Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cb/hb_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:32 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include rdft/scalar/hb.h */ | |
29 | |
30 /* | |
31 * This function contains 102 FP additions, 72 FP multiplications, | |
32 * (or, 48 additions, 18 multiplications, 54 fused multiply/add), | |
33 * 47 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hb.h" | |
36 | |
37 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | |
46 E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J; | |
47 E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG; | |
48 TF = ci[WS(rs, 9)]; | |
49 TG = cr[WS(rs, 5)]; | |
50 TH = TF - TG; | |
51 T1B = TF + TG; | |
52 { | |
53 E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r; | |
54 { | |
55 E Tn, To, Tx, Ty; | |
56 Tn = ci[WS(rs, 5)]; | |
57 To = cr[WS(rs, 9)]; | |
58 Tp = Tn - To; | |
59 T1u = Tn + To; | |
60 Tx = ci[WS(rs, 6)]; | |
61 Ty = cr[WS(rs, 8)]; | |
62 Tz = Tx - Ty; | |
63 T1s = Tx + Ty; | |
64 } | |
65 { | |
66 E Tq, Tr, Tu, Tv; | |
67 Tq = ci[WS(rs, 8)]; | |
68 Tr = cr[WS(rs, 6)]; | |
69 Ts = Tq - Tr; | |
70 T1v = Tq + Tr; | |
71 Tu = ci[WS(rs, 7)]; | |
72 Tv = cr[WS(rs, 7)]; | |
73 Tw = Tu - Tv; | |
74 T1r = Tu + Tv; | |
75 } | |
76 { | |
77 E Tt, TA, T1C, T1D; | |
78 Tt = Tp - Ts; | |
79 TA = Tw - Tz; | |
80 TB = FNMS(KP618033988, TA, Tt); | |
81 T11 = FMA(KP618033988, Tt, TA); | |
82 T1C = T1r - T1s; | |
83 T1D = T1u - T1v; | |
84 T1E = T1C + T1D; | |
85 T1G = T1C - T1D; | |
86 } | |
87 { | |
88 E TI, TJ, T1t, T1w; | |
89 TI = Tw + Tz; | |
90 TJ = Tp + Ts; | |
91 TK = TI + TJ; | |
92 TM = TI - TJ; | |
93 T1t = T1r + T1s; | |
94 T1w = T1u + T1v; | |
95 T1x = FMA(KP618033988, T1w, T1t); | |
96 T1V = FNMS(KP618033988, T1t, T1w); | |
97 } | |
98 } | |
99 { | |
100 E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2; | |
101 T1 = cr[0]; | |
102 T2 = ci[WS(rs, 4)]; | |
103 T3 = T1 + T2; | |
104 T1g = T1 - T2; | |
105 { | |
106 E Tb, Tc, Te, Tf; | |
107 Tb = cr[WS(rs, 4)]; | |
108 Tc = ci[0]; | |
109 Td = Tb + Tc; | |
110 T1k = Tb - Tc; | |
111 Te = ci[WS(rs, 3)]; | |
112 Tf = cr[WS(rs, 1)]; | |
113 Tg = Te + Tf; | |
114 T1l = Te - Tf; | |
115 } | |
116 Th = Td + Tg; | |
117 T1m = T1k + T1l; | |
118 { | |
119 E T4, T5, T7, T8; | |
120 T4 = cr[WS(rs, 2)]; | |
121 T5 = ci[WS(rs, 2)]; | |
122 T6 = T4 + T5; | |
123 T1h = T4 - T5; | |
124 T7 = ci[WS(rs, 1)]; | |
125 T8 = cr[WS(rs, 3)]; | |
126 T9 = T7 + T8; | |
127 T1i = T7 - T8; | |
128 } | |
129 Ta = T6 + T9; | |
130 T1j = T1h + T1i; | |
131 Tl = Ta - Th; | |
132 T1I = T1h - T1i; | |
133 T1J = T1k - T1l; | |
134 TO = Td - Tg; | |
135 TP = T6 - T9; | |
136 T1p = T1j - T1m; | |
137 Ti = Ta + Th; | |
138 Tk = FNMS(KP250000000, Ti, T3); | |
139 T1n = T1j + T1m; | |
140 T1o = FNMS(KP250000000, T1n, T1g); | |
141 } | |
142 cr[0] = T3 + Ti; | |
143 ci[0] = TH + TK; | |
144 { | |
145 E T2d, T29, T2b, T2c, T2e, T2a; | |
146 T2d = T1B + T1E; | |
147 T2a = T1g + T1n; | |
148 T29 = W[8]; | |
149 T2b = T29 * T2a; | |
150 T2c = W[9]; | |
151 T2e = T2c * T2a; | |
152 cr[WS(rs, 5)] = FNMS(T2c, T2d, T2b); | |
153 ci[WS(rs, 5)] = FMA(T29, T2d, T2e); | |
154 } | |
155 { | |
156 E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10; | |
157 TQ = FNMS(KP618033988, TP, TO); | |
158 T16 = FMA(KP618033988, TO, TP); | |
159 Tm = FNMS(KP559016994, Tl, Tk); | |
160 TC = FMA(KP951056516, TB, Tm); | |
161 TU = FNMS(KP951056516, TB, Tm); | |
162 TL = FNMS(KP250000000, TK, TH); | |
163 TN = FNMS(KP559016994, TM, TL); | |
164 T15 = FMA(KP559016994, TM, TL); | |
165 T10 = FMA(KP559016994, Tl, Tk); | |
166 T12 = FMA(KP951056516, T11, T10); | |
167 T1a = FNMS(KP951056516, T11, T10); | |
168 { | |
169 E TR, TE, TS, Tj, TD; | |
170 TR = FNMS(KP951056516, TQ, TN); | |
171 TE = W[3]; | |
172 TS = TE * TC; | |
173 Tj = W[2]; | |
174 TD = Tj * TC; | |
175 cr[WS(rs, 2)] = FNMS(TE, TR, TD); | |
176 ci[WS(rs, 2)] = FMA(Tj, TR, TS); | |
177 } | |
178 { | |
179 E T1d, T1c, T1e, T19, T1b; | |
180 T1d = FMA(KP951056516, T16, T15); | |
181 T1c = W[11]; | |
182 T1e = T1c * T1a; | |
183 T19 = W[10]; | |
184 T1b = T19 * T1a; | |
185 cr[WS(rs, 6)] = FNMS(T1c, T1d, T1b); | |
186 ci[WS(rs, 6)] = FMA(T19, T1d, T1e); | |
187 } | |
188 { | |
189 E TX, TW, TY, TT, TV; | |
190 TX = FMA(KP951056516, TQ, TN); | |
191 TW = W[15]; | |
192 TY = TW * TU; | |
193 TT = W[14]; | |
194 TV = TT * TU; | |
195 cr[WS(rs, 8)] = FNMS(TW, TX, TV); | |
196 ci[WS(rs, 8)] = FMA(TT, TX, TY); | |
197 } | |
198 { | |
199 E T17, T14, T18, TZ, T13; | |
200 T17 = FNMS(KP951056516, T16, T15); | |
201 T14 = W[7]; | |
202 T18 = T14 * T12; | |
203 TZ = W[6]; | |
204 T13 = TZ * T12; | |
205 cr[WS(rs, 4)] = FNMS(T14, T17, T13); | |
206 ci[WS(rs, 4)] = FMA(TZ, T17, T18); | |
207 } | |
208 } | |
209 { | |
210 E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U; | |
211 T1K = FMA(KP618033988, T1J, T1I); | |
212 T20 = FNMS(KP618033988, T1I, T1J); | |
213 T1q = FMA(KP559016994, T1p, T1o); | |
214 T1y = FNMS(KP951056516, T1x, T1q); | |
215 T1O = FMA(KP951056516, T1x, T1q); | |
216 T1F = FNMS(KP250000000, T1E, T1B); | |
217 T1H = FMA(KP559016994, T1G, T1F); | |
218 T1Z = FNMS(KP559016994, T1G, T1F); | |
219 T1U = FNMS(KP559016994, T1p, T1o); | |
220 T1W = FNMS(KP951056516, T1V, T1U); | |
221 T24 = FMA(KP951056516, T1V, T1U); | |
222 { | |
223 E T1L, T1A, T1M, T1f, T1z; | |
224 T1L = FMA(KP951056516, T1K, T1H); | |
225 T1A = W[1]; | |
226 T1M = T1A * T1y; | |
227 T1f = W[0]; | |
228 T1z = T1f * T1y; | |
229 cr[WS(rs, 1)] = FNMS(T1A, T1L, T1z); | |
230 ci[WS(rs, 1)] = FMA(T1f, T1L, T1M); | |
231 } | |
232 { | |
233 E T27, T26, T28, T23, T25; | |
234 T27 = FNMS(KP951056516, T20, T1Z); | |
235 T26 = W[13]; | |
236 T28 = T26 * T24; | |
237 T23 = W[12]; | |
238 T25 = T23 * T24; | |
239 cr[WS(rs, 7)] = FNMS(T26, T27, T25); | |
240 ci[WS(rs, 7)] = FMA(T23, T27, T28); | |
241 } | |
242 { | |
243 E T1R, T1Q, T1S, T1N, T1P; | |
244 T1R = FNMS(KP951056516, T1K, T1H); | |
245 T1Q = W[17]; | |
246 T1S = T1Q * T1O; | |
247 T1N = W[16]; | |
248 T1P = T1N * T1O; | |
249 cr[WS(rs, 9)] = FNMS(T1Q, T1R, T1P); | |
250 ci[WS(rs, 9)] = FMA(T1N, T1R, T1S); | |
251 } | |
252 { | |
253 E T21, T1Y, T22, T1T, T1X; | |
254 T21 = FMA(KP951056516, T20, T1Z); | |
255 T1Y = W[5]; | |
256 T22 = T1Y * T1W; | |
257 T1T = W[4]; | |
258 T1X = T1T * T1W; | |
259 cr[WS(rs, 3)] = FNMS(T1Y, T21, T1X); | |
260 ci[WS(rs, 3)] = FMA(T1T, T21, T22); | |
261 } | |
262 } | |
263 } | |
264 } | |
265 } | |
266 | |
267 static const tw_instr twinstr[] = { | |
268 {TW_FULL, 1, 10}, | |
269 {TW_NEXT, 1, 0} | |
270 }; | |
271 | |
272 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {48, 18, 54, 0} }; | |
273 | |
274 void X(codelet_hb_10) (planner *p) { | |
275 X(khc2hc_register) (p, hb_10, &desc); | |
276 } | |
277 #else | |
278 | |
279 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hb_10 -include rdft/scalar/hb.h */ | |
280 | |
281 /* | |
282 * This function contains 102 FP additions, 60 FP multiplications, | |
283 * (or, 72 additions, 30 multiplications, 30 fused multiply/add), | |
284 * 41 stack variables, 4 constants, and 40 memory accesses | |
285 */ | |
286 #include "rdft/scalar/hb.h" | |
287 | |
288 static void hb_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | |
289 { | |
290 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
291 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
292 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
293 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
294 { | |
295 INT m; | |
296 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { | |
297 E T3, T18, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, TJ, T1i, Tt, TA, T1w; | |
298 E T1v, T1p, T1E, TM, TO; | |
299 { | |
300 E T1, T2, TH, TI; | |
301 T1 = cr[0]; | |
302 T2 = ci[WS(rs, 4)]; | |
303 T3 = T1 + T2; | |
304 T18 = T1 - T2; | |
305 { | |
306 E T6, T19, Tg, T1d, T9, T1a, Td, T1c; | |
307 { | |
308 E T4, T5, Te, Tf; | |
309 T4 = cr[WS(rs, 2)]; | |
310 T5 = ci[WS(rs, 2)]; | |
311 T6 = T4 + T5; | |
312 T19 = T4 - T5; | |
313 Te = ci[WS(rs, 3)]; | |
314 Tf = cr[WS(rs, 1)]; | |
315 Tg = Te + Tf; | |
316 T1d = Te - Tf; | |
317 } | |
318 { | |
319 E T7, T8, Tb, Tc; | |
320 T7 = ci[WS(rs, 1)]; | |
321 T8 = cr[WS(rs, 3)]; | |
322 T9 = T7 + T8; | |
323 T1a = T7 - T8; | |
324 Tb = cr[WS(rs, 4)]; | |
325 Tc = ci[0]; | |
326 Td = Tb + Tc; | |
327 T1c = Tb - Tc; | |
328 } | |
329 TE = T6 - T9; | |
330 TF = Td - Tg; | |
331 T1B = T1c - T1d; | |
332 T1A = T19 - T1a; | |
333 { | |
334 E T1b, T1e, Ta, Th; | |
335 T1b = T19 + T1a; | |
336 T1e = T1c + T1d; | |
337 T1f = T1b + T1e; | |
338 T1t = KP559016994 * (T1b - T1e); | |
339 Ta = T6 + T9; | |
340 Th = Td + Tg; | |
341 Ti = Ta + Th; | |
342 Tl = KP559016994 * (Ta - Th); | |
343 } | |
344 } | |
345 TH = ci[WS(rs, 9)]; | |
346 TI = cr[WS(rs, 5)]; | |
347 TJ = TH - TI; | |
348 T1i = TH + TI; | |
349 { | |
350 E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m; | |
351 { | |
352 E Tn, To, Tx, Ty; | |
353 Tn = ci[WS(rs, 7)]; | |
354 To = cr[WS(rs, 7)]; | |
355 Tp = Tn - To; | |
356 T1j = Tn + To; | |
357 Tx = ci[WS(rs, 8)]; | |
358 Ty = cr[WS(rs, 6)]; | |
359 Tz = Tx - Ty; | |
360 T1n = Tx + Ty; | |
361 } | |
362 { | |
363 E Tq, Tr, Tu, Tv; | |
364 Tq = ci[WS(rs, 6)]; | |
365 Tr = cr[WS(rs, 8)]; | |
366 Ts = Tq - Tr; | |
367 T1k = Tq + Tr; | |
368 Tu = ci[WS(rs, 5)]; | |
369 Tv = cr[WS(rs, 9)]; | |
370 Tw = Tu - Tv; | |
371 T1m = Tu + Tv; | |
372 } | |
373 Tt = Tp - Ts; | |
374 TA = Tw - Tz; | |
375 T1w = T1m + T1n; | |
376 T1v = T1j + T1k; | |
377 { | |
378 E T1l, T1o, TK, TL; | |
379 T1l = T1j - T1k; | |
380 T1o = T1m - T1n; | |
381 T1p = T1l + T1o; | |
382 T1E = KP559016994 * (T1l - T1o); | |
383 TK = Tp + Ts; | |
384 TL = Tw + Tz; | |
385 TM = TK + TL; | |
386 TO = KP559016994 * (TK - TL); | |
387 } | |
388 } | |
389 } | |
390 cr[0] = T3 + Ti; | |
391 ci[0] = TJ + TM; | |
392 { | |
393 E T1g, T1q, T17, T1h; | |
394 T1g = T18 + T1f; | |
395 T1q = T1i + T1p; | |
396 T17 = W[8]; | |
397 T1h = W[9]; | |
398 cr[WS(rs, 5)] = FNMS(T1h, T1q, T17 * T1g); | |
399 ci[WS(rs, 5)] = FMA(T1h, T1g, T17 * T1q); | |
400 } | |
401 { | |
402 E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk; | |
403 TB = FNMS(KP951056516, TA, KP587785252 * Tt); | |
404 TG = FNMS(KP951056516, TF, KP587785252 * TE); | |
405 T11 = FMA(KP951056516, TE, KP587785252 * TF); | |
406 TX = FMA(KP951056516, Tt, KP587785252 * TA); | |
407 TN = FNMS(KP250000000, TM, TJ); | |
408 TP = TN - TO; | |
409 T10 = TO + TN; | |
410 Tk = FNMS(KP250000000, Ti, T3); | |
411 Tm = Tk - Tl; | |
412 TW = Tl + Tk; | |
413 { | |
414 E TC, TQ, Tj, TD; | |
415 TC = Tm - TB; | |
416 TQ = TG + TP; | |
417 Tj = W[2]; | |
418 TD = W[3]; | |
419 cr[WS(rs, 2)] = FNMS(TD, TQ, Tj * TC); | |
420 ci[WS(rs, 2)] = FMA(TD, TC, Tj * TQ); | |
421 } | |
422 { | |
423 E T14, T16, T13, T15; | |
424 T14 = TW - TX; | |
425 T16 = T11 + T10; | |
426 T13 = W[10]; | |
427 T15 = W[11]; | |
428 cr[WS(rs, 6)] = FNMS(T15, T16, T13 * T14); | |
429 ci[WS(rs, 6)] = FMA(T15, T14, T13 * T16); | |
430 } | |
431 { | |
432 E TS, TU, TR, TT; | |
433 TS = Tm + TB; | |
434 TU = TP - TG; | |
435 TR = W[14]; | |
436 TT = W[15]; | |
437 cr[WS(rs, 8)] = FNMS(TT, TU, TR * TS); | |
438 ci[WS(rs, 8)] = FMA(TT, TS, TR * TU); | |
439 } | |
440 { | |
441 E TY, T12, TV, TZ; | |
442 TY = TW + TX; | |
443 T12 = T10 - T11; | |
444 TV = W[6]; | |
445 TZ = W[7]; | |
446 cr[WS(rs, 4)] = FNMS(TZ, T12, TV * TY); | |
447 ci[WS(rs, 4)] = FMA(TZ, TY, TV * T12); | |
448 } | |
449 } | |
450 { | |
451 E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s; | |
452 T1x = FNMS(KP951056516, T1w, KP587785252 * T1v); | |
453 T1C = FNMS(KP951056516, T1B, KP587785252 * T1A); | |
454 T1Q = FMA(KP951056516, T1A, KP587785252 * T1B); | |
455 T1N = FMA(KP951056516, T1v, KP587785252 * T1w); | |
456 T1D = FNMS(KP250000000, T1p, T1i); | |
457 T1F = T1D - T1E; | |
458 T1R = T1E + T1D; | |
459 T1s = FNMS(KP250000000, T1f, T18); | |
460 T1u = T1s - T1t; | |
461 T1M = T1t + T1s; | |
462 { | |
463 E T1y, T1G, T1r, T1z; | |
464 T1y = T1u - T1x; | |
465 T1G = T1C + T1F; | |
466 T1r = W[12]; | |
467 T1z = W[13]; | |
468 cr[WS(rs, 7)] = FNMS(T1z, T1G, T1r * T1y); | |
469 ci[WS(rs, 7)] = FMA(T1r, T1G, T1z * T1y); | |
470 } | |
471 { | |
472 E T1U, T1W, T1T, T1V; | |
473 T1U = T1M + T1N; | |
474 T1W = T1R - T1Q; | |
475 T1T = W[16]; | |
476 T1V = W[17]; | |
477 cr[WS(rs, 9)] = FNMS(T1V, T1W, T1T * T1U); | |
478 ci[WS(rs, 9)] = FMA(T1T, T1W, T1V * T1U); | |
479 } | |
480 { | |
481 E T1I, T1K, T1H, T1J; | |
482 T1I = T1u + T1x; | |
483 T1K = T1F - T1C; | |
484 T1H = W[4]; | |
485 T1J = W[5]; | |
486 cr[WS(rs, 3)] = FNMS(T1J, T1K, T1H * T1I); | |
487 ci[WS(rs, 3)] = FMA(T1H, T1K, T1J * T1I); | |
488 } | |
489 { | |
490 E T1O, T1S, T1L, T1P; | |
491 T1O = T1M - T1N; | |
492 T1S = T1Q + T1R; | |
493 T1L = W[0]; | |
494 T1P = W[1]; | |
495 cr[WS(rs, 1)] = FNMS(T1P, T1S, T1L * T1O); | |
496 ci[WS(rs, 1)] = FMA(T1L, T1S, T1P * T1O); | |
497 } | |
498 } | |
499 } | |
500 } | |
501 } | |
502 | |
503 static const tw_instr twinstr[] = { | |
504 {TW_FULL, 1, 10}, | |
505 {TW_NEXT, 1, 0} | |
506 }; | |
507 | |
508 static const hc2hc_desc desc = { 10, "hb_10", twinstr, &GENUS, {72, 30, 30, 0} }; | |
509 | |
510 void X(codelet_hb_10) (planner *p) { | |
511 X(khc2hc_register) (p, hb_10, &desc); | |
512 } | |
513 #endif |