Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft2_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:17 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 552 FP additions, 414 FP multiplications, | |
32 * (or, 300 additions, 162 multiplications, 252 fused multiply/add), | |
33 * 175 stack variables, 8 constants, and 128 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hc2cf.h" | |
36 | |
37 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
40 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
41 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT m; | |
49 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { | |
50 E T1, Th, T2, T5, Ti, Tl, T4, T6, T1a, Tc, T1c, Tk, Tz, T2H, T2v; | |
51 E T1u, Tm, Ts, T15, T2W, TZ, T2l, T2q, T2R, TR, TL, T3B, T3S, T3F, T3V; | |
52 E T4E, T4Y, T4I, T51, TF, T40, T44, T2A, T4M, T4Q, T1A, T3s, T3w, T2M, T4l; | |
53 E T4p, T1g, T1H, T1F, T1d, T1h, T1O, T1n, T1I, T28, T34, T32, T25, T29, T3b; | |
54 E T2f, T35; | |
55 { | |
56 E Tj, TY, TK, Tr, T14, TQ, T1b, T24, TE, T1z; | |
57 { | |
58 E T3, T1t, Tb, Ty; | |
59 T1 = W[0]; | |
60 Th = W[4]; | |
61 T2 = W[2]; | |
62 T5 = W[3]; | |
63 T3 = T1 * T2; | |
64 T1t = T2 * Th; | |
65 Tb = T1 * T5; | |
66 Ty = T1 * Th; | |
67 Ti = W[6]; | |
68 Tj = Th * Ti; | |
69 TY = T2 * Ti; | |
70 TK = T1 * Ti; | |
71 Tl = W[7]; | |
72 Tr = Th * Tl; | |
73 T14 = T2 * Tl; | |
74 TQ = T1 * Tl; | |
75 T4 = W[1]; | |
76 T6 = FMA(T4, T5, T3); | |
77 T1a = FNMS(T4, T5, T3); | |
78 T1b = T1a * Th; | |
79 T24 = T6 * Th; | |
80 Tc = FNMS(T4, T2, Tb); | |
81 T1c = FMA(T4, T2, Tb); | |
82 Tk = W[5]; | |
83 TE = T1 * Tk; | |
84 T1z = T2 * Tk; | |
85 Tz = FNMS(T4, Tk, Ty); | |
86 T2H = FMA(T4, Tk, Ty); | |
87 T2v = FNMS(T5, Tk, T1t); | |
88 T1u = FMA(T5, Tk, T1t); | |
89 } | |
90 Tm = FMA(Tk, Tl, Tj); | |
91 Ts = FNMS(Tk, Ti, Tr); | |
92 T15 = FMA(T5, Ti, T14); | |
93 T2W = FNMS(T5, Ti, T14); | |
94 TZ = FNMS(T5, Tl, TY); | |
95 T2l = FNMS(T4, Tl, TK); | |
96 T2q = FMA(T4, Ti, TQ); | |
97 T2R = FMA(T5, Tl, TY); | |
98 TR = FNMS(T4, Ti, TQ); | |
99 TL = FMA(T4, Tl, TK); | |
100 { | |
101 E T3A, T3E, T4k, T4o; | |
102 T3A = T6 * Ti; | |
103 T3B = FNMS(Tc, Tl, T3A); | |
104 T3S = FMA(Tc, Tl, T3A); | |
105 T3E = T6 * Tl; | |
106 T3F = FMA(Tc, Ti, T3E); | |
107 T3V = FNMS(Tc, Ti, T3E); | |
108 { | |
109 E T4D, T4H, T3Z, T43; | |
110 T4D = T1a * Ti; | |
111 T4E = FNMS(T1c, Tl, T4D); | |
112 T4Y = FMA(T1c, Tl, T4D); | |
113 T4H = T1a * Tl; | |
114 T4I = FMA(T1c, Ti, T4H); | |
115 T51 = FNMS(T1c, Ti, T4H); | |
116 T3Z = Tz * Ti; | |
117 T43 = Tz * Tl; | |
118 TF = FMA(T4, Th, TE); | |
119 T40 = FMA(TF, Tl, T3Z); | |
120 T44 = FNMS(TF, Ti, T43); | |
121 } | |
122 { | |
123 E T4L, T4P, T3r, T3v; | |
124 T4L = T2v * Ti; | |
125 T4P = T2v * Tl; | |
126 T2A = FMA(T5, Th, T1z); | |
127 T4M = FMA(T2A, Tl, T4L); | |
128 T4Q = FNMS(T2A, Ti, T4P); | |
129 T3r = T1u * Ti; | |
130 T3v = T1u * Tl; | |
131 T1A = FNMS(T5, Th, T1z); | |
132 T3s = FMA(T1A, Tl, T3r); | |
133 T3w = FNMS(T1A, Ti, T3v); | |
134 } | |
135 T4k = T2H * Ti; | |
136 T4o = T2H * Tl; | |
137 T2M = FNMS(T4, Th, TE); | |
138 T4l = FMA(T2M, Tl, T4k); | |
139 T4p = FNMS(T2M, Ti, T4o); | |
140 { | |
141 E T1G, T1N, T1e, T1m, T1f; | |
142 T1f = T1a * Tk; | |
143 T1g = FMA(T1c, Th, T1f); | |
144 T1H = FNMS(T1c, Th, T1f); | |
145 T1F = FMA(T1c, Tk, T1b); | |
146 T1G = T1F * Ti; | |
147 T1N = T1F * Tl; | |
148 T1d = FNMS(T1c, Tk, T1b); | |
149 T1e = T1d * Ti; | |
150 T1m = T1d * Tl; | |
151 T1h = FMA(T1g, Tl, T1e); | |
152 T1O = FNMS(T1H, Ti, T1N); | |
153 T1n = FNMS(T1g, Ti, T1m); | |
154 T1I = FMA(T1H, Tl, T1G); | |
155 } | |
156 { | |
157 E T33, T3a, T26, T2e, T27; | |
158 T27 = T6 * Tk; | |
159 T28 = FNMS(Tc, Th, T27); | |
160 T34 = FMA(Tc, Th, T27); | |
161 T32 = FNMS(Tc, Tk, T24); | |
162 T33 = T32 * Ti; | |
163 T3a = T32 * Tl; | |
164 T25 = FMA(Tc, Tk, T24); | |
165 T26 = T25 * Ti; | |
166 T2e = T25 * Tl; | |
167 T29 = FMA(T28, Tl, T26); | |
168 T3b = FNMS(T34, Ti, T3a); | |
169 T2f = FNMS(T28, Ti, T2e); | |
170 T35 = FMA(T34, Tl, T33); | |
171 } | |
172 } | |
173 } | |
174 { | |
175 E T3j, T7Z, T5b, T93, T4d, T8J, T6B, T8V, T1T, T8l, T6e, T8r, T54, T8C, T5O; | |
176 E T8i, T31, T94, T6w, T8K, T3Y, T8U, T5g, T80, T1s, T8h, T69, T8B, T4T, T8q; | |
177 E T5J, T8k, Tx, T8a, T5y, T8d, T4s, T8E, T5Y, T8v, T2k, T82, T5m, T83, T3z; | |
178 E T8X, T6l, T8O, T2F, T86, T5r, T85, T3M, T8Y, T6q, T8R, TW, T8e, T5D, T8b; | |
179 E T4B, T8F, T63, T8y; | |
180 { | |
181 E T3i, T4b, T38, T39, T45, T4a, T6z, T58, T3e, T42, T6x, T59, T3f, T5a; | |
182 { | |
183 E T3g, T3h, T36, T37; | |
184 T3g = Ip[0]; | |
185 T3h = Im[0]; | |
186 T3i = T3g - T3h; | |
187 T4b = T3g + T3h; | |
188 T36 = Ip[WS(rs, 8)]; | |
189 T37 = Im[WS(rs, 8)]; | |
190 T38 = T36 - T37; | |
191 T39 = T35 * T38; | |
192 T45 = T36 + T37; | |
193 } | |
194 { | |
195 E T47, T48, T49, T41, T3c, T3d; | |
196 T47 = Rm[0]; | |
197 T48 = Rp[0]; | |
198 T49 = T47 - T48; | |
199 T4a = T1 * T49; | |
200 T6z = T4 * T49; | |
201 T58 = T48 + T47; | |
202 T3c = Rp[WS(rs, 8)]; | |
203 T3d = Rm[WS(rs, 8)]; | |
204 T3e = T3c + T3d; | |
205 T41 = T3d - T3c; | |
206 T42 = T40 * T41; | |
207 T6x = T44 * T41; | |
208 T59 = T35 * T3e; | |
209 } | |
210 T3f = FNMS(T3b, T3e, T39); | |
211 T3j = T3f + T3i; | |
212 T7Z = T3i - T3f; | |
213 T5a = FMA(T3b, T38, T59); | |
214 T5b = T58 + T5a; | |
215 T93 = T58 - T5a; | |
216 { | |
217 E T46, T4c, T6y, T6A; | |
218 T46 = FNMS(T44, T45, T42); | |
219 T4c = FNMS(T4, T4b, T4a); | |
220 T4d = T46 + T4c; | |
221 T8J = T4c - T46; | |
222 T6y = FMA(T40, T45, T6x); | |
223 T6A = FMA(T1, T4b, T6z); | |
224 T6B = T6y + T6A; | |
225 T8V = T6A - T6y; | |
226 } | |
227 } | |
228 { | |
229 E T1x, T4W, T1y, T6a, T1D, T4U, T4V, T5K, T1L, T52, T1M, T6c, T1R, T4Z, T50; | |
230 E T5M; | |
231 { | |
232 E T1v, T1w, T1B, T1C; | |
233 T1v = Ip[WS(rs, 3)]; | |
234 T1w = Im[WS(rs, 3)]; | |
235 T1x = T1v - T1w; | |
236 T4W = T1v + T1w; | |
237 T1y = T1u * T1x; | |
238 T6a = T25 * T4W; | |
239 T1B = Rp[WS(rs, 3)]; | |
240 T1C = Rm[WS(rs, 3)]; | |
241 T1D = T1B + T1C; | |
242 T4U = T1B - T1C; | |
243 T4V = T25 * T4U; | |
244 T5K = T1u * T1D; | |
245 } | |
246 { | |
247 E T1J, T1K, T1P, T1Q; | |
248 T1J = Ip[WS(rs, 11)]; | |
249 T1K = Im[WS(rs, 11)]; | |
250 T1L = T1J - T1K; | |
251 T52 = T1J + T1K; | |
252 T1M = T1I * T1L; | |
253 T6c = T4Y * T52; | |
254 T1P = Rp[WS(rs, 11)]; | |
255 T1Q = Rm[WS(rs, 11)]; | |
256 T1R = T1P + T1Q; | |
257 T4Z = T1P - T1Q; | |
258 T50 = T4Y * T4Z; | |
259 T5M = T1I * T1R; | |
260 } | |
261 { | |
262 E T1E, T1S, T6b, T6d; | |
263 T1E = FNMS(T1A, T1D, T1y); | |
264 T1S = FNMS(T1O, T1R, T1M); | |
265 T1T = T1E + T1S; | |
266 T8l = T1E - T1S; | |
267 T6b = FNMS(T28, T4U, T6a); | |
268 T6d = FNMS(T51, T4Z, T6c); | |
269 T6e = T6b + T6d; | |
270 T8r = T6d - T6b; | |
271 } | |
272 { | |
273 E T4X, T53, T5L, T5N; | |
274 T4X = FMA(T28, T4W, T4V); | |
275 T53 = FMA(T51, T52, T50); | |
276 T54 = T4X + T53; | |
277 T8C = T53 - T4X; | |
278 T5L = FMA(T1A, T1x, T5K); | |
279 T5N = FMA(T1O, T1L, T5M); | |
280 T5O = T5L + T5N; | |
281 T8i = T5L - T5N; | |
282 } | |
283 } | |
284 { | |
285 E T2K, T2L, T3Q, T2P, T3P, T6s, T5c, T2U, T2V, T3W, T2Z, T3U, T6u, T5e; | |
286 { | |
287 E T2I, T2J, T3O, T2N, T2O; | |
288 T2I = Ip[WS(rs, 4)]; | |
289 T2J = Im[WS(rs, 4)]; | |
290 T2K = T2I - T2J; | |
291 T2L = T2H * T2K; | |
292 T3Q = T2I + T2J; | |
293 T2N = Rp[WS(rs, 4)]; | |
294 T2O = Rm[WS(rs, 4)]; | |
295 T2P = T2N + T2O; | |
296 T3O = T2O - T2N; | |
297 T3P = Th * T3O; | |
298 T6s = Tk * T3O; | |
299 T5c = T2H * T2P; | |
300 } | |
301 { | |
302 E T2S, T2T, T3T, T2X, T2Y; | |
303 T2S = Ip[WS(rs, 12)]; | |
304 T2T = Im[WS(rs, 12)]; | |
305 T2U = T2S - T2T; | |
306 T2V = T2R * T2U; | |
307 T3W = T2S + T2T; | |
308 T2X = Rp[WS(rs, 12)]; | |
309 T2Y = Rm[WS(rs, 12)]; | |
310 T2Z = T2X + T2Y; | |
311 T3T = T2Y - T2X; | |
312 T3U = T3S * T3T; | |
313 T6u = T3V * T3T; | |
314 T5e = T2R * T2Z; | |
315 } | |
316 { | |
317 E T2Q, T30, T6t, T6v; | |
318 T2Q = FNMS(T2M, T2P, T2L); | |
319 T30 = FNMS(T2W, T2Z, T2V); | |
320 T31 = T2Q + T30; | |
321 T94 = T2Q - T30; | |
322 T6t = FMA(Th, T3Q, T6s); | |
323 T6v = FMA(T3S, T3W, T6u); | |
324 T6w = T6t + T6v; | |
325 T8K = T6t - T6v; | |
326 } | |
327 { | |
328 E T3R, T3X, T5d, T5f; | |
329 T3R = FNMS(Tk, T3Q, T3P); | |
330 T3X = FNMS(T3V, T3W, T3U); | |
331 T3Y = T3R + T3X; | |
332 T8U = T3R - T3X; | |
333 T5d = FMA(T2M, T2K, T5c); | |
334 T5f = FMA(T2W, T2U, T5e); | |
335 T5g = T5d + T5f; | |
336 T80 = T5d - T5f; | |
337 } | |
338 } | |
339 { | |
340 E T12, T4J, T13, T65, T18, T4F, T4G, T5F, T1k, T4R, T1l, T67, T1q, T4N, T4O; | |
341 E T5H; | |
342 { | |
343 E T10, T11, T16, T17; | |
344 T10 = Ip[WS(rs, 15)]; | |
345 T11 = Im[WS(rs, 15)]; | |
346 T12 = T10 - T11; | |
347 T4J = T10 + T11; | |
348 T13 = TZ * T12; | |
349 T65 = T4E * T4J; | |
350 T16 = Rp[WS(rs, 15)]; | |
351 T17 = Rm[WS(rs, 15)]; | |
352 T18 = T16 + T17; | |
353 T4F = T16 - T17; | |
354 T4G = T4E * T4F; | |
355 T5F = TZ * T18; | |
356 } | |
357 { | |
358 E T1i, T1j, T1o, T1p; | |
359 T1i = Ip[WS(rs, 7)]; | |
360 T1j = Im[WS(rs, 7)]; | |
361 T1k = T1i - T1j; | |
362 T4R = T1i + T1j; | |
363 T1l = T1h * T1k; | |
364 T67 = T4M * T4R; | |
365 T1o = Rp[WS(rs, 7)]; | |
366 T1p = Rm[WS(rs, 7)]; | |
367 T1q = T1o + T1p; | |
368 T4N = T1o - T1p; | |
369 T4O = T4M * T4N; | |
370 T5H = T1h * T1q; | |
371 } | |
372 { | |
373 E T19, T1r, T66, T68; | |
374 T19 = FNMS(T15, T18, T13); | |
375 T1r = FNMS(T1n, T1q, T1l); | |
376 T1s = T19 + T1r; | |
377 T8h = T19 - T1r; | |
378 T66 = FNMS(T4I, T4F, T65); | |
379 T68 = FNMS(T4Q, T4N, T67); | |
380 T69 = T66 + T68; | |
381 T8B = T66 - T68; | |
382 } | |
383 { | |
384 E T4K, T4S, T5G, T5I; | |
385 T4K = FMA(T4I, T4J, T4G); | |
386 T4S = FMA(T4Q, T4R, T4O); | |
387 T4T = T4K + T4S; | |
388 T8q = T4S - T4K; | |
389 T5G = FMA(T15, T12, T5F); | |
390 T5I = FMA(T1n, T1k, T5H); | |
391 T5J = T5G + T5I; | |
392 T8k = T5G - T5I; | |
393 } | |
394 } | |
395 { | |
396 E T9, T4i, Ta, T5U, Tf, T4g, T4h, T5u, Tp, T4q, Tq, T5W, Tv, T4m, T4n; | |
397 E T5w; | |
398 { | |
399 E T7, T8, Td, Te; | |
400 T7 = Ip[WS(rs, 1)]; | |
401 T8 = Im[WS(rs, 1)]; | |
402 T9 = T7 - T8; | |
403 T4i = T7 + T8; | |
404 Ta = T6 * T9; | |
405 T5U = T2 * T4i; | |
406 Td = Rp[WS(rs, 1)]; | |
407 Te = Rm[WS(rs, 1)]; | |
408 Tf = Td + Te; | |
409 T4g = Td - Te; | |
410 T4h = T2 * T4g; | |
411 T5u = T6 * Tf; | |
412 } | |
413 { | |
414 E Tn, To, Tt, Tu; | |
415 Tn = Ip[WS(rs, 9)]; | |
416 To = Im[WS(rs, 9)]; | |
417 Tp = Tn - To; | |
418 T4q = Tn + To; | |
419 Tq = Tm * Tp; | |
420 T5W = T4l * T4q; | |
421 Tt = Rp[WS(rs, 9)]; | |
422 Tu = Rm[WS(rs, 9)]; | |
423 Tv = Tt + Tu; | |
424 T4m = Tt - Tu; | |
425 T4n = T4l * T4m; | |
426 T5w = Tm * Tv; | |
427 } | |
428 { | |
429 E Tg, Tw, T5v, T5x; | |
430 Tg = FNMS(Tc, Tf, Ta); | |
431 Tw = FNMS(Ts, Tv, Tq); | |
432 Tx = Tg + Tw; | |
433 T8a = Tg - Tw; | |
434 T5v = FMA(Tc, T9, T5u); | |
435 T5x = FMA(Ts, Tp, T5w); | |
436 T5y = T5v + T5x; | |
437 T8d = T5v - T5x; | |
438 { | |
439 E T4j, T4r, T8t, T5V, T5X, T8u; | |
440 T4j = FMA(T5, T4i, T4h); | |
441 T4r = FMA(T4p, T4q, T4n); | |
442 T8t = T4r - T4j; | |
443 T5V = FNMS(T5, T4g, T5U); | |
444 T5X = FNMS(T4p, T4m, T5W); | |
445 T8u = T5V - T5X; | |
446 T4s = T4j + T4r; | |
447 T8E = T8u + T8t; | |
448 T5Y = T5V + T5X; | |
449 T8v = T8t - T8u; | |
450 } | |
451 } | |
452 } | |
453 { | |
454 E T1Y, T1Z, T3p, T22, T3o, T6h, T5i, T2c, T2d, T3x, T2i, T3u, T6j, T5k; | |
455 { | |
456 E T1W, T1X, T3n, T20, T21; | |
457 T1W = Ip[WS(rs, 2)]; | |
458 T1X = Im[WS(rs, 2)]; | |
459 T1Y = T1W - T1X; | |
460 T1Z = T1a * T1Y; | |
461 T3p = T1W + T1X; | |
462 T20 = Rp[WS(rs, 2)]; | |
463 T21 = Rm[WS(rs, 2)]; | |
464 T22 = T20 + T21; | |
465 T3n = T21 - T20; | |
466 T3o = T1F * T3n; | |
467 T6h = T1H * T3n; | |
468 T5i = T1a * T22; | |
469 } | |
470 { | |
471 E T2a, T2b, T3t, T2g, T2h; | |
472 T2a = Ip[WS(rs, 10)]; | |
473 T2b = Im[WS(rs, 10)]; | |
474 T2c = T2a - T2b; | |
475 T2d = T29 * T2c; | |
476 T3x = T2a + T2b; | |
477 T2g = Rp[WS(rs, 10)]; | |
478 T2h = Rm[WS(rs, 10)]; | |
479 T2i = T2g + T2h; | |
480 T3t = T2h - T2g; | |
481 T3u = T3s * T3t; | |
482 T6j = T3w * T3t; | |
483 T5k = T29 * T2i; | |
484 } | |
485 { | |
486 E T23, T2j, T5j, T5l; | |
487 T23 = FNMS(T1c, T22, T1Z); | |
488 T2j = FNMS(T2f, T2i, T2d); | |
489 T2k = T23 + T2j; | |
490 T82 = T23 - T2j; | |
491 T5j = FMA(T1c, T1Y, T5i); | |
492 T5l = FMA(T2f, T2c, T5k); | |
493 T5m = T5j + T5l; | |
494 T83 = T5j - T5l; | |
495 { | |
496 E T3q, T3y, T8M, T6i, T6k, T8N; | |
497 T3q = FNMS(T1H, T3p, T3o); | |
498 T3y = FNMS(T3w, T3x, T3u); | |
499 T8M = T3q - T3y; | |
500 T6i = FMA(T1F, T3p, T6h); | |
501 T6k = FMA(T3s, T3x, T6j); | |
502 T8N = T6i - T6k; | |
503 T3z = T3q + T3y; | |
504 T8X = T8M + T8N; | |
505 T6l = T6i + T6k; | |
506 T8O = T8M - T8N; | |
507 } | |
508 } | |
509 } | |
510 { | |
511 E T2o, T2p, T3G, T2t, T3D, T6m, T5n, T2y, T2z, T3K, T2D, T3J, T6o, T5p; | |
512 { | |
513 E T2m, T2n, T3C, T2r, T2s; | |
514 T2m = Ip[WS(rs, 14)]; | |
515 T2n = Im[WS(rs, 14)]; | |
516 T2o = T2m - T2n; | |
517 T2p = T2l * T2o; | |
518 T3G = T2m + T2n; | |
519 T2r = Rp[WS(rs, 14)]; | |
520 T2s = Rm[WS(rs, 14)]; | |
521 T2t = T2r + T2s; | |
522 T3C = T2s - T2r; | |
523 T3D = T3B * T3C; | |
524 T6m = T3F * T3C; | |
525 T5n = T2l * T2t; | |
526 } | |
527 { | |
528 E T2w, T2x, T3I, T2B, T2C; | |
529 T2w = Ip[WS(rs, 6)]; | |
530 T2x = Im[WS(rs, 6)]; | |
531 T2y = T2w - T2x; | |
532 T2z = T2v * T2y; | |
533 T3K = T2w + T2x; | |
534 T2B = Rp[WS(rs, 6)]; | |
535 T2C = Rm[WS(rs, 6)]; | |
536 T2D = T2B + T2C; | |
537 T3I = T2C - T2B; | |
538 T3J = T1d * T3I; | |
539 T6o = T1g * T3I; | |
540 T5p = T2v * T2D; | |
541 } | |
542 { | |
543 E T2u, T2E, T5o, T5q; | |
544 T2u = FNMS(T2q, T2t, T2p); | |
545 T2E = FNMS(T2A, T2D, T2z); | |
546 T2F = T2u + T2E; | |
547 T86 = T2u - T2E; | |
548 T5o = FMA(T2q, T2o, T5n); | |
549 T5q = FMA(T2A, T2y, T5p); | |
550 T5r = T5o + T5q; | |
551 T85 = T5o - T5q; | |
552 { | |
553 E T3H, T3L, T8P, T6n, T6p, T8Q; | |
554 T3H = FNMS(T3F, T3G, T3D); | |
555 T3L = FNMS(T1g, T3K, T3J); | |
556 T8P = T3H - T3L; | |
557 T6n = FMA(T3B, T3G, T6m); | |
558 T6p = FMA(T1d, T3K, T6o); | |
559 T8Q = T6n - T6p; | |
560 T3M = T3H + T3L; | |
561 T8Y = T8Q - T8P; | |
562 T6q = T6n + T6p; | |
563 T8R = T8P + T8Q; | |
564 } | |
565 } | |
566 } | |
567 { | |
568 E TC, T4v, TD, T5Z, TI, T4t, T4u, T5z, TO, T4z, TP, T61, TU, T4x, T4y; | |
569 E T5B; | |
570 { | |
571 E TA, TB, TG, TH; | |
572 TA = Ip[WS(rs, 5)]; | |
573 TB = Im[WS(rs, 5)]; | |
574 TC = TA - TB; | |
575 T4v = TA + TB; | |
576 TD = Tz * TC; | |
577 T5Z = T32 * T4v; | |
578 TG = Rp[WS(rs, 5)]; | |
579 TH = Rm[WS(rs, 5)]; | |
580 TI = TG + TH; | |
581 T4t = TG - TH; | |
582 T4u = T32 * T4t; | |
583 T5z = Tz * TI; | |
584 } | |
585 { | |
586 E TM, TN, TS, TT; | |
587 TM = Ip[WS(rs, 13)]; | |
588 TN = Im[WS(rs, 13)]; | |
589 TO = TM - TN; | |
590 T4z = TM + TN; | |
591 TP = TL * TO; | |
592 T61 = Ti * T4z; | |
593 TS = Rp[WS(rs, 13)]; | |
594 TT = Rm[WS(rs, 13)]; | |
595 TU = TS + TT; | |
596 T4x = TS - TT; | |
597 T4y = Ti * T4x; | |
598 T5B = TL * TU; | |
599 } | |
600 { | |
601 E TJ, TV, T5A, T5C; | |
602 TJ = FNMS(TF, TI, TD); | |
603 TV = FNMS(TR, TU, TP); | |
604 TW = TJ + TV; | |
605 T8e = TJ - TV; | |
606 T5A = FMA(TF, TC, T5z); | |
607 T5C = FMA(TR, TO, T5B); | |
608 T5D = T5A + T5C; | |
609 T8b = T5A - T5C; | |
610 { | |
611 E T4w, T4A, T8x, T60, T62, T8w; | |
612 T4w = FMA(T34, T4v, T4u); | |
613 T4A = FMA(Tl, T4z, T4y); | |
614 T8x = T4w - T4A; | |
615 T60 = FNMS(T34, T4t, T5Z); | |
616 T62 = FNMS(Tl, T4x, T61); | |
617 T8w = T62 - T60; | |
618 T4B = T4w + T4A; | |
619 T8F = T8w - T8x; | |
620 T63 = T60 + T62; | |
621 T8y = T8w + T8x; | |
622 } | |
623 } | |
624 } | |
625 { | |
626 E T1V, T6S, T3l, T6I, T5Q, T6H, T5t, T6R, T56, T6W, T6g, T6M, T4f, T6X, T6D; | |
627 E T6P; | |
628 { | |
629 E TX, T1U, T5h, T5s; | |
630 TX = Tx + TW; | |
631 T1U = T1s + T1T; | |
632 T1V = TX + T1U; | |
633 T6S = TX - T1U; | |
634 { | |
635 E T2G, T3k, T5E, T5P; | |
636 T2G = T2k + T2F; | |
637 T3k = T31 + T3j; | |
638 T3l = T2G + T3k; | |
639 T6I = T3k - T2G; | |
640 T5E = T5y + T5D; | |
641 T5P = T5J + T5O; | |
642 T5Q = T5E + T5P; | |
643 T6H = T5P - T5E; | |
644 } | |
645 T5h = T5b + T5g; | |
646 T5s = T5m + T5r; | |
647 T5t = T5h + T5s; | |
648 T6R = T5h - T5s; | |
649 { | |
650 E T4C, T55, T6L, T64, T6f, T6K; | |
651 T4C = T4s + T4B; | |
652 T55 = T4T + T54; | |
653 T6L = T4C - T55; | |
654 T64 = T5Y + T63; | |
655 T6f = T69 + T6e; | |
656 T6K = T6f - T64; | |
657 T56 = T4C + T55; | |
658 T6W = T6K - T6L; | |
659 T6g = T64 + T6f; | |
660 T6M = T6K + T6L; | |
661 } | |
662 { | |
663 E T3N, T4e, T6N, T6r, T6C, T6O; | |
664 T3N = T3z + T3M; | |
665 T4e = T3Y + T4d; | |
666 T6N = T4e - T3N; | |
667 T6r = T6l + T6q; | |
668 T6C = T6w + T6B; | |
669 T6O = T6C - T6r; | |
670 T4f = T3N + T4e; | |
671 T6X = T6N + T6O; | |
672 T6D = T6r + T6C; | |
673 T6P = T6N - T6O; | |
674 } | |
675 } | |
676 { | |
677 E T3m, T57, T6F, T6G; | |
678 T3m = T1V + T3l; | |
679 T57 = T4f - T56; | |
680 Ip[0] = KP500000000 * (T3m + T57); | |
681 Im[WS(rs, 15)] = KP500000000 * (T57 - T3m); | |
682 T6F = T5t + T5Q; | |
683 T6G = T6g + T6D; | |
684 Rm[WS(rs, 15)] = KP500000000 * (T6F - T6G); | |
685 Rp[0] = KP500000000 * (T6F + T6G); | |
686 } | |
687 { | |
688 E T5R, T5S, T5T, T6E; | |
689 T5R = T5t - T5Q; | |
690 T5S = T56 + T4f; | |
691 Rm[WS(rs, 7)] = KP500000000 * (T5R - T5S); | |
692 Rp[WS(rs, 8)] = KP500000000 * (T5R + T5S); | |
693 T5T = T3l - T1V; | |
694 T6E = T6g - T6D; | |
695 Ip[WS(rs, 8)] = KP500000000 * (T5T + T6E); | |
696 Im[WS(rs, 7)] = KP500000000 * (T6E - T5T); | |
697 } | |
698 { | |
699 E T6J, T6Q, T6Z, T70; | |
700 T6J = T6H + T6I; | |
701 T6Q = T6M + T6P; | |
702 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6Q, T6J)); | |
703 Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6Q, T6J))); | |
704 T6Z = T6R + T6S; | |
705 T70 = T6W + T6X; | |
706 Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T70, T6Z)); | |
707 Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T70, T6Z)); | |
708 } | |
709 { | |
710 E T6T, T6U, T6V, T6Y; | |
711 T6T = T6R - T6S; | |
712 T6U = T6P - T6M; | |
713 Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6U, T6T)); | |
714 Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6U, T6T)); | |
715 T6V = T6I - T6H; | |
716 T6Y = T6W - T6X; | |
717 Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6Y, T6V)); | |
718 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6Y, T6V))); | |
719 } | |
720 } | |
721 { | |
722 E T73, T7F, T7t, T7P, T7a, T7Q, T7w, T7G, T7i, T7U, T7A, T7K, T7p, T7V, T7B; | |
723 E T7N; | |
724 { | |
725 E T71, T72, T7r, T7s; | |
726 T71 = T5r - T5m; | |
727 T72 = T3j - T31; | |
728 T73 = T71 + T72; | |
729 T7F = T72 - T71; | |
730 T7r = T5b - T5g; | |
731 T7s = T2k - T2F; | |
732 T7t = T7r + T7s; | |
733 T7P = T7r - T7s; | |
734 } | |
735 { | |
736 E T76, T7u, T79, T7v; | |
737 { | |
738 E T74, T75, T77, T78; | |
739 T74 = Tx - TW; | |
740 T75 = T5y - T5D; | |
741 T76 = T74 - T75; | |
742 T7u = T75 + T74; | |
743 T77 = T5J - T5O; | |
744 T78 = T1s - T1T; | |
745 T79 = T77 + T78; | |
746 T7v = T77 - T78; | |
747 } | |
748 T7a = T76 + T79; | |
749 T7Q = T76 - T79; | |
750 T7w = T7u + T7v; | |
751 T7G = T7v - T7u; | |
752 } | |
753 { | |
754 E T7e, T7I, T7h, T7J; | |
755 { | |
756 E T7c, T7d, T7f, T7g; | |
757 T7c = T63 - T5Y; | |
758 T7d = T54 - T4T; | |
759 T7e = T7c + T7d; | |
760 T7I = T7c - T7d; | |
761 T7f = T4B - T4s; | |
762 T7g = T69 - T6e; | |
763 T7h = T7f + T7g; | |
764 T7J = T7g - T7f; | |
765 } | |
766 T7i = FMA(KP414213562, T7h, T7e); | |
767 T7U = FNMS(KP414213562, T7I, T7J); | |
768 T7A = FNMS(KP414213562, T7e, T7h); | |
769 T7K = FMA(KP414213562, T7J, T7I); | |
770 } | |
771 { | |
772 E T7l, T7L, T7o, T7M; | |
773 { | |
774 E T7j, T7k, T7m, T7n; | |
775 T7j = T6q - T6l; | |
776 T7k = T4d - T3Y; | |
777 T7l = T7j + T7k; | |
778 T7L = T7k - T7j; | |
779 T7m = T3z - T3M; | |
780 T7n = T6B - T6w; | |
781 T7o = T7m + T7n; | |
782 T7M = T7n - T7m; | |
783 } | |
784 T7p = FNMS(KP414213562, T7o, T7l); | |
785 T7V = FNMS(KP414213562, T7L, T7M); | |
786 T7B = FMA(KP414213562, T7l, T7o); | |
787 T7N = FMA(KP414213562, T7M, T7L); | |
788 } | |
789 { | |
790 E T7b, T7q, T7D, T7E; | |
791 T7b = FMA(KP707106781, T7a, T73); | |
792 T7q = T7i + T7p; | |
793 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7q, T7b)); | |
794 Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T7q, T7b))); | |
795 T7D = FMA(KP707106781, T7w, T7t); | |
796 T7E = T7A + T7B; | |
797 Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T7E, T7D)); | |
798 Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7E, T7D)); | |
799 } | |
800 { | |
801 E T7x, T7y, T7z, T7C; | |
802 T7x = FNMS(KP707106781, T7w, T7t); | |
803 T7y = T7p - T7i; | |
804 Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T7y, T7x)); | |
805 Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7y, T7x)); | |
806 T7z = FNMS(KP707106781, T7a, T73); | |
807 T7C = T7A - T7B; | |
808 Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7C, T7z)); | |
809 Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T7C, T7z))); | |
810 } | |
811 { | |
812 E T7H, T7O, T7X, T7Y; | |
813 T7H = FNMS(KP707106781, T7G, T7F); | |
814 T7O = T7K - T7N; | |
815 Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7O, T7H)); | |
816 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7O, T7H))); | |
817 T7X = FNMS(KP707106781, T7Q, T7P); | |
818 T7Y = T7U + T7V; | |
819 Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7Y, T7X)); | |
820 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7Y, T7X)); | |
821 } | |
822 { | |
823 E T7R, T7S, T7T, T7W; | |
824 T7R = FMA(KP707106781, T7Q, T7P); | |
825 T7S = T7K + T7N; | |
826 Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7S, T7R)); | |
827 Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7S, T7R)); | |
828 T7T = FMA(KP707106781, T7G, T7F); | |
829 T7W = T7U - T7V; | |
830 Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7W, T7T)); | |
831 Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7W, T7T))); | |
832 } | |
833 } | |
834 { | |
835 E T89, Tat, T9l, Ta7, T99, Taj, T9v, T9H, T8o, T9w, T9c, T9m, Ta3, Tay, Tae; | |
836 E Tao, T8I, T9A, T9g, T9q, T9O, Tau, Taa, Tak, T9W, Taz, Taf, Tar, T91, T9B; | |
837 E T9h, T9t; | |
838 { | |
839 E T81, Ta5, T88, Ta6, T84, T87; | |
840 T81 = T7Z - T80; | |
841 Ta5 = T93 - T94; | |
842 T84 = T82 - T83; | |
843 T87 = T85 + T86; | |
844 T88 = T84 + T87; | |
845 Ta6 = T84 - T87; | |
846 T89 = FMA(KP707106781, T88, T81); | |
847 Tat = FNMS(KP707106781, Ta6, Ta5); | |
848 T9l = FNMS(KP707106781, T88, T81); | |
849 Ta7 = FMA(KP707106781, Ta6, Ta5); | |
850 } | |
851 { | |
852 E T95, T9F, T98, T9G, T96, T97; | |
853 T95 = T93 + T94; | |
854 T9F = T80 + T7Z; | |
855 T96 = T83 + T82; | |
856 T97 = T85 - T86; | |
857 T98 = T96 + T97; | |
858 T9G = T97 - T96; | |
859 T99 = FMA(KP707106781, T98, T95); | |
860 Taj = FNMS(KP707106781, T9G, T9F); | |
861 T9v = FNMS(KP707106781, T98, T95); | |
862 T9H = FMA(KP707106781, T9G, T9F); | |
863 } | |
864 { | |
865 E T8g, T9a, T8n, T9b; | |
866 { | |
867 E T8c, T8f, T8j, T8m; | |
868 T8c = T8a - T8b; | |
869 T8f = T8d + T8e; | |
870 T8g = FNMS(KP414213562, T8f, T8c); | |
871 T9a = FMA(KP414213562, T8c, T8f); | |
872 T8j = T8h - T8i; | |
873 T8m = T8k + T8l; | |
874 T8n = FMA(KP414213562, T8m, T8j); | |
875 T9b = FNMS(KP414213562, T8j, T8m); | |
876 } | |
877 T8o = T8g + T8n; | |
878 T9w = T8g - T8n; | |
879 T9c = T9a + T9b; | |
880 T9m = T9b - T9a; | |
881 } | |
882 { | |
883 E T9Z, Tam, Ta2, Tan; | |
884 { | |
885 E T9X, T9Y, Ta0, Ta1; | |
886 T9X = T8r - T8q; | |
887 T9Y = T8F - T8E; | |
888 T9Z = FNMS(KP707106781, T9Y, T9X); | |
889 Tam = FMA(KP707106781, T9Y, T9X); | |
890 Ta0 = T8B - T8C; | |
891 Ta1 = T8y - T8v; | |
892 Ta2 = FNMS(KP707106781, Ta1, Ta0); | |
893 Tan = FMA(KP707106781, Ta1, Ta0); | |
894 } | |
895 Ta3 = FNMS(KP668178637, Ta2, T9Z); | |
896 Tay = FNMS(KP198912367, Tam, Tan); | |
897 Tae = FMA(KP668178637, T9Z, Ta2); | |
898 Tao = FMA(KP198912367, Tan, Tam); | |
899 } | |
900 { | |
901 E T8A, T9o, T8H, T9p; | |
902 { | |
903 E T8s, T8z, T8D, T8G; | |
904 T8s = T8q + T8r; | |
905 T8z = T8v + T8y; | |
906 T8A = FMA(KP707106781, T8z, T8s); | |
907 T9o = FNMS(KP707106781, T8z, T8s); | |
908 T8D = T8B + T8C; | |
909 T8G = T8E + T8F; | |
910 T8H = FMA(KP707106781, T8G, T8D); | |
911 T9p = FNMS(KP707106781, T8G, T8D); | |
912 } | |
913 T8I = FMA(KP198912367, T8H, T8A); | |
914 T9A = FMA(KP668178637, T9o, T9p); | |
915 T9g = FNMS(KP198912367, T8A, T8H); | |
916 T9q = FNMS(KP668178637, T9p, T9o); | |
917 } | |
918 { | |
919 E T9K, Ta9, T9N, Ta8; | |
920 { | |
921 E T9I, T9J, T9L, T9M; | |
922 T9I = T8k - T8l; | |
923 T9J = T8h + T8i; | |
924 T9K = FMA(KP414213562, T9J, T9I); | |
925 Ta9 = FNMS(KP414213562, T9I, T9J); | |
926 T9L = T8d - T8e; | |
927 T9M = T8a + T8b; | |
928 T9N = FNMS(KP414213562, T9M, T9L); | |
929 Ta8 = FMA(KP414213562, T9L, T9M); | |
930 } | |
931 T9O = T9K - T9N; | |
932 Tau = T9N + T9K; | |
933 Taa = Ta8 - Ta9; | |
934 Tak = Ta8 + Ta9; | |
935 } | |
936 { | |
937 E T9S, Tap, T9V, Taq; | |
938 { | |
939 E T9Q, T9R, T9T, T9U; | |
940 T9Q = T8K + T8J; | |
941 T9R = T8X - T8Y; | |
942 T9S = FNMS(KP707106781, T9R, T9Q); | |
943 Tap = FMA(KP707106781, T9R, T9Q); | |
944 T9T = T8V - T8U; | |
945 T9U = T8R - T8O; | |
946 T9V = FNMS(KP707106781, T9U, T9T); | |
947 Taq = FMA(KP707106781, T9U, T9T); | |
948 } | |
949 T9W = FNMS(KP668178637, T9V, T9S); | |
950 Taz = FNMS(KP198912367, Tap, Taq); | |
951 Taf = FMA(KP668178637, T9S, T9V); | |
952 Tar = FMA(KP198912367, Taq, Tap); | |
953 } | |
954 { | |
955 E T8T, T9r, T90, T9s; | |
956 { | |
957 E T8L, T8S, T8W, T8Z; | |
958 T8L = T8J - T8K; | |
959 T8S = T8O + T8R; | |
960 T8T = FMA(KP707106781, T8S, T8L); | |
961 T9r = FNMS(KP707106781, T8S, T8L); | |
962 T8W = T8U + T8V; | |
963 T8Z = T8X + T8Y; | |
964 T90 = FMA(KP707106781, T8Z, T8W); | |
965 T9s = FNMS(KP707106781, T8Z, T8W); | |
966 } | |
967 T91 = FNMS(KP198912367, T90, T8T); | |
968 T9B = FNMS(KP668178637, T9r, T9s); | |
969 T9h = FMA(KP198912367, T8T, T90); | |
970 T9t = FMA(KP668178637, T9s, T9r); | |
971 } | |
972 { | |
973 E T8p, T92, T9j, T9k; | |
974 T8p = FMA(KP923879532, T8o, T89); | |
975 T92 = T8I + T91; | |
976 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T92, T8p)); | |
977 Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T92, T8p))); | |
978 T9j = FMA(KP923879532, T9c, T99); | |
979 T9k = T9g + T9h; | |
980 Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T9k, T9j)); | |
981 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T9k, T9j)); | |
982 } | |
983 { | |
984 E T9d, T9e, T9f, T9i; | |
985 T9d = FNMS(KP923879532, T9c, T99); | |
986 T9e = T91 - T8I; | |
987 Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T9e, T9d)); | |
988 Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9e, T9d)); | |
989 T9f = FNMS(KP923879532, T8o, T89); | |
990 T9i = T9g - T9h; | |
991 Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9i, T9f)); | |
992 Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T9i, T9f))); | |
993 } | |
994 { | |
995 E T9n, T9u, T9D, T9E; | |
996 T9n = FNMS(KP923879532, T9m, T9l); | |
997 T9u = T9q + T9t; | |
998 Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9u, T9n)); | |
999 Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T9u, T9n))); | |
1000 T9D = FNMS(KP923879532, T9w, T9v); | |
1001 T9E = T9A + T9B; | |
1002 Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9E, T9D)); | |
1003 Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T9E, T9D)); | |
1004 } | |
1005 { | |
1006 E T9x, T9y, T9z, T9C; | |
1007 T9x = FMA(KP923879532, T9w, T9v); | |
1008 T9y = T9t - T9q; | |
1009 Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T9y, T9x)); | |
1010 Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9y, T9x)); | |
1011 T9z = FMA(KP923879532, T9m, T9l); | |
1012 T9C = T9A - T9B; | |
1013 Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9C, T9z)); | |
1014 Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T9C, T9z))); | |
1015 } | |
1016 { | |
1017 E T9P, Ta4, Tah, Tai; | |
1018 T9P = FMA(KP923879532, T9O, T9H); | |
1019 Ta4 = T9W - Ta3; | |
1020 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Ta4, T9P)); | |
1021 Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, Ta4, T9P))); | |
1022 Tah = FMA(KP923879532, Taa, Ta7); | |
1023 Tai = Tae + Taf; | |
1024 Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, Tai, Tah)); | |
1025 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Tai, Tah)); | |
1026 } | |
1027 { | |
1028 E Tab, Tac, Tad, Tag; | |
1029 Tab = FNMS(KP923879532, Taa, Ta7); | |
1030 Tac = Ta3 + T9W; | |
1031 Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, Tac, Tab)); | |
1032 Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tac, Tab)); | |
1033 Tad = FNMS(KP923879532, T9O, T9H); | |
1034 Tag = Tae - Taf; | |
1035 Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tag, Tad)); | |
1036 Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, Tag, Tad))); | |
1037 } | |
1038 { | |
1039 E Tal, Tas, TaB, TaC; | |
1040 Tal = FMA(KP923879532, Tak, Taj); | |
1041 Tas = Tao - Tar; | |
1042 Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, Tas, Tal)); | |
1043 Im[0] = -(KP500000000 * (FNMS(KP980785280, Tas, Tal))); | |
1044 TaB = FMA(KP923879532, Tau, Tat); | |
1045 TaC = Tay + Taz; | |
1046 Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, TaC, TaB)); | |
1047 Rm[0] = KP500000000 * (FMA(KP980785280, TaC, TaB)); | |
1048 } | |
1049 { | |
1050 E Tav, Taw, Tax, TaA; | |
1051 Tav = FNMS(KP923879532, Tau, Tat); | |
1052 Taw = Tao + Tar; | |
1053 Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav)); | |
1054 Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Taw, Tav)); | |
1055 Tax = FNMS(KP923879532, Tak, Taj); | |
1056 TaA = Tay - Taz; | |
1057 Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax)); | |
1058 Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax))); | |
1059 } | |
1060 } | |
1061 } | |
1062 } | |
1063 } | |
1064 } | |
1065 | |
1066 static const tw_instr twinstr[] = { | |
1067 {TW_CEXP, 1, 1}, | |
1068 {TW_CEXP, 1, 3}, | |
1069 {TW_CEXP, 1, 9}, | |
1070 {TW_CEXP, 1, 27}, | |
1071 {TW_NEXT, 1, 0} | |
1072 }; | |
1073 | |
1074 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {300, 162, 252, 0} }; | |
1075 | |
1076 void X(codelet_hc2cfdft2_32) (planner *p) { | |
1077 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); | |
1078 } | |
1079 #else | |
1080 | |
1081 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */ | |
1082 | |
1083 /* | |
1084 * This function contains 552 FP additions, 300 FP multiplications, | |
1085 * (or, 440 additions, 188 multiplications, 112 fused multiply/add), | |
1086 * 166 stack variables, 9 constants, and 128 memory accesses | |
1087 */ | |
1088 #include "rdft/scalar/hc2cf.h" | |
1089 | |
1090 static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
1091 { | |
1092 DK(KP277785116, +0.277785116509801112371415406974266437187468595); | |
1093 DK(KP415734806, +0.415734806151272618539394188808952878369280406); | |
1094 DK(KP097545161, +0.097545161008064133924142434238511120463845809); | |
1095 DK(KP490392640, +0.490392640201615224563091118067119518486966865); | |
1096 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1097 DK(KP191341716, +0.191341716182544885864229992015199433380672281); | |
1098 DK(KP461939766, +0.461939766255643378064091594698394143411208313); | |
1099 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
1100 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
1101 { | |
1102 INT m; | |
1103 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { | |
1104 E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h; | |
1105 E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w; | |
1106 E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y; | |
1107 E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30; | |
1108 E T2b, T2W; | |
1109 { | |
1110 E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP; | |
1111 E TZ; | |
1112 { | |
1113 E T3, Tc, T6, Tb; | |
1114 T1 = W[0]; | |
1115 T4 = W[1]; | |
1116 T2 = W[2]; | |
1117 T5 = W[3]; | |
1118 T3 = T1 * T2; | |
1119 Tc = T4 * T2; | |
1120 T6 = T4 * T5; | |
1121 Tb = T1 * T5; | |
1122 T7 = T3 + T6; | |
1123 T1b = T3 - T6; | |
1124 T1d = Tb + Tc; | |
1125 Td = Tb - Tc; | |
1126 Ti = W[4]; | |
1127 Tw = T1 * Ti; | |
1128 T1A = T5 * Ti; | |
1129 TD = T4 * Ti; | |
1130 T1t = T2 * Ti; | |
1131 Tk = W[5]; | |
1132 Tx = T4 * Tk; | |
1133 T1z = T2 * Tk; | |
1134 TC = T1 * Tk; | |
1135 T1u = T5 * Tk; | |
1136 Tj = W[6]; | |
1137 TJ = T1 * Tj; | |
1138 T15 = T5 * Tj; | |
1139 TQ = T4 * Tj; | |
1140 TY = T2 * Tj; | |
1141 Tl = W[7]; | |
1142 TK = T4 * Tl; | |
1143 T14 = T2 * Tl; | |
1144 TP = T1 * Tl; | |
1145 TZ = T5 * Tl; | |
1146 } | |
1147 TL = TJ + TK; | |
1148 TR = TP - TQ; | |
1149 T2h = TJ - TK; | |
1150 T2O = T14 - T15; | |
1151 T16 = T14 + T15; | |
1152 T2l = TP + TQ; | |
1153 T10 = TY - TZ; | |
1154 T2K = TY + TZ; | |
1155 Tm = FMA(Ti, Tj, Tk * Tl); | |
1156 Tq = FNMS(Tk, Tj, Ti * Tl); | |
1157 { | |
1158 E T3q, T3r, T3u, T3v; | |
1159 T3q = T7 * Tj; | |
1160 T3r = Td * Tl; | |
1161 T3s = T3q + T3r; | |
1162 T3K = T3q - T3r; | |
1163 T3u = T7 * Tl; | |
1164 T3v = Td * Tj; | |
1165 T3w = T3u - T3v; | |
1166 T3M = T3u + T3v; | |
1167 } | |
1168 { | |
1169 E T4c, T4d, T4g, T4h; | |
1170 T4c = T1b * Tj; | |
1171 T4d = T1d * Tl; | |
1172 T4e = T4c - T4d; | |
1173 T4u = T4c + T4d; | |
1174 T4g = T1b * Tl; | |
1175 T4h = T1d * Tj; | |
1176 T4i = T4g + T4h; | |
1177 T4w = T4g - T4h; | |
1178 Ty = Tw - Tx; | |
1179 TE = TC + TD; | |
1180 T3h = FMA(Ty, Tj, TE * Tl); | |
1181 T3j = FNMS(TE, Tj, Ty * Tl); | |
1182 } | |
1183 T2q = T1t - T1u; | |
1184 T2u = T1z + T1A; | |
1185 T4l = FMA(T2q, Tj, T2u * Tl); | |
1186 T4n = FNMS(T2u, Tj, T2q * Tl); | |
1187 T1v = T1t + T1u; | |
1188 T1B = T1z - T1A; | |
1189 T3E = FMA(T1v, Tj, T1B * Tl); | |
1190 T3G = FNMS(T1B, Tj, T1v * Tl); | |
1191 T2B = Tw + Tx; | |
1192 T2F = TC - TD; | |
1193 T3Y = FMA(T2B, Tj, T2F * Tl); | |
1194 T40 = FNMS(T2F, Tj, T2B * Tl); | |
1195 { | |
1196 E T1c, T1e, T1g, T1h; | |
1197 T1c = T1b * Ti; | |
1198 T1e = T1d * Tk; | |
1199 T1f = T1c - T1e; | |
1200 T1G = T1c + T1e; | |
1201 T1g = T1b * Tk; | |
1202 T1h = T1d * Ti; | |
1203 T1i = T1g + T1h; | |
1204 T1H = T1g - T1h; | |
1205 } | |
1206 T1j = FMA(T1f, Tj, T1i * Tl); | |
1207 T1M = FNMS(T1H, Tj, T1G * Tl); | |
1208 T1n = FNMS(T1i, Tj, T1f * Tl); | |
1209 T1I = FMA(T1G, Tj, T1H * Tl); | |
1210 { | |
1211 E T21, T22, T24, T25; | |
1212 T21 = T7 * Ti; | |
1213 T22 = Td * Tk; | |
1214 T23 = T21 + T22; | |
1215 T2U = T21 - T22; | |
1216 T24 = T7 * Tk; | |
1217 T25 = Td * Ti; | |
1218 T26 = T24 - T25; | |
1219 T2V = T24 + T25; | |
1220 } | |
1221 T27 = FMA(T23, Tj, T26 * Tl); | |
1222 T30 = FNMS(T2V, Tj, T2U * Tl); | |
1223 T2b = FNMS(T26, Tj, T23 * Tl); | |
1224 T2W = FMA(T2U, Tj, T2V * Tl); | |
1225 } | |
1226 { | |
1227 E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I; | |
1228 E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U; | |
1229 E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74; | |
1230 E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U; | |
1231 E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I; | |
1232 { | |
1233 E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l; | |
1234 E T5z; | |
1235 { | |
1236 E T2C, T2D, T3o, T2G, T2H, T3n; | |
1237 T2C = Ip[WS(rs, 4)]; | |
1238 T2D = Im[WS(rs, 4)]; | |
1239 T3o = T2C + T2D; | |
1240 T2G = Rp[WS(rs, 4)]; | |
1241 T2H = Rm[WS(rs, 4)]; | |
1242 T3n = T2G - T2H; | |
1243 T2E = T2C - T2D; | |
1244 T2I = T2G + T2H; | |
1245 T3p = FMA(Ti, T3n, Tk * T3o); | |
1246 T5w = FNMS(Tk, T3n, Ti * T3o); | |
1247 } | |
1248 { | |
1249 E T35, T36, T3f, T3c, T3d, T3e; | |
1250 T35 = Ip[0]; | |
1251 T36 = Im[0]; | |
1252 T3f = T35 + T36; | |
1253 T3c = Rm[0]; | |
1254 T3d = Rp[0]; | |
1255 T3e = T3c - T3d; | |
1256 T37 = T35 - T36; | |
1257 T4D = T3d + T3c; | |
1258 T3g = FNMS(T4, T3f, T1 * T3e); | |
1259 T5A = FMA(T4, T3e, T1 * T3f); | |
1260 } | |
1261 { | |
1262 E T2L, T2M, T3x, T2P, T2Q, T3t; | |
1263 T2L = Ip[WS(rs, 12)]; | |
1264 T2M = Im[WS(rs, 12)]; | |
1265 T3x = T2L + T2M; | |
1266 T2P = Rp[WS(rs, 12)]; | |
1267 T2Q = Rm[WS(rs, 12)]; | |
1268 T3t = T2P - T2Q; | |
1269 T2N = T2L - T2M; | |
1270 T2R = T2P + T2Q; | |
1271 T3y = FMA(T3s, T3t, T3w * T3x); | |
1272 T5x = FNMS(T3w, T3t, T3s * T3x); | |
1273 } | |
1274 { | |
1275 E T2X, T2Y, T3k, T31, T32, T3i; | |
1276 T2X = Ip[WS(rs, 8)]; | |
1277 T2Y = Im[WS(rs, 8)]; | |
1278 T3k = T2X + T2Y; | |
1279 T31 = Rp[WS(rs, 8)]; | |
1280 T32 = Rm[WS(rs, 8)]; | |
1281 T3i = T31 - T32; | |
1282 T2Z = T2X - T2Y; | |
1283 T33 = T31 + T32; | |
1284 T3l = FMA(T3h, T3i, T3j * T3k); | |
1285 T5z = FNMS(T3j, T3i, T3h * T3k); | |
1286 } | |
1287 { | |
1288 E T34, T7Q, T7R, T4E, T5y, T5B; | |
1289 T34 = FNMS(T30, T33, T2W * T2Z); | |
1290 T38 = T34 + T37; | |
1291 T7l = T37 - T34; | |
1292 T7Q = T3l + T3g; | |
1293 T7R = T5w - T5x; | |
1294 T7S = T7Q - T7R; | |
1295 T8Y = T7R + T7Q; | |
1296 { | |
1297 E T7X, T7Y, T3m, T3z; | |
1298 T7X = T3y - T3p; | |
1299 T7Y = T5A - T5z; | |
1300 T7Z = T7X + T7Y; | |
1301 T91 = T7Y - T7X; | |
1302 T3m = T3g - T3l; | |
1303 T3z = T3p + T3y; | |
1304 T3A = T3m - T3z; | |
1305 T6k = T3z + T3m; | |
1306 } | |
1307 T4E = FMA(T2W, T33, T30 * T2Z); | |
1308 T4F = T4D + T4E; | |
1309 T83 = T4D - T4E; | |
1310 T5y = T5w + T5x; | |
1311 T5B = T5z + T5A; | |
1312 T5C = T5y + T5B; | |
1313 T6n = T5B - T5y; | |
1314 { | |
1315 E T2J, T2S, T4G, T4H; | |
1316 T2J = FNMS(T2F, T2I, T2B * T2E); | |
1317 T2S = FNMS(T2O, T2R, T2K * T2N); | |
1318 T2T = T2J + T2S; | |
1319 T84 = T2J - T2S; | |
1320 T4G = FMA(T2B, T2I, T2F * T2E); | |
1321 T4H = FMA(T2K, T2R, T2O * T2N); | |
1322 T4I = T4G + T4H; | |
1323 T7m = T4G - T4H; | |
1324 } | |
1325 } | |
1326 } | |
1327 { | |
1328 E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O; | |
1329 E T4N; | |
1330 { | |
1331 E T1W, T3C, T1Z, T3B; | |
1332 { | |
1333 E T1U, T1V, T1X, T1Y; | |
1334 T1U = Ip[WS(rs, 2)]; | |
1335 T1V = Im[WS(rs, 2)]; | |
1336 T1W = T1U - T1V; | |
1337 T3C = T1U + T1V; | |
1338 T1X = Rp[WS(rs, 2)]; | |
1339 T1Y = Rm[WS(rs, 2)]; | |
1340 T1Z = T1X + T1Y; | |
1341 T3B = T1X - T1Y; | |
1342 } | |
1343 T20 = FNMS(T1d, T1Z, T1b * T1W); | |
1344 T5p = FNMS(T1H, T3B, T1G * T3C); | |
1345 T3D = FMA(T1G, T3B, T1H * T3C); | |
1346 T4K = FMA(T1b, T1Z, T1d * T1W); | |
1347 } | |
1348 { | |
1349 E T2t, T3Q, T2x, T3P; | |
1350 { | |
1351 E T2r, T2s, T2v, T2w; | |
1352 T2r = Ip[WS(rs, 6)]; | |
1353 T2s = Im[WS(rs, 6)]; | |
1354 T2t = T2r - T2s; | |
1355 T3Q = T2r + T2s; | |
1356 T2v = Rp[WS(rs, 6)]; | |
1357 T2w = Rm[WS(rs, 6)]; | |
1358 T2x = T2v + T2w; | |
1359 T3P = T2v - T2w; | |
1360 } | |
1361 T2y = FNMS(T2u, T2x, T2q * T2t); | |
1362 T5t = FNMS(T1i, T3P, T1f * T3Q); | |
1363 T3R = FMA(T1f, T3P, T1i * T3Q); | |
1364 T4O = FMA(T2q, T2x, T2u * T2t); | |
1365 } | |
1366 { | |
1367 E T2a, T3H, T2e, T3F; | |
1368 { | |
1369 E T28, T29, T2c, T2d; | |
1370 T28 = Ip[WS(rs, 10)]; | |
1371 T29 = Im[WS(rs, 10)]; | |
1372 T2a = T28 - T29; | |
1373 T3H = T28 + T29; | |
1374 T2c = Rp[WS(rs, 10)]; | |
1375 T2d = Rm[WS(rs, 10)]; | |
1376 T2e = T2c + T2d; | |
1377 T3F = T2c - T2d; | |
1378 } | |
1379 T2f = FNMS(T2b, T2e, T27 * T2a); | |
1380 T5q = FNMS(T3G, T3F, T3E * T3H); | |
1381 T3I = FMA(T3E, T3F, T3G * T3H); | |
1382 T4L = FMA(T27, T2e, T2b * T2a); | |
1383 } | |
1384 { | |
1385 E T2k, T3N, T2o, T3L; | |
1386 { | |
1387 E T2i, T2j, T2m, T2n; | |
1388 T2i = Ip[WS(rs, 14)]; | |
1389 T2j = Im[WS(rs, 14)]; | |
1390 T2k = T2i - T2j; | |
1391 T3N = T2i + T2j; | |
1392 T2m = Rp[WS(rs, 14)]; | |
1393 T2n = Rm[WS(rs, 14)]; | |
1394 T2o = T2m + T2n; | |
1395 T3L = T2m - T2n; | |
1396 } | |
1397 T2p = FNMS(T2l, T2o, T2h * T2k); | |
1398 T5s = FNMS(T3M, T3L, T3K * T3N); | |
1399 T3O = FMA(T3K, T3L, T3M * T3N); | |
1400 T4N = FMA(T2h, T2o, T2l * T2k); | |
1401 } | |
1402 { | |
1403 E T3J, T3S, T5r, T5u; | |
1404 T2g = T20 + T2f; | |
1405 T4M = T4K + T4L; | |
1406 T4P = T4N + T4O; | |
1407 T2z = T2p + T2y; | |
1408 T3J = T3D + T3I; | |
1409 T3S = T3O + T3R; | |
1410 T3T = T3J + T3S; | |
1411 T6m = T3S - T3J; | |
1412 { | |
1413 E T7M, T7N, T7h, T7i; | |
1414 T7M = T5s - T5t; | |
1415 T7N = T3R - T3O; | |
1416 T7O = T7M + T7N; | |
1417 T7V = T7M - T7N; | |
1418 T7h = T4N - T4O; | |
1419 T7i = T2p - T2y; | |
1420 T7j = T7h + T7i; | |
1421 T87 = T7h - T7i; | |
1422 } | |
1423 T5r = T5p + T5q; | |
1424 T5u = T5s + T5t; | |
1425 T5v = T5r + T5u; | |
1426 T6j = T5u - T5r; | |
1427 { | |
1428 E T7J, T7K, T7e, T7f; | |
1429 T7J = T3I - T3D; | |
1430 T7K = T5p - T5q; | |
1431 T7L = T7J - T7K; | |
1432 T7U = T7K + T7J; | |
1433 T7e = T20 - T2f; | |
1434 T7f = T4K - T4L; | |
1435 T7g = T7e - T7f; | |
1436 T86 = T7f + T7e; | |
1437 } | |
1438 } | |
1439 } | |
1440 { | |
1441 E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46; | |
1442 E T4V; | |
1443 { | |
1444 E Ta, T3W, Tg, T3V; | |
1445 { | |
1446 E T8, T9, Te, Tf; | |
1447 T8 = Ip[WS(rs, 1)]; | |
1448 T9 = Im[WS(rs, 1)]; | |
1449 Ta = T8 - T9; | |
1450 T3W = T8 + T9; | |
1451 Te = Rp[WS(rs, 1)]; | |
1452 Tf = Rm[WS(rs, 1)]; | |
1453 Tg = Te + Tf; | |
1454 T3V = Te - Tf; | |
1455 } | |
1456 Th = FNMS(Td, Tg, T7 * Ta); | |
1457 T5a = FNMS(T5, T3V, T2 * T3W); | |
1458 T3X = FMA(T2, T3V, T5 * T3W); | |
1459 T4S = FMA(T7, Tg, Td * Ta); | |
1460 } | |
1461 { | |
1462 E TO, T48, TU, T47; | |
1463 { | |
1464 E TM, TN, TS, TT; | |
1465 TM = Ip[WS(rs, 13)]; | |
1466 TN = Im[WS(rs, 13)]; | |
1467 TO = TM - TN; | |
1468 T48 = TM + TN; | |
1469 TS = Rp[WS(rs, 13)]; | |
1470 TT = Rm[WS(rs, 13)]; | |
1471 TU = TS + TT; | |
1472 T47 = TS - TT; | |
1473 } | |
1474 TV = FNMS(TR, TU, TL * TO); | |
1475 T5e = FNMS(Tl, T47, Tj * T48); | |
1476 T49 = FMA(Tj, T47, Tl * T48); | |
1477 T4W = FMA(TL, TU, TR * TO); | |
1478 } | |
1479 { | |
1480 E Tp, T41, Tt, T3Z; | |
1481 { | |
1482 E Tn, To, Tr, Ts; | |
1483 Tn = Ip[WS(rs, 9)]; | |
1484 To = Im[WS(rs, 9)]; | |
1485 Tp = Tn - To; | |
1486 T41 = Tn + To; | |
1487 Tr = Rp[WS(rs, 9)]; | |
1488 Ts = Rm[WS(rs, 9)]; | |
1489 Tt = Tr + Ts; | |
1490 T3Z = Tr - Ts; | |
1491 } | |
1492 Tu = FNMS(Tq, Tt, Tm * Tp); | |
1493 T5b = FNMS(T40, T3Z, T3Y * T41); | |
1494 T42 = FMA(T3Y, T3Z, T40 * T41); | |
1495 T4T = FMA(Tm, Tt, Tq * Tp); | |
1496 } | |
1497 { | |
1498 E TB, T45, TH, T44; | |
1499 { | |
1500 E Tz, TA, TF, TG; | |
1501 Tz = Ip[WS(rs, 5)]; | |
1502 TA = Im[WS(rs, 5)]; | |
1503 TB = Tz - TA; | |
1504 T45 = Tz + TA; | |
1505 TF = Rp[WS(rs, 5)]; | |
1506 TG = Rm[WS(rs, 5)]; | |
1507 TH = TF + TG; | |
1508 T44 = TF - TG; | |
1509 } | |
1510 TI = FNMS(TE, TH, Ty * TB); | |
1511 T5d = FNMS(T2V, T44, T2U * T45); | |
1512 T46 = FMA(T2U, T44, T2V * T45); | |
1513 T4V = FMA(Ty, TH, TE * TB); | |
1514 } | |
1515 Tv = Th + Tu; | |
1516 TW = TI + TV; | |
1517 T61 = Tv - TW; | |
1518 T4U = T4S + T4T; | |
1519 T4X = T4V + T4W; | |
1520 T62 = T4U - T4X; | |
1521 { | |
1522 E T43, T4a, T7t, T7u; | |
1523 T43 = T3X + T42; | |
1524 T4a = T46 + T49; | |
1525 T4b = T43 + T4a; | |
1526 T6c = T4a - T43; | |
1527 T7t = T5e - T5d; | |
1528 T7u = T46 - T49; | |
1529 T7v = T7t + T7u; | |
1530 T7C = T7t - T7u; | |
1531 } | |
1532 { | |
1533 E T5c, T5f, T72, T73; | |
1534 T5c = T5a + T5b; | |
1535 T5f = T5d + T5e; | |
1536 T5g = T5c + T5f; | |
1537 T6f = T5f - T5c; | |
1538 T72 = T4S - T4T; | |
1539 T73 = TI - TV; | |
1540 T74 = T72 + T73; | |
1541 T8G = T72 - T73; | |
1542 } | |
1543 { | |
1544 E T7q, T7r, T6Z, T70; | |
1545 T7q = T42 - T3X; | |
1546 T7r = T5a - T5b; | |
1547 T7s = T7q - T7r; | |
1548 T7B = T7r + T7q; | |
1549 T6Z = Th - Tu; | |
1550 T70 = T4V - T4W; | |
1551 T71 = T6Z - T70; | |
1552 T8F = T6Z + T70; | |
1553 } | |
1554 } | |
1555 { | |
1556 E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t; | |
1557 E T52; | |
1558 { | |
1559 E T13, T4j, T19, T4f; | |
1560 { | |
1561 E T11, T12, T17, T18; | |
1562 T11 = Ip[WS(rs, 15)]; | |
1563 T12 = Im[WS(rs, 15)]; | |
1564 T13 = T11 - T12; | |
1565 T4j = T11 + T12; | |
1566 T17 = Rp[WS(rs, 15)]; | |
1567 T18 = Rm[WS(rs, 15)]; | |
1568 T19 = T17 + T18; | |
1569 T4f = T17 - T18; | |
1570 } | |
1571 T1a = FNMS(T16, T19, T10 * T13); | |
1572 T5h = FNMS(T4i, T4f, T4e * T4j); | |
1573 T4k = FMA(T4e, T4f, T4i * T4j); | |
1574 T4Z = FMA(T10, T19, T16 * T13); | |
1575 } | |
1576 { | |
1577 E T1L, T4x, T1P, T4v; | |
1578 { | |
1579 E T1J, T1K, T1N, T1O; | |
1580 T1J = Ip[WS(rs, 11)]; | |
1581 T1K = Im[WS(rs, 11)]; | |
1582 T1L = T1J - T1K; | |
1583 T4x = T1J + T1K; | |
1584 T1N = Rp[WS(rs, 11)]; | |
1585 T1O = Rm[WS(rs, 11)]; | |
1586 T1P = T1N + T1O; | |
1587 T4v = T1N - T1O; | |
1588 } | |
1589 T1Q = FNMS(T1M, T1P, T1I * T1L); | |
1590 T5l = FNMS(T4w, T4v, T4u * T4x); | |
1591 T4y = FMA(T4u, T4v, T4w * T4x); | |
1592 T53 = FMA(T1I, T1P, T1M * T1L); | |
1593 } | |
1594 { | |
1595 E T1m, T4o, T1q, T4m; | |
1596 { | |
1597 E T1k, T1l, T1o, T1p; | |
1598 T1k = Ip[WS(rs, 7)]; | |
1599 T1l = Im[WS(rs, 7)]; | |
1600 T1m = T1k - T1l; | |
1601 T4o = T1k + T1l; | |
1602 T1o = Rp[WS(rs, 7)]; | |
1603 T1p = Rm[WS(rs, 7)]; | |
1604 T1q = T1o + T1p; | |
1605 T4m = T1o - T1p; | |
1606 } | |
1607 T1r = FNMS(T1n, T1q, T1j * T1m); | |
1608 T5i = FNMS(T4n, T4m, T4l * T4o); | |
1609 T4p = FMA(T4l, T4m, T4n * T4o); | |
1610 T50 = FMA(T1j, T1q, T1n * T1m); | |
1611 } | |
1612 { | |
1613 E T1y, T4s, T1E, T4r; | |
1614 { | |
1615 E T1w, T1x, T1C, T1D; | |
1616 T1w = Ip[WS(rs, 3)]; | |
1617 T1x = Im[WS(rs, 3)]; | |
1618 T1y = T1w - T1x; | |
1619 T4s = T1w + T1x; | |
1620 T1C = Rp[WS(rs, 3)]; | |
1621 T1D = Rm[WS(rs, 3)]; | |
1622 T1E = T1C + T1D; | |
1623 T4r = T1C - T1D; | |
1624 } | |
1625 T1F = FNMS(T1B, T1E, T1v * T1y); | |
1626 T5k = FNMS(T26, T4r, T23 * T4s); | |
1627 T4t = FMA(T23, T4r, T26 * T4s); | |
1628 T52 = FMA(T1v, T1E, T1B * T1y); | |
1629 } | |
1630 T1s = T1a + T1r; | |
1631 T1R = T1F + T1Q; | |
1632 T65 = T1s - T1R; | |
1633 T51 = T4Z + T50; | |
1634 T54 = T52 + T53; | |
1635 T64 = T51 - T54; | |
1636 { | |
1637 E T4q, T4z, T7E, T7F; | |
1638 T4q = T4k + T4p; | |
1639 T4z = T4t + T4y; | |
1640 T4A = T4q + T4z; | |
1641 T6g = T4z - T4q; | |
1642 T7E = T5h - T5i; | |
1643 T7F = T4y - T4t; | |
1644 T7G = T7E + T7F; | |
1645 T8U = T7E - T7F; | |
1646 } | |
1647 { | |
1648 E T5j, T5m, T79, T7a; | |
1649 T5j = T5h + T5i; | |
1650 T5m = T5k + T5l; | |
1651 T5n = T5j + T5m; | |
1652 T6d = T5j - T5m; | |
1653 T79 = T4Z - T50; | |
1654 T7a = T1F - T1Q; | |
1655 T7b = T79 + T7a; | |
1656 T8J = T79 - T7a; | |
1657 } | |
1658 { | |
1659 E T7x, T7y, T76, T77; | |
1660 T7x = T4p - T4k; | |
1661 T7y = T5k - T5l; | |
1662 T7z = T7x - T7y; | |
1663 T8R = T7x + T7y; | |
1664 T76 = T1a - T1r; | |
1665 T77 = T52 - T53; | |
1666 T78 = T76 - T77; | |
1667 T8I = T76 + T77; | |
1668 } | |
1669 } | |
1670 { | |
1671 E T1T, T5S, T5M, T5W, T5P, T5X, T3a, T5I, T4C, T58, T56, T5H, T5E, T5G, T4R; | |
1672 E T5R; | |
1673 { | |
1674 E TX, T1S, T5K, T5L; | |
1675 TX = Tv + TW; | |
1676 T1S = T1s + T1R; | |
1677 T1T = TX + T1S; | |
1678 T5S = TX - T1S; | |
1679 T5K = T5n - T5g; | |
1680 T5L = T4b - T4A; | |
1681 T5M = T5K + T5L; | |
1682 T5W = T5K - T5L; | |
1683 } | |
1684 { | |
1685 E T5N, T5O, T2A, T39; | |
1686 T5N = T3T + T3A; | |
1687 T5O = T5C - T5v; | |
1688 T5P = T5N - T5O; | |
1689 T5X = T5N + T5O; | |
1690 T2A = T2g + T2z; | |
1691 T39 = T2T + T38; | |
1692 T3a = T2A + T39; | |
1693 T5I = T39 - T2A; | |
1694 } | |
1695 { | |
1696 E T3U, T4B, T4Y, T55; | |
1697 T3U = T3A - T3T; | |
1698 T4B = T4b + T4A; | |
1699 T4C = T3U - T4B; | |
1700 T58 = T4B + T3U; | |
1701 T4Y = T4U + T4X; | |
1702 T55 = T51 + T54; | |
1703 T56 = T4Y + T55; | |
1704 T5H = T55 - T4Y; | |
1705 } | |
1706 { | |
1707 E T5o, T5D, T4J, T4Q; | |
1708 T5o = T5g + T5n; | |
1709 T5D = T5v + T5C; | |
1710 T5E = T5o - T5D; | |
1711 T5G = T5o + T5D; | |
1712 T4J = T4F + T4I; | |
1713 T4Q = T4M + T4P; | |
1714 T4R = T4J + T4Q; | |
1715 T5R = T4J - T4Q; | |
1716 } | |
1717 { | |
1718 E T3b, T5F, T57, T59; | |
1719 T3b = T1T + T3a; | |
1720 Ip[0] = KP500000000 * (T3b + T4C); | |
1721 Im[WS(rs, 15)] = KP500000000 * (T4C - T3b); | |
1722 T5F = T4R + T56; | |
1723 Rm[WS(rs, 15)] = KP500000000 * (T5F - T5G); | |
1724 Rp[0] = KP500000000 * (T5F + T5G); | |
1725 T57 = T4R - T56; | |
1726 Rm[WS(rs, 7)] = KP500000000 * (T57 - T58); | |
1727 Rp[WS(rs, 8)] = KP500000000 * (T57 + T58); | |
1728 T59 = T3a - T1T; | |
1729 Ip[WS(rs, 8)] = KP500000000 * (T59 + T5E); | |
1730 Im[WS(rs, 7)] = KP500000000 * (T5E - T59); | |
1731 } | |
1732 { | |
1733 E T5J, T5Q, T5Z, T60; | |
1734 T5J = KP500000000 * (T5H + T5I); | |
1735 T5Q = KP353553390 * (T5M + T5P); | |
1736 Ip[WS(rs, 4)] = T5J + T5Q; | |
1737 Im[WS(rs, 11)] = T5Q - T5J; | |
1738 T5Z = KP500000000 * (T5R + T5S); | |
1739 T60 = KP353553390 * (T5W + T5X); | |
1740 Rm[WS(rs, 11)] = T5Z - T60; | |
1741 Rp[WS(rs, 4)] = T5Z + T60; | |
1742 } | |
1743 { | |
1744 E T5T, T5U, T5V, T5Y; | |
1745 T5T = KP500000000 * (T5R - T5S); | |
1746 T5U = KP353553390 * (T5P - T5M); | |
1747 Rm[WS(rs, 3)] = T5T - T5U; | |
1748 Rp[WS(rs, 12)] = T5T + T5U; | |
1749 T5V = KP500000000 * (T5I - T5H); | |
1750 T5Y = KP353553390 * (T5W - T5X); | |
1751 Ip[WS(rs, 12)] = T5V + T5Y; | |
1752 Im[WS(rs, 3)] = T5Y - T5V; | |
1753 } | |
1754 } | |
1755 { | |
1756 E T67, T6Q, T6K, T6U, T6N, T6V, T6a, T6G, T6i, T6A, T6t, T6P, T6w, T6F, T6p; | |
1757 E T6B; | |
1758 { | |
1759 E T63, T66, T6I, T6J; | |
1760 T63 = T61 - T62; | |
1761 T66 = T64 + T65; | |
1762 T67 = KP353553390 * (T63 + T66); | |
1763 T6Q = KP353553390 * (T63 - T66); | |
1764 T6I = T6d - T6c; | |
1765 T6J = T6g - T6f; | |
1766 T6K = FMA(KP461939766, T6I, KP191341716 * T6J); | |
1767 T6U = FNMS(KP461939766, T6J, KP191341716 * T6I); | |
1768 } | |
1769 { | |
1770 E T6L, T6M, T68, T69; | |
1771 T6L = T6k - T6j; | |
1772 T6M = T6n - T6m; | |
1773 T6N = FNMS(KP461939766, T6M, KP191341716 * T6L); | |
1774 T6V = FMA(KP461939766, T6L, KP191341716 * T6M); | |
1775 T68 = T4P - T4M; | |
1776 T69 = T38 - T2T; | |
1777 T6a = KP500000000 * (T68 + T69); | |
1778 T6G = KP500000000 * (T69 - T68); | |
1779 } | |
1780 { | |
1781 E T6e, T6h, T6r, T6s; | |
1782 T6e = T6c + T6d; | |
1783 T6h = T6f + T6g; | |
1784 T6i = FMA(KP191341716, T6e, KP461939766 * T6h); | |
1785 T6A = FNMS(KP191341716, T6h, KP461939766 * T6e); | |
1786 T6r = T4F - T4I; | |
1787 T6s = T2g - T2z; | |
1788 T6t = KP500000000 * (T6r + T6s); | |
1789 T6P = KP500000000 * (T6r - T6s); | |
1790 } | |
1791 { | |
1792 E T6u, T6v, T6l, T6o; | |
1793 T6u = T62 + T61; | |
1794 T6v = T64 - T65; | |
1795 T6w = KP353553390 * (T6u + T6v); | |
1796 T6F = KP353553390 * (T6v - T6u); | |
1797 T6l = T6j + T6k; | |
1798 T6o = T6m + T6n; | |
1799 T6p = FNMS(KP191341716, T6o, KP461939766 * T6l); | |
1800 T6B = FMA(KP191341716, T6l, KP461939766 * T6o); | |
1801 } | |
1802 { | |
1803 E T6b, T6q, T6D, T6E; | |
1804 T6b = T67 + T6a; | |
1805 T6q = T6i + T6p; | |
1806 Ip[WS(rs, 2)] = T6b + T6q; | |
1807 Im[WS(rs, 13)] = T6q - T6b; | |
1808 T6D = T6t + T6w; | |
1809 T6E = T6A + T6B; | |
1810 Rm[WS(rs, 13)] = T6D - T6E; | |
1811 Rp[WS(rs, 2)] = T6D + T6E; | |
1812 } | |
1813 { | |
1814 E T6x, T6y, T6z, T6C; | |
1815 T6x = T6t - T6w; | |
1816 T6y = T6p - T6i; | |
1817 Rm[WS(rs, 5)] = T6x - T6y; | |
1818 Rp[WS(rs, 10)] = T6x + T6y; | |
1819 T6z = T6a - T67; | |
1820 T6C = T6A - T6B; | |
1821 Ip[WS(rs, 10)] = T6z + T6C; | |
1822 Im[WS(rs, 5)] = T6C - T6z; | |
1823 } | |
1824 { | |
1825 E T6H, T6O, T6X, T6Y; | |
1826 T6H = T6F + T6G; | |
1827 T6O = T6K + T6N; | |
1828 Ip[WS(rs, 6)] = T6H + T6O; | |
1829 Im[WS(rs, 9)] = T6O - T6H; | |
1830 T6X = T6P + T6Q; | |
1831 T6Y = T6U + T6V; | |
1832 Rm[WS(rs, 9)] = T6X - T6Y; | |
1833 Rp[WS(rs, 6)] = T6X + T6Y; | |
1834 } | |
1835 { | |
1836 E T6R, T6S, T6T, T6W; | |
1837 T6R = T6P - T6Q; | |
1838 T6S = T6N - T6K; | |
1839 Rm[WS(rs, 1)] = T6R - T6S; | |
1840 Rp[WS(rs, 14)] = T6R + T6S; | |
1841 T6T = T6G - T6F; | |
1842 T6W = T6U - T6V; | |
1843 Ip[WS(rs, 14)] = T6T + T6W; | |
1844 Im[WS(rs, 1)] = T6W - T6T; | |
1845 } | |
1846 } | |
1847 { | |
1848 E T7d, T8w, T7o, T8m, T8c, T8l, T89, T8v, T81, T8B, T8h, T8t, T7I, T8A, T8g; | |
1849 E T8q; | |
1850 { | |
1851 E T75, T7c, T85, T88; | |
1852 T75 = FNMS(KP191341716, T74, KP461939766 * T71); | |
1853 T7c = FMA(KP461939766, T78, KP191341716 * T7b); | |
1854 T7d = T75 + T7c; | |
1855 T8w = T75 - T7c; | |
1856 { | |
1857 E T7k, T7n, T8a, T8b; | |
1858 T7k = KP353553390 * (T7g + T7j); | |
1859 T7n = KP500000000 * (T7l - T7m); | |
1860 T7o = T7k + T7n; | |
1861 T8m = T7n - T7k; | |
1862 T8a = FMA(KP191341716, T71, KP461939766 * T74); | |
1863 T8b = FNMS(KP191341716, T78, KP461939766 * T7b); | |
1864 T8c = T8a + T8b; | |
1865 T8l = T8b - T8a; | |
1866 } | |
1867 T85 = KP500000000 * (T83 + T84); | |
1868 T88 = KP353553390 * (T86 + T87); | |
1869 T89 = T85 + T88; | |
1870 T8v = T85 - T88; | |
1871 { | |
1872 E T7T, T8r, T80, T8s, T7P, T7W; | |
1873 T7P = KP707106781 * (T7L + T7O); | |
1874 T7T = T7P + T7S; | |
1875 T8r = T7S - T7P; | |
1876 T7W = KP707106781 * (T7U + T7V); | |
1877 T80 = T7W + T7Z; | |
1878 T8s = T7Z - T7W; | |
1879 T81 = FNMS(KP097545161, T80, KP490392640 * T7T); | |
1880 T8B = FMA(KP415734806, T8r, KP277785116 * T8s); | |
1881 T8h = FMA(KP097545161, T7T, KP490392640 * T80); | |
1882 T8t = FNMS(KP415734806, T8s, KP277785116 * T8r); | |
1883 } | |
1884 { | |
1885 E T7A, T8o, T7H, T8p, T7w, T7D; | |
1886 T7w = KP707106781 * (T7s + T7v); | |
1887 T7A = T7w + T7z; | |
1888 T8o = T7z - T7w; | |
1889 T7D = KP707106781 * (T7B + T7C); | |
1890 T7H = T7D + T7G; | |
1891 T8p = T7G - T7D; | |
1892 T7I = FMA(KP490392640, T7A, KP097545161 * T7H); | |
1893 T8A = FNMS(KP415734806, T8o, KP277785116 * T8p); | |
1894 T8g = FNMS(KP097545161, T7A, KP490392640 * T7H); | |
1895 T8q = FMA(KP277785116, T8o, KP415734806 * T8p); | |
1896 } | |
1897 } | |
1898 { | |
1899 E T7p, T82, T8j, T8k; | |
1900 T7p = T7d + T7o; | |
1901 T82 = T7I + T81; | |
1902 Ip[WS(rs, 1)] = T7p + T82; | |
1903 Im[WS(rs, 14)] = T82 - T7p; | |
1904 T8j = T89 + T8c; | |
1905 T8k = T8g + T8h; | |
1906 Rm[WS(rs, 14)] = T8j - T8k; | |
1907 Rp[WS(rs, 1)] = T8j + T8k; | |
1908 } | |
1909 { | |
1910 E T8d, T8e, T8f, T8i; | |
1911 T8d = T89 - T8c; | |
1912 T8e = T81 - T7I; | |
1913 Rm[WS(rs, 6)] = T8d - T8e; | |
1914 Rp[WS(rs, 9)] = T8d + T8e; | |
1915 T8f = T7o - T7d; | |
1916 T8i = T8g - T8h; | |
1917 Ip[WS(rs, 9)] = T8f + T8i; | |
1918 Im[WS(rs, 6)] = T8i - T8f; | |
1919 } | |
1920 { | |
1921 E T8n, T8u, T8D, T8E; | |
1922 T8n = T8l + T8m; | |
1923 T8u = T8q + T8t; | |
1924 Ip[WS(rs, 5)] = T8n + T8u; | |
1925 Im[WS(rs, 10)] = T8u - T8n; | |
1926 T8D = T8v + T8w; | |
1927 T8E = T8A + T8B; | |
1928 Rm[WS(rs, 10)] = T8D - T8E; | |
1929 Rp[WS(rs, 5)] = T8D + T8E; | |
1930 } | |
1931 { | |
1932 E T8x, T8y, T8z, T8C; | |
1933 T8x = T8v - T8w; | |
1934 T8y = T8t - T8q; | |
1935 Rm[WS(rs, 2)] = T8x - T8y; | |
1936 Rp[WS(rs, 13)] = T8x + T8y; | |
1937 T8z = T8m - T8l; | |
1938 T8C = T8A - T8B; | |
1939 Ip[WS(rs, 13)] = T8z + T8C; | |
1940 Im[WS(rs, 2)] = T8C - T8z; | |
1941 } | |
1942 } | |
1943 { | |
1944 E T8L, T9u, T8O, T9k, T9a, T9j, T97, T9t, T93, T9z, T9f, T9r, T8W, T9y, T9e; | |
1945 E T9o; | |
1946 { | |
1947 E T8H, T8K, T95, T96; | |
1948 T8H = FNMS(KP461939766, T8G, KP191341716 * T8F); | |
1949 T8K = FMA(KP191341716, T8I, KP461939766 * T8J); | |
1950 T8L = T8H + T8K; | |
1951 T9u = T8H - T8K; | |
1952 { | |
1953 E T8M, T8N, T98, T99; | |
1954 T8M = KP353553390 * (T87 - T86); | |
1955 T8N = KP500000000 * (T7m + T7l); | |
1956 T8O = T8M + T8N; | |
1957 T9k = T8N - T8M; | |
1958 T98 = FMA(KP461939766, T8F, KP191341716 * T8G); | |
1959 T99 = FNMS(KP461939766, T8I, KP191341716 * T8J); | |
1960 T9a = T98 + T99; | |
1961 T9j = T99 - T98; | |
1962 } | |
1963 T95 = KP500000000 * (T83 - T84); | |
1964 T96 = KP353553390 * (T7g - T7j); | |
1965 T97 = T95 + T96; | |
1966 T9t = T95 - T96; | |
1967 { | |
1968 E T8Z, T9p, T92, T9q, T8X, T90; | |
1969 T8X = KP707106781 * (T7V - T7U); | |
1970 T8Z = T8X + T8Y; | |
1971 T9p = T8Y - T8X; | |
1972 T90 = KP707106781 * (T7L - T7O); | |
1973 T92 = T90 + T91; | |
1974 T9q = T91 - T90; | |
1975 T93 = FNMS(KP277785116, T92, KP415734806 * T8Z); | |
1976 T9z = FMA(KP490392640, T9p, KP097545161 * T9q); | |
1977 T9f = FMA(KP277785116, T8Z, KP415734806 * T92); | |
1978 T9r = FNMS(KP490392640, T9q, KP097545161 * T9p); | |
1979 } | |
1980 { | |
1981 E T8S, T9m, T8V, T9n, T8Q, T8T; | |
1982 T8Q = KP707106781 * (T7C - T7B); | |
1983 T8S = T8Q + T8R; | |
1984 T9m = T8R - T8Q; | |
1985 T8T = KP707106781 * (T7s - T7v); | |
1986 T8V = T8T + T8U; | |
1987 T9n = T8U - T8T; | |
1988 T8W = FMA(KP415734806, T8S, KP277785116 * T8V); | |
1989 T9y = FNMS(KP490392640, T9m, KP097545161 * T9n); | |
1990 T9e = FNMS(KP277785116, T8S, KP415734806 * T8V); | |
1991 T9o = FMA(KP097545161, T9m, KP490392640 * T9n); | |
1992 } | |
1993 } | |
1994 { | |
1995 E T8P, T94, T9h, T9i; | |
1996 T8P = T8L + T8O; | |
1997 T94 = T8W + T93; | |
1998 Ip[WS(rs, 3)] = T8P + T94; | |
1999 Im[WS(rs, 12)] = T94 - T8P; | |
2000 T9h = T97 + T9a; | |
2001 T9i = T9e + T9f; | |
2002 Rm[WS(rs, 12)] = T9h - T9i; | |
2003 Rp[WS(rs, 3)] = T9h + T9i; | |
2004 } | |
2005 { | |
2006 E T9b, T9c, T9d, T9g; | |
2007 T9b = T97 - T9a; | |
2008 T9c = T93 - T8W; | |
2009 Rm[WS(rs, 4)] = T9b - T9c; | |
2010 Rp[WS(rs, 11)] = T9b + T9c; | |
2011 T9d = T8O - T8L; | |
2012 T9g = T9e - T9f; | |
2013 Ip[WS(rs, 11)] = T9d + T9g; | |
2014 Im[WS(rs, 4)] = T9g - T9d; | |
2015 } | |
2016 { | |
2017 E T9l, T9s, T9B, T9C; | |
2018 T9l = T9j + T9k; | |
2019 T9s = T9o + T9r; | |
2020 Ip[WS(rs, 7)] = T9l + T9s; | |
2021 Im[WS(rs, 8)] = T9s - T9l; | |
2022 T9B = T9t + T9u; | |
2023 T9C = T9y + T9z; | |
2024 Rm[WS(rs, 8)] = T9B - T9C; | |
2025 Rp[WS(rs, 7)] = T9B + T9C; | |
2026 } | |
2027 { | |
2028 E T9v, T9w, T9x, T9A; | |
2029 T9v = T9t - T9u; | |
2030 T9w = T9r - T9o; | |
2031 Rm[0] = T9v - T9w; | |
2032 Rp[WS(rs, 15)] = T9v + T9w; | |
2033 T9x = T9k - T9j; | |
2034 T9A = T9y - T9z; | |
2035 Ip[WS(rs, 15)] = T9x + T9A; | |
2036 Im[0] = T9A - T9x; | |
2037 } | |
2038 } | |
2039 } | |
2040 } | |
2041 } | |
2042 } | |
2043 | |
2044 static const tw_instr twinstr[] = { | |
2045 {TW_CEXP, 1, 1}, | |
2046 {TW_CEXP, 1, 3}, | |
2047 {TW_CEXP, 1, 9}, | |
2048 {TW_CEXP, 1, 27}, | |
2049 {TW_NEXT, 1, 0} | |
2050 }; | |
2051 | |
2052 static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {440, 188, 112, 0} }; | |
2053 | |
2054 void X(codelet_hc2cfdft2_32) (planner *p) { | |
2055 X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); | |
2056 } | |
2057 #endif |