Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cb/hb_12.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:32 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */ | |
29 | |
30 /* | |
31 * This function contains 118 FP additions, 68 FP multiplications, | |
32 * (or, 72 additions, 22 multiplications, 46 fused multiply/add), | |
33 * 47 stack variables, 2 constants, and 48 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hb.h" | |
36 | |
37 static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
44 E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23; | |
45 E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD; | |
46 { | |
47 E T1, TE, TM, T6, T4, T1o, TH, T17, TL, T1a, T9, T1r; | |
48 T1 = cr[0]; | |
49 TE = ci[WS(rs, 11)]; | |
50 TM = cr[WS(rs, 6)]; | |
51 T6 = ci[WS(rs, 5)]; | |
52 { | |
53 E T2, T3, TF, TG; | |
54 T2 = cr[WS(rs, 4)]; | |
55 T3 = ci[WS(rs, 3)]; | |
56 T4 = T2 + T3; | |
57 T1o = T2 - T3; | |
58 TF = ci[WS(rs, 7)]; | |
59 TG = cr[WS(rs, 8)]; | |
60 TH = TF - TG; | |
61 T17 = TF + TG; | |
62 } | |
63 { | |
64 E TJ, TK, T7, T8; | |
65 TJ = ci[WS(rs, 9)]; | |
66 TK = cr[WS(rs, 10)]; | |
67 TL = TJ - TK; | |
68 T1a = TJ + TK; | |
69 T7 = ci[WS(rs, 1)]; | |
70 T8 = cr[WS(rs, 2)]; | |
71 T9 = T7 + T8; | |
72 T1r = T7 - T8; | |
73 } | |
74 { | |
75 E T16, T19, T1q, T1n, T5, Ta; | |
76 T16 = FNMS(KP500000000, T4, T1); | |
77 T18 = FNMS(KP866025403, T17, T16); | |
78 T20 = FMA(KP866025403, T17, T16); | |
79 T19 = FNMS(KP500000000, T9, T6); | |
80 T1b = FMA(KP866025403, T1a, T19); | |
81 T21 = FNMS(KP866025403, T1a, T19); | |
82 T1q = FMA(KP500000000, TL, TM); | |
83 T1s = FNMS(KP866025403, T1r, T1q); | |
84 T2a = FMA(KP866025403, T1r, T1q); | |
85 T1n = FNMS(KP500000000, TH, TE); | |
86 T1p = FMA(KP866025403, T1o, T1n); | |
87 T29 = FNMS(KP866025403, T1o, T1n); | |
88 TI = TE + TH; | |
89 TN = TL - TM; | |
90 TO = TI - TN; | |
91 T5 = T1 + T4; | |
92 Ta = T6 + T9; | |
93 Tb = T5 + Ta; | |
94 To = T5 - Ta; | |
95 } | |
96 } | |
97 { | |
98 E Tc, Tp, Tx, Th, Tf, T1v, Ts, T1e, Tw, T1h, Tk, T1y; | |
99 Tc = cr[WS(rs, 3)]; | |
100 Tp = ci[WS(rs, 8)]; | |
101 Tx = cr[WS(rs, 9)]; | |
102 Th = ci[WS(rs, 2)]; | |
103 { | |
104 E Td, Te, Tq, Tr; | |
105 Td = ci[WS(rs, 4)]; | |
106 Te = ci[0]; | |
107 Tf = Td + Te; | |
108 T1v = Td - Te; | |
109 Tq = cr[WS(rs, 7)]; | |
110 Tr = cr[WS(rs, 11)]; | |
111 Ts = Tq + Tr; | |
112 T1e = Tq - Tr; | |
113 } | |
114 { | |
115 E Tu, Tv, Ti, Tj; | |
116 Tu = ci[WS(rs, 10)]; | |
117 Tv = ci[WS(rs, 6)]; | |
118 Tw = Tu + Tv; | |
119 T1h = Tv - Tu; | |
120 Ti = cr[WS(rs, 1)]; | |
121 Tj = cr[WS(rs, 5)]; | |
122 Tk = Ti + Tj; | |
123 T1y = Ti - Tj; | |
124 } | |
125 { | |
126 E T1d, T1g, T1x, T1u, Tg, Tl; | |
127 T1d = FNMS(KP500000000, Tf, Tc); | |
128 T1f = FMA(KP866025403, T1e, T1d); | |
129 T23 = FNMS(KP866025403, T1e, T1d); | |
130 T1g = FNMS(KP500000000, Tk, Th); | |
131 T1i = FMA(KP866025403, T1h, T1g); | |
132 T24 = FNMS(KP866025403, T1h, T1g); | |
133 T1x = FMA(KP500000000, Tw, Tx); | |
134 T1z = FNMS(KP866025403, T1y, T1x); | |
135 T2d = FMA(KP866025403, T1y, T1x); | |
136 T1u = FMA(KP500000000, Ts, Tp); | |
137 T1w = FMA(KP866025403, T1v, T1u); | |
138 T2c = FNMS(KP866025403, T1v, T1u); | |
139 Tt = Tp - Ts; | |
140 Ty = Tw - Tx; | |
141 Tz = Tt - Ty; | |
142 Tg = Tc + Tf; | |
143 Tl = Th + Tk; | |
144 Tm = Tg + Tl; | |
145 TD = Tg - Tl; | |
146 } | |
147 } | |
148 cr[0] = Tb + Tm; | |
149 { | |
150 E TA, TP, TB, TQ, Tn, TC; | |
151 TA = To - Tz; | |
152 TP = TD + TO; | |
153 Tn = W[16]; | |
154 TB = Tn * TA; | |
155 TQ = Tn * TP; | |
156 TC = W[17]; | |
157 cr[WS(rs, 9)] = FNMS(TC, TP, TB); | |
158 ci[WS(rs, 9)] = FMA(TC, TA, TQ); | |
159 } | |
160 { | |
161 E TS, TV, TT, TW, TR, TU; | |
162 TS = To + Tz; | |
163 TV = TO - TD; | |
164 TR = W[4]; | |
165 TT = TR * TS; | |
166 TW = TR * TV; | |
167 TU = W[5]; | |
168 cr[WS(rs, 3)] = FNMS(TU, TV, TT); | |
169 ci[WS(rs, 3)] = FMA(TU, TS, TW); | |
170 } | |
171 { | |
172 E T11, T12, T13, TX, TZ, T10, T14, TY; | |
173 T11 = TI + TN; | |
174 T12 = Tt + Ty; | |
175 T13 = T11 - T12; | |
176 TY = Tb - Tm; | |
177 TX = W[10]; | |
178 TZ = TX * TY; | |
179 T10 = W[11]; | |
180 T14 = T10 * TY; | |
181 ci[0] = T11 + T12; | |
182 ci[WS(rs, 6)] = FMA(TX, T13, T14); | |
183 cr[WS(rs, 6)] = FNMS(T10, T13, TZ); | |
184 } | |
185 { | |
186 E T1k, T1E, T1B, T1H; | |
187 { | |
188 E T1c, T1j, T1t, T1A; | |
189 T1c = T18 + T1b; | |
190 T1j = T1f + T1i; | |
191 T1k = T1c - T1j; | |
192 T1E = T1c + T1j; | |
193 T1t = T1p - T1s; | |
194 T1A = T1w - T1z; | |
195 T1B = T1t - T1A; | |
196 T1H = T1t + T1A; | |
197 } | |
198 { | |
199 E T15, T1l, T1m, T1C; | |
200 T15 = W[18]; | |
201 T1l = T15 * T1k; | |
202 T1m = W[19]; | |
203 T1C = T1m * T1k; | |
204 cr[WS(rs, 10)] = FNMS(T1m, T1B, T1l); | |
205 ci[WS(rs, 10)] = FMA(T15, T1B, T1C); | |
206 } | |
207 { | |
208 E T1D, T1F, T1G, T1I; | |
209 T1D = W[6]; | |
210 T1F = T1D * T1E; | |
211 T1G = W[7]; | |
212 T1I = T1G * T1E; | |
213 cr[WS(rs, 4)] = FNMS(T1G, T1H, T1F); | |
214 ci[WS(rs, 4)] = FMA(T1D, T1H, T1I); | |
215 } | |
216 } | |
217 { | |
218 E T26, T2i, T2f, T2l; | |
219 { | |
220 E T22, T25, T2b, T2e; | |
221 T22 = T20 + T21; | |
222 T25 = T23 + T24; | |
223 T26 = T22 - T25; | |
224 T2i = T22 + T25; | |
225 T2b = T29 - T2a; | |
226 T2e = T2c - T2d; | |
227 T2f = T2b - T2e; | |
228 T2l = T2b + T2e; | |
229 } | |
230 { | |
231 E T1Z, T27, T28, T2g; | |
232 T1Z = W[2]; | |
233 T27 = T1Z * T26; | |
234 T28 = W[3]; | |
235 T2g = T28 * T26; | |
236 cr[WS(rs, 2)] = FNMS(T28, T2f, T27); | |
237 ci[WS(rs, 2)] = FMA(T1Z, T2f, T2g); | |
238 } | |
239 { | |
240 E T2h, T2j, T2k, T2m; | |
241 T2h = W[14]; | |
242 T2j = T2h * T2i; | |
243 T2k = W[15]; | |
244 T2m = T2k * T2i; | |
245 cr[WS(rs, 8)] = FNMS(T2k, T2l, T2j); | |
246 ci[WS(rs, 8)] = FMA(T2h, T2l, T2m); | |
247 } | |
248 } | |
249 { | |
250 E T2q, T2y, T2v, T2B; | |
251 { | |
252 E T2o, T2p, T2t, T2u; | |
253 T2o = T20 - T21; | |
254 T2p = T2c + T2d; | |
255 T2q = T2o - T2p; | |
256 T2y = T2o + T2p; | |
257 T2t = T29 + T2a; | |
258 T2u = T23 - T24; | |
259 T2v = T2t + T2u; | |
260 T2B = T2t - T2u; | |
261 } | |
262 { | |
263 E T2r, T2w, T2n, T2s; | |
264 T2n = W[8]; | |
265 T2r = T2n * T2q; | |
266 T2w = T2n * T2v; | |
267 T2s = W[9]; | |
268 cr[WS(rs, 5)] = FNMS(T2s, T2v, T2r); | |
269 ci[WS(rs, 5)] = FMA(T2s, T2q, T2w); | |
270 } | |
271 { | |
272 E T2z, T2C, T2x, T2A; | |
273 T2x = W[20]; | |
274 T2z = T2x * T2y; | |
275 T2C = T2x * T2B; | |
276 T2A = W[21]; | |
277 cr[WS(rs, 11)] = FNMS(T2A, T2B, T2z); | |
278 ci[WS(rs, 11)] = FMA(T2A, T2y, T2C); | |
279 } | |
280 } | |
281 { | |
282 E T1M, T1U, T1R, T1X; | |
283 { | |
284 E T1K, T1L, T1P, T1Q; | |
285 T1K = T18 - T1b; | |
286 T1L = T1w + T1z; | |
287 T1M = T1K - T1L; | |
288 T1U = T1K + T1L; | |
289 T1P = T1p + T1s; | |
290 T1Q = T1f - T1i; | |
291 T1R = T1P + T1Q; | |
292 T1X = T1P - T1Q; | |
293 } | |
294 { | |
295 E T1N, T1S, T1J, T1O; | |
296 T1J = W[0]; | |
297 T1N = T1J * T1M; | |
298 T1S = T1J * T1R; | |
299 T1O = W[1]; | |
300 cr[WS(rs, 1)] = FNMS(T1O, T1R, T1N); | |
301 ci[WS(rs, 1)] = FMA(T1O, T1M, T1S); | |
302 } | |
303 { | |
304 E T1V, T1Y, T1T, T1W; | |
305 T1T = W[12]; | |
306 T1V = T1T * T1U; | |
307 T1Y = T1T * T1X; | |
308 T1W = W[13]; | |
309 cr[WS(rs, 7)] = FNMS(T1W, T1X, T1V); | |
310 ci[WS(rs, 7)] = FMA(T1W, T1U, T1Y); | |
311 } | |
312 } | |
313 } | |
314 } | |
315 } | |
316 | |
317 static const tw_instr twinstr[] = { | |
318 {TW_FULL, 1, 12}, | |
319 {TW_NEXT, 1, 0} | |
320 }; | |
321 | |
322 static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, {72, 22, 46, 0} }; | |
323 | |
324 void X(codelet_hb_12) (planner *p) { | |
325 X(khc2hc_register) (p, hb_12, &desc); | |
326 } | |
327 #else | |
328 | |
329 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */ | |
330 | |
331 /* | |
332 * This function contains 118 FP additions, 60 FP multiplications, | |
333 * (or, 88 additions, 30 multiplications, 30 fused multiply/add), | |
334 * 39 stack variables, 2 constants, and 48 memory accesses | |
335 */ | |
336 #include "rdft/scalar/hb.h" | |
337 | |
338 static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
339 { | |
340 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
341 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
342 { | |
343 INT m; | |
344 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | |
345 E T5, TH, T12, T1M, T1i, T1U, Tg, Tt, T19, T1X, T1p, T1P, Ta, TM, T15; | |
346 E T1N, T1l, T1V, Tl, Ty, T1c, T1Y, T1s, T1Q; | |
347 { | |
348 E T1, TD, T4, T1g, TG, T11, T10, T1h; | |
349 T1 = cr[0]; | |
350 TD = ci[WS(rs, 11)]; | |
351 { | |
352 E T2, T3, TE, TF; | |
353 T2 = cr[WS(rs, 4)]; | |
354 T3 = ci[WS(rs, 3)]; | |
355 T4 = T2 + T3; | |
356 T1g = KP866025403 * (T2 - T3); | |
357 TE = ci[WS(rs, 7)]; | |
358 TF = cr[WS(rs, 8)]; | |
359 TG = TE - TF; | |
360 T11 = KP866025403 * (TE + TF); | |
361 } | |
362 T5 = T1 + T4; | |
363 TH = TD + TG; | |
364 T10 = FNMS(KP500000000, T4, T1); | |
365 T12 = T10 - T11; | |
366 T1M = T10 + T11; | |
367 T1h = FNMS(KP500000000, TG, TD); | |
368 T1i = T1g + T1h; | |
369 T1U = T1h - T1g; | |
370 } | |
371 { | |
372 E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n; | |
373 Tc = cr[WS(rs, 3)]; | |
374 Tp = ci[WS(rs, 8)]; | |
375 { | |
376 E Td, Te, Tq, Tr; | |
377 Td = ci[WS(rs, 4)]; | |
378 Te = ci[0]; | |
379 Tf = Td + Te; | |
380 T17 = KP866025403 * (Td - Te); | |
381 Tq = cr[WS(rs, 7)]; | |
382 Tr = cr[WS(rs, 11)]; | |
383 Ts = Tq + Tr; | |
384 T1o = KP866025403 * (Tq - Tr); | |
385 } | |
386 Tg = Tc + Tf; | |
387 Tt = Tp - Ts; | |
388 T18 = FMA(KP500000000, Ts, Tp); | |
389 T19 = T17 + T18; | |
390 T1X = T18 - T17; | |
391 T1n = FNMS(KP500000000, Tf, Tc); | |
392 T1p = T1n + T1o; | |
393 T1P = T1n - T1o; | |
394 } | |
395 { | |
396 E T6, TL, T9, T1j, TK, T14, T13, T1k; | |
397 T6 = ci[WS(rs, 5)]; | |
398 TL = cr[WS(rs, 6)]; | |
399 { | |
400 E T7, T8, TI, TJ; | |
401 T7 = ci[WS(rs, 1)]; | |
402 T8 = cr[WS(rs, 2)]; | |
403 T9 = T7 + T8; | |
404 T1j = KP866025403 * (T7 - T8); | |
405 TI = ci[WS(rs, 9)]; | |
406 TJ = cr[WS(rs, 10)]; | |
407 TK = TI - TJ; | |
408 T14 = KP866025403 * (TI + TJ); | |
409 } | |
410 Ta = T6 + T9; | |
411 TM = TK - TL; | |
412 T13 = FNMS(KP500000000, T9, T6); | |
413 T15 = T13 + T14; | |
414 T1N = T13 - T14; | |
415 T1k = FMA(KP500000000, TK, TL); | |
416 T1l = T1j - T1k; | |
417 T1V = T1j + T1k; | |
418 } | |
419 { | |
420 E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q; | |
421 Th = ci[WS(rs, 2)]; | |
422 Tx = cr[WS(rs, 9)]; | |
423 { | |
424 E Ti, Tj, Tu, Tv; | |
425 Ti = cr[WS(rs, 1)]; | |
426 Tj = cr[WS(rs, 5)]; | |
427 Tk = Ti + Tj; | |
428 T1a = KP866025403 * (Ti - Tj); | |
429 Tu = ci[WS(rs, 10)]; | |
430 Tv = ci[WS(rs, 6)]; | |
431 Tw = Tu + Tv; | |
432 T1r = KP866025403 * (Tv - Tu); | |
433 } | |
434 Tl = Th + Tk; | |
435 Ty = Tw - Tx; | |
436 T1b = FMA(KP500000000, Tw, Tx); | |
437 T1c = T1a - T1b; | |
438 T1Y = T1a + T1b; | |
439 T1q = FNMS(KP500000000, Tk, Th); | |
440 T1s = T1q + T1r; | |
441 T1Q = T1q - T1r; | |
442 } | |
443 { | |
444 E Tb, Tm, TU, TW, TX, TY, TT, TV; | |
445 Tb = T5 + Ta; | |
446 Tm = Tg + Tl; | |
447 TU = Tb - Tm; | |
448 TW = TH + TM; | |
449 TX = Tt + Ty; | |
450 TY = TW - TX; | |
451 cr[0] = Tb + Tm; | |
452 ci[0] = TW + TX; | |
453 TT = W[10]; | |
454 TV = W[11]; | |
455 cr[WS(rs, 6)] = FNMS(TV, TY, TT * TU); | |
456 ci[WS(rs, 6)] = FMA(TV, TU, TT * TY); | |
457 } | |
458 { | |
459 E TA, TQ, TO, TS; | |
460 { | |
461 E To, Tz, TC, TN; | |
462 To = T5 - Ta; | |
463 Tz = Tt - Ty; | |
464 TA = To - Tz; | |
465 TQ = To + Tz; | |
466 TC = Tg - Tl; | |
467 TN = TH - TM; | |
468 TO = TC + TN; | |
469 TS = TN - TC; | |
470 } | |
471 { | |
472 E Tn, TB, TP, TR; | |
473 Tn = W[16]; | |
474 TB = W[17]; | |
475 cr[WS(rs, 9)] = FNMS(TB, TO, Tn * TA); | |
476 ci[WS(rs, 9)] = FMA(Tn, TO, TB * TA); | |
477 TP = W[4]; | |
478 TR = W[5]; | |
479 cr[WS(rs, 3)] = FNMS(TR, TS, TP * TQ); | |
480 ci[WS(rs, 3)] = FMA(TP, TS, TR * TQ); | |
481 } | |
482 } | |
483 { | |
484 E T28, T2e, T2c, T2g; | |
485 { | |
486 E T26, T27, T2a, T2b; | |
487 T26 = T1M - T1N; | |
488 T27 = T1X + T1Y; | |
489 T28 = T26 - T27; | |
490 T2e = T26 + T27; | |
491 T2a = T1U + T1V; | |
492 T2b = T1P - T1Q; | |
493 T2c = T2a + T2b; | |
494 T2g = T2a - T2b; | |
495 } | |
496 { | |
497 E T25, T29, T2d, T2f; | |
498 T25 = W[8]; | |
499 T29 = W[9]; | |
500 cr[WS(rs, 5)] = FNMS(T29, T2c, T25 * T28); | |
501 ci[WS(rs, 5)] = FMA(T25, T2c, T29 * T28); | |
502 T2d = W[20]; | |
503 T2f = W[21]; | |
504 cr[WS(rs, 11)] = FNMS(T2f, T2g, T2d * T2e); | |
505 ci[WS(rs, 11)] = FMA(T2d, T2g, T2f * T2e); | |
506 } | |
507 } | |
508 { | |
509 E T1S, T22, T20, T24; | |
510 { | |
511 E T1O, T1R, T1W, T1Z; | |
512 T1O = T1M + T1N; | |
513 T1R = T1P + T1Q; | |
514 T1S = T1O - T1R; | |
515 T22 = T1O + T1R; | |
516 T1W = T1U - T1V; | |
517 T1Z = T1X - T1Y; | |
518 T20 = T1W - T1Z; | |
519 T24 = T1W + T1Z; | |
520 } | |
521 { | |
522 E T1L, T1T, T21, T23; | |
523 T1L = W[2]; | |
524 T1T = W[3]; | |
525 cr[WS(rs, 2)] = FNMS(T1T, T20, T1L * T1S); | |
526 ci[WS(rs, 2)] = FMA(T1T, T1S, T1L * T20); | |
527 T21 = W[14]; | |
528 T23 = W[15]; | |
529 cr[WS(rs, 8)] = FNMS(T23, T24, T21 * T22); | |
530 ci[WS(rs, 8)] = FMA(T23, T22, T21 * T24); | |
531 } | |
532 } | |
533 { | |
534 E T1C, T1I, T1G, T1K; | |
535 { | |
536 E T1A, T1B, T1E, T1F; | |
537 T1A = T12 + T15; | |
538 T1B = T1p + T1s; | |
539 T1C = T1A - T1B; | |
540 T1I = T1A + T1B; | |
541 T1E = T1i + T1l; | |
542 T1F = T19 + T1c; | |
543 T1G = T1E - T1F; | |
544 T1K = T1E + T1F; | |
545 } | |
546 { | |
547 E T1z, T1D, T1H, T1J; | |
548 T1z = W[18]; | |
549 T1D = W[19]; | |
550 cr[WS(rs, 10)] = FNMS(T1D, T1G, T1z * T1C); | |
551 ci[WS(rs, 10)] = FMA(T1D, T1C, T1z * T1G); | |
552 T1H = W[6]; | |
553 T1J = W[7]; | |
554 cr[WS(rs, 4)] = FNMS(T1J, T1K, T1H * T1I); | |
555 ci[WS(rs, 4)] = FMA(T1J, T1I, T1H * T1K); | |
556 } | |
557 } | |
558 { | |
559 E T1e, T1w, T1u, T1y; | |
560 { | |
561 E T16, T1d, T1m, T1t; | |
562 T16 = T12 - T15; | |
563 T1d = T19 - T1c; | |
564 T1e = T16 - T1d; | |
565 T1w = T16 + T1d; | |
566 T1m = T1i - T1l; | |
567 T1t = T1p - T1s; | |
568 T1u = T1m + T1t; | |
569 T1y = T1m - T1t; | |
570 } | |
571 { | |
572 E TZ, T1f, T1v, T1x; | |
573 TZ = W[0]; | |
574 T1f = W[1]; | |
575 cr[WS(rs, 1)] = FNMS(T1f, T1u, TZ * T1e); | |
576 ci[WS(rs, 1)] = FMA(TZ, T1u, T1f * T1e); | |
577 T1v = W[12]; | |
578 T1x = W[13]; | |
579 cr[WS(rs, 7)] = FNMS(T1x, T1y, T1v * T1w); | |
580 ci[WS(rs, 7)] = FMA(T1v, T1y, T1x * T1w); | |
581 } | |
582 } | |
583 } | |
584 } | |
585 } | |
586 | |
587 static const tw_instr twinstr[] = { | |
588 {TW_FULL, 1, 12}, | |
589 {TW_NEXT, 1, 0} | |
590 }; | |
591 | |
592 static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, {88, 30, 30, 0} }; | |
593 | |
594 void X(codelet_hb_12) (planner *p) { | |
595 X(khc2hc_register) (p, hb_12, &desc); | |
596 } | |
597 #endif |