Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/rdft-dht.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
| author | Chris Cannam <cannam@all-day-breakfast.com> |
|---|---|
| date | Tue, 19 Nov 2019 14:52:55 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
|---|---|
| 1 /* | |
| 2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
| 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
| 4 * | |
| 5 * This program is free software; you can redistribute it and/or modify | |
| 6 * it under the terms of the GNU General Public License as published by | |
| 7 * the Free Software Foundation; either version 2 of the License, or | |
| 8 * (at your option) any later version. | |
| 9 * | |
| 10 * This program is distributed in the hope that it will be useful, | |
| 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 13 * GNU General Public License for more details. | |
| 14 * | |
| 15 * You should have received a copy of the GNU General Public License | |
| 16 * along with this program; if not, write to the Free Software | |
| 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
| 18 * | |
| 19 */ | |
| 20 | |
| 21 | |
| 22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This | |
| 23 is mainly useful because we can use Rader to compute DHTs of prime | |
| 24 sizes. It also allows us to express hc2r problems in terms of r2hc | |
| 25 (via dht-r2hc), and to do hc2r problems without destroying the input. */ | |
| 26 | |
| 27 #include "rdft/rdft.h" | |
| 28 | |
| 29 typedef struct { | |
| 30 solver super; | |
| 31 } S; | |
| 32 | |
| 33 typedef struct { | |
| 34 plan_rdft super; | |
| 35 plan *cld; | |
| 36 INT is, os; | |
| 37 INT n; | |
| 38 } P; | |
| 39 | |
| 40 static void apply_r2hc(const plan *ego_, R *I, R *O) | |
| 41 { | |
| 42 const P *ego = (const P *) ego_; | |
| 43 INT os; | |
| 44 INT i, n; | |
| 45 | |
| 46 { | |
| 47 plan_rdft *cld = (plan_rdft *) ego->cld; | |
| 48 cld->apply((plan *) cld, I, O); | |
| 49 } | |
| 50 | |
| 51 n = ego->n; | |
| 52 os = ego->os; | |
| 53 for (i = 1; i < n - i; ++i) { | |
| 54 E a, b; | |
| 55 a = K(0.5) * O[os * i]; | |
| 56 b = K(0.5) * O[os * (n - i)]; | |
| 57 O[os * i] = a + b; | |
| 58 #if FFT_SIGN == -1 | |
| 59 O[os * (n - i)] = b - a; | |
| 60 #else | |
| 61 O[os * (n - i)] = a - b; | |
| 62 #endif | |
| 63 } | |
| 64 } | |
| 65 | |
| 66 /* hc2r, destroying input as usual */ | |
| 67 static void apply_hc2r(const plan *ego_, R *I, R *O) | |
| 68 { | |
| 69 const P *ego = (const P *) ego_; | |
| 70 INT is = ego->is; | |
| 71 INT i, n = ego->n; | |
| 72 | |
| 73 for (i = 1; i < n - i; ++i) { | |
| 74 E a, b; | |
| 75 a = I[is * i]; | |
| 76 b = I[is * (n - i)]; | |
| 77 #if FFT_SIGN == -1 | |
| 78 I[is * i] = a - b; | |
| 79 I[is * (n - i)] = a + b; | |
| 80 #else | |
| 81 I[is * i] = a + b; | |
| 82 I[is * (n - i)] = a - b; | |
| 83 #endif | |
| 84 } | |
| 85 | |
| 86 { | |
| 87 plan_rdft *cld = (plan_rdft *) ego->cld; | |
| 88 cld->apply((plan *) cld, I, O); | |
| 89 } | |
| 90 } | |
| 91 | |
| 92 /* hc2r, without destroying input */ | |
| 93 static void apply_hc2r_save(const plan *ego_, R *I, R *O) | |
| 94 { | |
| 95 const P *ego = (const P *) ego_; | |
| 96 INT is = ego->is, os = ego->os; | |
| 97 INT i, n = ego->n; | |
| 98 | |
| 99 O[0] = I[0]; | |
| 100 for (i = 1; i < n - i; ++i) { | |
| 101 E a, b; | |
| 102 a = I[is * i]; | |
| 103 b = I[is * (n - i)]; | |
| 104 #if FFT_SIGN == -1 | |
| 105 O[os * i] = a - b; | |
| 106 O[os * (n - i)] = a + b; | |
| 107 #else | |
| 108 O[os * i] = a + b; | |
| 109 O[os * (n - i)] = a - b; | |
| 110 #endif | |
| 111 } | |
| 112 if (i == n - i) | |
| 113 O[os * i] = I[is * i]; | |
| 114 | |
| 115 { | |
| 116 plan_rdft *cld = (plan_rdft *) ego->cld; | |
| 117 cld->apply((plan *) cld, O, O); | |
| 118 } | |
| 119 } | |
| 120 | |
| 121 static void awake(plan *ego_, enum wakefulness wakefulness) | |
| 122 { | |
| 123 P *ego = (P *) ego_; | |
| 124 X(plan_awake)(ego->cld, wakefulness); | |
| 125 } | |
| 126 | |
| 127 static void destroy(plan *ego_) | |
| 128 { | |
| 129 P *ego = (P *) ego_; | |
| 130 X(plan_destroy_internal)(ego->cld); | |
| 131 } | |
| 132 | |
| 133 static void print(const plan *ego_, printer *p) | |
| 134 { | |
| 135 const P *ego = (const P *) ego_; | |
| 136 p->print(p, "(%s-dht-%D%(%p%))", | |
| 137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", | |
| 138 ego->n, ego->cld); | |
| 139 } | |
| 140 | |
| 141 static int applicable0(const solver *ego_, const problem *p_) | |
| 142 { | |
| 143 const problem_rdft *p = (const problem_rdft *) p_; | |
| 144 UNUSED(ego_); | |
| 145 | |
| 146 return (1 | |
| 147 && p->sz->rnk == 1 | |
| 148 && p->vecsz->rnk == 0 | |
| 149 && (p->kind[0] == R2HC || p->kind[0] == HC2R) | |
| 150 | |
| 151 /* hack: size-2 DHT etc. are defined as being equivalent | |
| 152 to size-2 R2HC in problem.c, so we need this to prevent | |
| 153 infinite loops for size 2 in EXHAUSTIVE mode: */ | |
| 154 && p->sz->dims[0].n > 2 | |
| 155 ); | |
| 156 } | |
| 157 | |
| 158 static int applicable(const solver *ego, const problem *p_, | |
| 159 const planner *plnr) | |
| 160 { | |
| 161 return (!NO_SLOWP(plnr) && applicable0(ego, p_)); | |
| 162 } | |
| 163 | |
| 164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
| 165 { | |
| 166 P *pln; | |
| 167 const problem_rdft *p; | |
| 168 problem *cldp; | |
| 169 plan *cld; | |
| 170 | |
| 171 static const plan_adt padt = { | |
| 172 X(rdft_solve), awake, print, destroy | |
| 173 }; | |
| 174 | |
| 175 if (!applicable(ego_, p_, plnr)) | |
| 176 return (plan *)0; | |
| 177 | |
| 178 p = (const problem_rdft *) p_; | |
| 179 | |
| 180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) | |
| 181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); | |
| 182 else { | |
| 183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); | |
| 184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); | |
| 185 X(tensor_destroy)(sz); | |
| 186 } | |
| 187 cld = X(mkplan_d)(plnr, cldp); | |
| 188 if (!cld) return (plan *)0; | |
| 189 | |
| 190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? | |
| 191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? | |
| 192 apply_hc2r_save : apply_hc2r)); | |
| 193 pln->n = p->sz->dims[0].n; | |
| 194 pln->is = p->sz->dims[0].is; | |
| 195 pln->os = p->sz->dims[0].os; | |
| 196 pln->cld = cld; | |
| 197 | |
| 198 pln->super.super.ops = cld->ops; | |
| 199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2); | |
| 200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2); | |
| 201 if (p->kind[0] == R2HC) | |
| 202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); | |
| 203 if (pln->super.apply == apply_hc2r_save) | |
| 204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); | |
| 205 | |
| 206 return &(pln->super.super); | |
| 207 } | |
| 208 | |
| 209 /* constructor */ | |
| 210 static solver *mksolver(void) | |
| 211 { | |
| 212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
| 213 S *slv = MKSOLVER(S, &sadt); | |
| 214 return &(slv->super); | |
| 215 } | |
| 216 | |
| 217 void X(rdft_dht_register)(planner *p) | |
| 218 { | |
| 219 REGISTER_SOLVER(p, mksolver()); | |
| 220 } |
