comparison src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_10.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:07:28 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
29
30 /*
31 * This function contains 34 FP additions, 20 FP multiplications,
32 * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
33 * 26 stack variables, 5 constants, and 20 memory accesses
34 */
35 #include "rdft/scalar/r2cb.h"
36
37 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
40 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44 {
45 INT i;
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
47 E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj;
48 {
49 E T1, T2, Tl, Tm;
50 T1 = Cr[0];
51 T2 = Cr[WS(csr, 5)];
52 T3 = T1 - T2;
53 Tb = T1 + T2;
54 Tl = Ci[WS(csi, 2)];
55 Tm = Ci[WS(csi, 3)];
56 Tn = Tl - Tm;
57 Tu = Tl + Tm;
58 }
59 Ti = Ci[WS(csi, 4)];
60 Tj = Ci[WS(csi, 1)];
61 Tk = Ti - Tj;
62 Tv = Ti + Tj;
63 {
64 E T6, Tc, T9, Td;
65 {
66 E T4, T5, T7, T8;
67 T4 = Cr[WS(csr, 2)];
68 T5 = Cr[WS(csr, 3)];
69 T6 = T4 - T5;
70 Tc = T4 + T5;
71 T7 = Cr[WS(csr, 4)];
72 T8 = Cr[WS(csr, 1)];
73 T9 = T7 - T8;
74 Td = T7 + T8;
75 }
76 Ta = T6 + T9;
77 Ts = T6 - T9;
78 Te = Tc + Td;
79 Tg = Tc - Td;
80 }
81 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
82 R0[0] = FMA(KP2_000000000, Te, Tb);
83 {
84 E To, Tq, Th, Tp, Tf;
85 To = FNMS(KP618033988, Tn, Tk);
86 Tq = FMA(KP618033988, Tk, Tn);
87 Tf = FNMS(KP500000000, Te, Tb);
88 Th = FNMS(KP1_118033988, Tg, Tf);
89 Tp = FMA(KP1_118033988, Tg, Tf);
90 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
91 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
92 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
93 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
94 }
95 {
96 E Tw, Ty, Tt, Tx, Tr;
97 Tw = FMA(KP618033988, Tv, Tu);
98 Ty = FNMS(KP618033988, Tu, Tv);
99 Tr = FNMS(KP500000000, Ta, T3);
100 Tt = FMA(KP1_118033988, Ts, Tr);
101 Tx = FNMS(KP1_118033988, Ts, Tr);
102 R1[0] = FNMS(KP1_902113032, Tw, Tt);
103 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
104 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
105 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
106 }
107 }
108 }
109 }
110
111 static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
112
113 void X(codelet_r2cb_10) (planner *p) {
114 X(kr2c_register) (p, r2cb_10, &desc);
115 }
116
117 #else
118
119 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */
120
121 /*
122 * This function contains 34 FP additions, 14 FP multiplications,
123 * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
124 * 26 stack variables, 5 constants, and 20 memory accesses
125 */
126 #include "rdft/scalar/r2cb.h"
127
128 static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
129 {
130 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
131 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
132 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
133 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
134 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
135 {
136 INT i;
137 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
138 E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
139 {
140 E T1, T2, Tl, Tm;
141 T1 = Cr[0];
142 T2 = Cr[WS(csr, 5)];
143 T3 = T1 - T2;
144 Tb = T1 + T2;
145 Tl = Ci[WS(csi, 4)];
146 Tm = Ci[WS(csi, 1)];
147 Tn = Tl - Tm;
148 Tv = Tl + Tm;
149 }
150 Ti = Ci[WS(csi, 2)];
151 Tj = Ci[WS(csi, 3)];
152 Tk = Ti - Tj;
153 Tu = Ti + Tj;
154 {
155 E T6, Tc, T9, Td;
156 {
157 E T4, T5, T7, T8;
158 T4 = Cr[WS(csr, 2)];
159 T5 = Cr[WS(csr, 3)];
160 T6 = T4 - T5;
161 Tc = T4 + T5;
162 T7 = Cr[WS(csr, 4)];
163 T8 = Cr[WS(csr, 1)];
164 T9 = T7 - T8;
165 Td = T7 + T8;
166 }
167 Ta = T6 + T9;
168 Ts = KP1_118033988 * (T6 - T9);
169 Te = Tc + Td;
170 Tg = KP1_118033988 * (Tc - Td);
171 }
172 R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
173 R0[0] = FMA(KP2_000000000, Te, Tb);
174 {
175 E To, Tq, Th, Tp, Tf;
176 To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
177 Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
178 Tf = FNMS(KP500000000, Te, Tb);
179 Th = Tf - Tg;
180 Tp = Tg + Tf;
181 R0[WS(rs, 1)] = Th - To;
182 R0[WS(rs, 2)] = Tp + Tq;
183 R0[WS(rs, 4)] = Th + To;
184 R0[WS(rs, 3)] = Tp - Tq;
185 }
186 {
187 E Tw, Ty, Tt, Tx, Tr;
188 Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
189 Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
190 Tr = FNMS(KP500000000, Ta, T3);
191 Tt = Tr - Ts;
192 Tx = Ts + Tr;
193 R1[WS(rs, 3)] = Tt - Tw;
194 R1[WS(rs, 4)] = Tx + Ty;
195 R1[WS(rs, 1)] = Tt + Tw;
196 R1[0] = Tx - Ty;
197 }
198 }
199 }
200 }
201
202 static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
203
204 void X(codelet_r2cb_10) (planner *p) {
205 X(kr2c_register) (p, r2cb_10, &desc);
206 }
207
208 #endif