comparison src/fftw-3.3.8/rdft/rdft-dht.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
23 is mainly useful because we can use Rader to compute DHTs of prime
24 sizes. It also allows us to express hc2r problems in terms of r2hc
25 (via dht-r2hc), and to do hc2r problems without destroying the input. */
26
27 #include "rdft/rdft.h"
28
29 typedef struct {
30 solver super;
31 } S;
32
33 typedef struct {
34 plan_rdft super;
35 plan *cld;
36 INT is, os;
37 INT n;
38 } P;
39
40 static void apply_r2hc(const plan *ego_, R *I, R *O)
41 {
42 const P *ego = (const P *) ego_;
43 INT os;
44 INT i, n;
45
46 {
47 plan_rdft *cld = (plan_rdft *) ego->cld;
48 cld->apply((plan *) cld, I, O);
49 }
50
51 n = ego->n;
52 os = ego->os;
53 for (i = 1; i < n - i; ++i) {
54 E a, b;
55 a = K(0.5) * O[os * i];
56 b = K(0.5) * O[os * (n - i)];
57 O[os * i] = a + b;
58 #if FFT_SIGN == -1
59 O[os * (n - i)] = b - a;
60 #else
61 O[os * (n - i)] = a - b;
62 #endif
63 }
64 }
65
66 /* hc2r, destroying input as usual */
67 static void apply_hc2r(const plan *ego_, R *I, R *O)
68 {
69 const P *ego = (const P *) ego_;
70 INT is = ego->is;
71 INT i, n = ego->n;
72
73 for (i = 1; i < n - i; ++i) {
74 E a, b;
75 a = I[is * i];
76 b = I[is * (n - i)];
77 #if FFT_SIGN == -1
78 I[is * i] = a - b;
79 I[is * (n - i)] = a + b;
80 #else
81 I[is * i] = a + b;
82 I[is * (n - i)] = a - b;
83 #endif
84 }
85
86 {
87 plan_rdft *cld = (plan_rdft *) ego->cld;
88 cld->apply((plan *) cld, I, O);
89 }
90 }
91
92 /* hc2r, without destroying input */
93 static void apply_hc2r_save(const plan *ego_, R *I, R *O)
94 {
95 const P *ego = (const P *) ego_;
96 INT is = ego->is, os = ego->os;
97 INT i, n = ego->n;
98
99 O[0] = I[0];
100 for (i = 1; i < n - i; ++i) {
101 E a, b;
102 a = I[is * i];
103 b = I[is * (n - i)];
104 #if FFT_SIGN == -1
105 O[os * i] = a - b;
106 O[os * (n - i)] = a + b;
107 #else
108 O[os * i] = a + b;
109 O[os * (n - i)] = a - b;
110 #endif
111 }
112 if (i == n - i)
113 O[os * i] = I[is * i];
114
115 {
116 plan_rdft *cld = (plan_rdft *) ego->cld;
117 cld->apply((plan *) cld, O, O);
118 }
119 }
120
121 static void awake(plan *ego_, enum wakefulness wakefulness)
122 {
123 P *ego = (P *) ego_;
124 X(plan_awake)(ego->cld, wakefulness);
125 }
126
127 static void destroy(plan *ego_)
128 {
129 P *ego = (P *) ego_;
130 X(plan_destroy_internal)(ego->cld);
131 }
132
133 static void print(const plan *ego_, printer *p)
134 {
135 const P *ego = (const P *) ego_;
136 p->print(p, "(%s-dht-%D%(%p%))",
137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
138 ego->n, ego->cld);
139 }
140
141 static int applicable0(const solver *ego_, const problem *p_)
142 {
143 const problem_rdft *p = (const problem_rdft *) p_;
144 UNUSED(ego_);
145
146 return (1
147 && p->sz->rnk == 1
148 && p->vecsz->rnk == 0
149 && (p->kind[0] == R2HC || p->kind[0] == HC2R)
150
151 /* hack: size-2 DHT etc. are defined as being equivalent
152 to size-2 R2HC in problem.c, so we need this to prevent
153 infinite loops for size 2 in EXHAUSTIVE mode: */
154 && p->sz->dims[0].n > 2
155 );
156 }
157
158 static int applicable(const solver *ego, const problem *p_,
159 const planner *plnr)
160 {
161 return (!NO_SLOWP(plnr) && applicable0(ego, p_));
162 }
163
164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
165 {
166 P *pln;
167 const problem_rdft *p;
168 problem *cldp;
169 plan *cld;
170
171 static const plan_adt padt = {
172 X(rdft_solve), awake, print, destroy
173 };
174
175 if (!applicable(ego_, p_, plnr))
176 return (plan *)0;
177
178 p = (const problem_rdft *) p_;
179
180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
182 else {
183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
185 X(tensor_destroy)(sz);
186 }
187 cld = X(mkplan_d)(plnr, cldp);
188 if (!cld) return (plan *)0;
189
190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
192 apply_hc2r_save : apply_hc2r));
193 pln->n = p->sz->dims[0].n;
194 pln->is = p->sz->dims[0].is;
195 pln->os = p->sz->dims[0].os;
196 pln->cld = cld;
197
198 pln->super.super.ops = cld->ops;
199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
201 if (p->kind[0] == R2HC)
202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
203 if (pln->super.apply == apply_hc2r_save)
204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
205
206 return &(pln->super.super);
207 }
208
209 /* constructor */
210 static solver *mksolver(void)
211 {
212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
213 S *slv = MKSOLVER(S, &sadt);
214 return &(slv->super);
215 }
216
217 void X(rdft_dht_register)(planner *p)
218 {
219 REGISTER_SOLVER(p, mksolver());
220 }