Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:28 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 32 FP additions, 24 FP multiplications, | |
32 * (or, 8 additions, 0 multiplications, 24 fused multiply/add), | |
33 * 35 stack variables, 12 constants, and 18 memory accesses | |
34 */ | |
35 #include "rdft/scalar/r2cb.h" | |
36 | |
37 static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); | |
40 DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); | |
41 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
42 DK(KP176326980, +0.176326980708464973471090386868618986121633062); | |
43 DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); | |
44 DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); | |
45 DK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
46 DK(KP839099631, +0.839099631177280011763127298123181364687434283); | |
47 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
48 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
49 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
50 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
51 { | |
52 INT i; | |
53 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | |
54 E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw; | |
55 { | |
56 E Ta, T1, T2, T9; | |
57 Ta = Ci[WS(csi, 3)]; | |
58 T1 = Cr[0]; | |
59 T2 = Cr[WS(csr, 3)]; | |
60 T9 = T1 - T2; | |
61 T3 = FMA(KP2_000000000, T2, T1); | |
62 Tp = FMA(KP1_732050807, Ta, T9); | |
63 Tb = FNMS(KP1_732050807, Ta, T9); | |
64 } | |
65 { | |
66 E T4, T7, Tk, Tf, Tj, Tc; | |
67 T4 = Cr[WS(csr, 1)]; | |
68 Th = Ci[WS(csi, 1)]; | |
69 { | |
70 E T5, T6, Td, Te; | |
71 T5 = Cr[WS(csr, 4)]; | |
72 T6 = Cr[WS(csr, 2)]; | |
73 T7 = T5 + T6; | |
74 Tk = T6 - T5; | |
75 Td = Ci[WS(csi, 4)]; | |
76 Te = Ci[WS(csi, 2)]; | |
77 Tf = Td + Te; | |
78 Ti = Td - Te; | |
79 } | |
80 T8 = T4 + T7; | |
81 Tj = FNMS(KP500000000, Ti, Th); | |
82 Tl = FNMS(KP866025403, Tk, Tj); | |
83 Tq = FMA(KP866025403, Tk, Tj); | |
84 Tc = FNMS(KP500000000, T7, T4); | |
85 Tg = FNMS(KP866025403, Tf, Tc); | |
86 Tr = FMA(KP866025403, Tf, Tc); | |
87 } | |
88 R0[0] = FMA(KP2_000000000, T8, T3); | |
89 Tv = T3 - T8; | |
90 Tw = Ti + Th; | |
91 R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); | |
92 R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); | |
93 { | |
94 E To, Tm, Tn, Tu, Ts, Tt; | |
95 To = FMA(KP839099631, Tg, Tl); | |
96 Tm = FNMS(KP839099631, Tl, Tg); | |
97 Tn = FNMS(KP766044443, Tm, Tb); | |
98 R1[0] = FMA(KP1_532088886, Tm, Tb); | |
99 R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); | |
100 R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); | |
101 Tu = FMA(KP176326980, Tq, Tr); | |
102 Ts = FNMS(KP176326980, Tr, Tq); | |
103 Tt = FMA(KP984807753, Ts, Tp); | |
104 R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); | |
105 R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); | |
106 R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); | |
107 } | |
108 } | |
109 } | |
110 } | |
111 | |
112 static const kr2c_desc desc = { 9, "r2cb_9", {8, 0, 24, 0}, &GENUS }; | |
113 | |
114 void X(codelet_r2cb_9) (planner *p) { | |
115 X(kr2c_register) (p, r2cb_9, &desc); | |
116 } | |
117 | |
118 #else | |
119 | |
120 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ | |
121 | |
122 /* | |
123 * This function contains 32 FP additions, 18 FP multiplications, | |
124 * (or, 22 additions, 8 multiplications, 10 fused multiply/add), | |
125 * 35 stack variables, 12 constants, and 18 memory accesses | |
126 */ | |
127 #include "rdft/scalar/r2cb.h" | |
128 | |
129 static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
130 { | |
131 DK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
132 DK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
133 DK(KP300767466, +0.300767466360870593278543795225003852144476517); | |
134 DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); | |
135 DK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
136 DK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
137 DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); | |
138 DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); | |
139 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
140 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
141 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
142 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); | |
143 { | |
144 INT i; | |
145 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | |
146 E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; | |
147 { | |
148 E Tb, T1, T2, T9, Ta; | |
149 Ta = Ci[WS(csi, 3)]; | |
150 Tb = KP1_732050807 * Ta; | |
151 T1 = Cr[0]; | |
152 T2 = Cr[WS(csr, 3)]; | |
153 T9 = T1 - T2; | |
154 T3 = FMA(KP2_000000000, T2, T1); | |
155 Tq = T9 + Tb; | |
156 Tc = T9 - Tb; | |
157 } | |
158 { | |
159 E T4, T7, Ti, Tg, Tl, Td; | |
160 T4 = Cr[WS(csr, 1)]; | |
161 Tk = Ci[WS(csi, 1)]; | |
162 { | |
163 E T5, T6, Te, Tf; | |
164 T5 = Cr[WS(csr, 4)]; | |
165 T6 = Cr[WS(csr, 2)]; | |
166 T7 = T5 + T6; | |
167 Ti = KP866025403 * (T5 - T6); | |
168 Te = Ci[WS(csi, 4)]; | |
169 Tf = Ci[WS(csi, 2)]; | |
170 Tg = KP866025403 * (Te + Tf); | |
171 Tj = Tf - Te; | |
172 } | |
173 T8 = T4 + T7; | |
174 Tl = FMA(KP500000000, Tj, Tk); | |
175 Tm = Ti + Tl; | |
176 Ts = Tl - Ti; | |
177 Td = FNMS(KP500000000, T7, T4); | |
178 Th = Td - Tg; | |
179 Tr = Td + Tg; | |
180 } | |
181 R0[0] = FMA(KP2_000000000, T8, T3); | |
182 Tw = T3 - T8; | |
183 Tx = KP1_732050807 * (Tk - Tj); | |
184 R1[WS(rs, 1)] = Tw - Tx; | |
185 R0[WS(rs, 3)] = Tw + Tx; | |
186 { | |
187 E Tp, Tn, To, Tv, Tt, Tu; | |
188 Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); | |
189 Tn = FNMS(KP642787609, Tm, KP766044443 * Th); | |
190 To = Tc - Tn; | |
191 R1[0] = FMA(KP2_000000000, Tn, Tc); | |
192 R1[WS(rs, 3)] = To + Tp; | |
193 R0[WS(rs, 2)] = To - Tp; | |
194 Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); | |
195 Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); | |
196 Tu = Tq - Tt; | |
197 R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); | |
198 R0[WS(rs, 4)] = Tu + Tv; | |
199 R1[WS(rs, 2)] = Tu - Tv; | |
200 } | |
201 } | |
202 } | |
203 } | |
204 | |
205 static const kr2c_desc desc = { 9, "r2cb_9", {22, 8, 10, 0}, &GENUS }; | |
206 | |
207 void X(codelet_r2cb_9) (planner *p) { | |
208 X(kr2c_register) (p, r2cb_9, &desc); | |
209 } | |
210 | |
211 #endif |