, T1D * T1E);
664 T2g = FNMS(T1D, T1C, T1B * T1E);
665 T1G = W[20];
666 T1I = W[21];
667 T1K = FMA(T1G, T1H, T1I * T1J);
668 T2h = FNMS(T1I, T1H, T1G * T1J);
669 }
670 T1L = T1F + T1K;
671 T36 = T2g - T2h;
672 T2i = T2g + T2h;
673 T32 = T1K - T1F;
674 }
675 }
676 {
677 E Tn, T1P, Tr, T1N, Tw, T1U, TA, T1S;
678 {
679 E Tl, Tm, Tp, Tq;
680 Tl = Ip[WS(rs, 7)];
681 Tm = Im[WS(rs, 7)];
682 Tn = Tl - Tm;
683 T1P = Tl + Tm;
684 Tp = Rp[WS(rs, 7)];
685 Tq = Rm[WS(rs, 7)];
686 Tr = Tp + Tq;
687 T1N = Tp - Tq;
688 }
689 {
690 E Tu, Tv, Ty, Tz;
691 Tu = Ip[WS(rs, 3)];
692 Tv = Im[WS(rs, 3)];
693 Tw = Tu - Tv;
694 T1U = Tu + Tv;
695 Ty = Rp[WS(rs, 3)];
696 Tz = Rm[WS(rs, 3)];
697 TA = Ty + Tz;
698 T1S = Ty - Tz;
699 }
700 {
701 E Ts, T29, TB, T2a;
702 {
703 E Tk, To, Tt, Tx;
704 Tk = W[26];
705 To = W[27];
706 Ts = FNMS(To, Tr, Tk * Tn);
707 T29 = FMA(Tk, Tr, To * Tn);
708 Tt = W[10];
709 Tx = W[11];
710 TB = FNMS(Tx, TA, Tt * Tw);
711 T2a = FMA(Tt, TA, Tx * Tw);
712 }
713 TC = Ts + TB;
714 T2V = Ts - TB;
715 T2b = T29 + T2a;
716 T2U = T29 - T2a;
717 }
718 {
719 E T1Q, T2j, T1V, T2k;
720 {
721 E T1M, T1O, T1R, T1T;
722 T1M = W[28];
723 T1O = W[29];
724 T1Q = FMA(T1M, T1N, T1O * T1P);
725 T2j = FNMS(T1O, T1N, T1M * T1P);
726 T1R = W[12];
727 T1T = W[13];
728 T1V = FMA(T1R, T1S, T1T * T1U);
729 T2k = FNMS(T1T, T1S, T1R * T1U);
730 }
731 T1W = T1Q + T1V;
732 T35 = T1V - T1Q;
733 T2l = T2j + T2k;
734 T33 = T2j - T2k;
735 }
736 }
737 {
738 E T1b, T2f, T2u, T2w, T1Y, T2e, T2d, T2v;
739 {
740 E TD, T1a, T2m, T2t;
741 TD = Tj + TC;
742 T1a = TW + T19;
743 T1b = TD + T1a;
744 T2f = T1a - TD;
745 T2m = T2i + T2l;
746 T2t = T2p + T2s;
747 T2u = T2m - T2t;
748 T2w = T2m + T2t;
749 }
750 {
751 E T1A, T1X, T25, T2c;
752 T1A = T1o - T1z;
753 T1X = T1L + T1W;
754 T1Y = T1A - T1X;
755 T2e = T1X + T1A;
756 T25 = T21 + T24;
757 T2c = T28 + T2b;
758 T2d = T25 - T2c;
759 T2v = T25 + T2c;
760 }
761 Ip[0] = KP500000000 * (T1b + T1Y);
762 Rp[0] = KP500000000 * (T2v + T2w);
763 Im[WS(rs, 7)] = KP500000000 * (T1Y - T1b);
764 Rm[WS(rs, 7)] = KP500000000 * (T2v - T2w);
765 Rm[WS(rs, 3)] = KP500000000 * (T2d - T2e);
766 Im[WS(rs, 3)] = KP500000000 * (T2u - T2f);
767 Rp[WS(rs, 4)] = KP500000000 * (T2d + T2e);
768 Ip[WS(rs, 4)] = KP500000000 * (T2f + T2u);
769 }
770 {
771 E T2z, T2L, T2J, T2P, T2C, T2M, T2F, T2N;
772 {
773 E T2x, T2y, T2H, T2I;
774 T2x = T2b - T28;
775 T2y = T19 - TW;
776 T2z = KP500000000 * (T2x + T2y);
777 T2L = KP500000000 * (T2y - T2x);
778 T2H = T21 - T24;
779 T2I = Tj - TC;
780 T2J = KP500000000 * (T2H - T2I);
781 T2P = KP500000000 * (T2H + T2I);
782 }
783 {
784 E T2A, T2B, T2D, T2E;
785 T2A = T2l - T2i;
786 T2B = T1L - T1W;
787 T2C = T2A + T2B;
788 T2M = T2A - T2B;
789 T2D = T1z + T1o;
790 T2E = T2s - T2p;
791 T2F = T2D - T2E;
792 T2N = T2D + T2E;
793 }
794 {
795 E T2G, T2Q, T2K, T2O;
796 T2G = KP353553390 * (T2C + T2F);
797 Ip[WS(rs, 2)] = T2z + T2G;
798 Im[WS(rs, 5)] = T2G - T2z;
799 T2Q = KP353553390 * (T2M + T2N);
800 Rm[WS(rs, 5)] = T2P - T2Q;
801 Rp[WS(rs, 2)] = T2P + T2Q;
802 T2K = KP353553390 * (T2F - T2C);
803 Rm[WS(rs, 1)] = T2J - T2K;
804 Rp[WS(rs, 6)] = T2J + T2K;
805 T2O = KP353553390 * (T2M - T2N);
806 Ip[WS(rs, 6)] = T2L + T2O;
807 Im[WS(rs, 1)] = T2O - T2L;
808 }
809 }
810 {
811 E T30, T3w, T3F, T3j, T2X, T3G, T3D, T3L, T3m, T3v, T38, T3q, T3A, T3K, T3f;
812 E T3r;
813 {
814 E T2T, T2W, T34, T37;
815 T30 = KP500000000 * (T2Y - T2Z);
816 T3w = KP500000000 * (T2Z + T2Y);
817 T3F = KP500000000 * (T3h - T3i);
818 T3j = KP500000000 * (T3h + T3i);
819 T2T = T2R - T2S;
820 T2W = T2U + T2V;
821 T2X = KP353553390 * (T2T + T2W);
822 T3G = KP353553390 * (T2T - T2W);
823 {
824 E T3B, T3C, T3k, T3l;
825 T3B = T3a + T39;
826 T3C = T3d - T3c;
827 T3D = FNMS(KP461939766, T3C, KP191341716 * T3B);
828 T3L = FMA(KP461939766, T3B, KP191341716 * T3C);
829 T3k = T2S + T2R;
830 T3l = T2U - T2V;
831 T3m = KP353553390 * (T3k + T3l);
832 T3v = KP353553390 * (T3l - T3k);
833 }
834 T34 = T32 + T33;
835 T37 = T35 - T36;
836 T38 = FMA(KP191341716, T34, KP461939766 * T37);
837 T3q = FNMS(KP191341716, T37, KP461939766 * T34);
838 {
839 E T3y, T3z, T3b, T3e;
840 T3y = T33 - T32;
841 T3z = T36 + T35;
842 T3A = FMA(KP461939766, T3y, KP191341716 * T3z);
843 T3K = FNMS(KP461939766, T3z, KP191341716 * T3y);
844 T3b = T39 - T3a;
845 T3e = T3c + T3d;
846 T3f = FNMS(KP191341716, T3e, KP461939766 * T3b);
847 T3r = FMA(KP191341716, T3b, KP461939766 * T3e);
848 }
849 }
850 {
851 E T31, T3g, T3t, T3u;
852 T31 = T2X + T30;
853 T3g = T38 + T3f;
854 Ip[WS(rs, 1)] = T31 + T3g;
855 Im[WS(rs, 6)] = T3g - T31;
856 T3t = T3j + T3m;
857 T3u = T3q + T3r;
858 Rm[WS(rs, 6)] = T3t - T3u;
859 Rp[WS(rs, 1)] = T3t + T3u;
860 }
861 {
862 E T3n, T3o, T3p, T3s;
863 T3n = T3j - T3m;
864 T3o = T3f - T38;
865 Rm[WS(rs, 2)] = T3n - T3o;
866 Rp[WS(rs, 5)] = T3n + T3o;
867 T3p = T30 - T2X;
868 T3s = T3q - T3r;
869 Ip[WS(rs, 5)] = T3p + T3s;
870 Im[WS(rs, 2)] = T3s - T3p;
871 }
872 {
873 E T3x, T3E, T3N, T3O;
874 T3x = T3v + T3w;
875 T3E = T3A + T3D;
876 Ip[WS(rs, 3)] = T3x + T3E;
877 Im[WS(rs, 4)] = T3E - T3x;
878 T3N = T3F + T3G;
879 T3O = T3K + T3L;
880 Rm[WS(rs, 4)] = T3N - T3O;
881 Rp[WS(rs, 3)] = T3N + T3O;
882 }
883 {
884 E T3H, T3I, T3J, T3M;
885 T3H = T3F - T3G;
886 T3I = T3D - T3A;
887 Rm[0] = T3H - T3I;
888 Rp[WS(rs, 7)] = T3H + T3I;
889 T3J = T3w - T3v;
890 T3M = T3K - T3L;
891 Ip[WS(rs, 7)] = T3J + T3M;
892 Im[0] = T3M - T3J;
893 }
894 }
895 }
896 }
897 }
898
899 static const tw_instr twinstr[] = {
900 {TW_FULL, 1, 16},
901 {TW_NEXT, 1, 0}
902 };
903
904 static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, {168, 62, 38, 0} };
905
906 void X(codelet_hc2cfdft_16) (planner *p) {
907 X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
908 }
909 #endif