Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/rdft-dht.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This | |
23 is mainly useful because we can use Rader to compute DHTs of prime | |
24 sizes. It also allows us to express hc2r problems in terms of r2hc | |
25 (via dht-r2hc), and to do hc2r problems without destroying the input. */ | |
26 | |
27 #include "rdft/rdft.h" | |
28 | |
29 typedef struct { | |
30 solver super; | |
31 } S; | |
32 | |
33 typedef struct { | |
34 plan_rdft super; | |
35 plan *cld; | |
36 INT is, os; | |
37 INT n; | |
38 } P; | |
39 | |
40 static void apply_r2hc(const plan *ego_, R *I, R *O) | |
41 { | |
42 const P *ego = (const P *) ego_; | |
43 INT os; | |
44 INT i, n; | |
45 | |
46 { | |
47 plan_rdft *cld = (plan_rdft *) ego->cld; | |
48 cld->apply((plan *) cld, I, O); | |
49 } | |
50 | |
51 n = ego->n; | |
52 os = ego->os; | |
53 for (i = 1; i < n - i; ++i) { | |
54 E a, b; | |
55 a = K(0.5) * O[os * i]; | |
56 b = K(0.5) * O[os * (n - i)]; | |
57 O[os * i] = a + b; | |
58 #if FFT_SIGN == -1 | |
59 O[os * (n - i)] = b - a; | |
60 #else | |
61 O[os * (n - i)] = a - b; | |
62 #endif | |
63 } | |
64 } | |
65 | |
66 /* hc2r, destroying input as usual */ | |
67 static void apply_hc2r(const plan *ego_, R *I, R *O) | |
68 { | |
69 const P *ego = (const P *) ego_; | |
70 INT is = ego->is; | |
71 INT i, n = ego->n; | |
72 | |
73 for (i = 1; i < n - i; ++i) { | |
74 E a, b; | |
75 a = I[is * i]; | |
76 b = I[is * (n - i)]; | |
77 #if FFT_SIGN == -1 | |
78 I[is * i] = a - b; | |
79 I[is * (n - i)] = a + b; | |
80 #else | |
81 I[is * i] = a + b; | |
82 I[is * (n - i)] = a - b; | |
83 #endif | |
84 } | |
85 | |
86 { | |
87 plan_rdft *cld = (plan_rdft *) ego->cld; | |
88 cld->apply((plan *) cld, I, O); | |
89 } | |
90 } | |
91 | |
92 /* hc2r, without destroying input */ | |
93 static void apply_hc2r_save(const plan *ego_, R *I, R *O) | |
94 { | |
95 const P *ego = (const P *) ego_; | |
96 INT is = ego->is, os = ego->os; | |
97 INT i, n = ego->n; | |
98 | |
99 O[0] = I[0]; | |
100 for (i = 1; i < n - i; ++i) { | |
101 E a, b; | |
102 a = I[is * i]; | |
103 b = I[is * (n - i)]; | |
104 #if FFT_SIGN == -1 | |
105 O[os * i] = a - b; | |
106 O[os * (n - i)] = a + b; | |
107 #else | |
108 O[os * i] = a + b; | |
109 O[os * (n - i)] = a - b; | |
110 #endif | |
111 } | |
112 if (i == n - i) | |
113 O[os * i] = I[is * i]; | |
114 | |
115 { | |
116 plan_rdft *cld = (plan_rdft *) ego->cld; | |
117 cld->apply((plan *) cld, O, O); | |
118 } | |
119 } | |
120 | |
121 static void awake(plan *ego_, enum wakefulness wakefulness) | |
122 { | |
123 P *ego = (P *) ego_; | |
124 X(plan_awake)(ego->cld, wakefulness); | |
125 } | |
126 | |
127 static void destroy(plan *ego_) | |
128 { | |
129 P *ego = (P *) ego_; | |
130 X(plan_destroy_internal)(ego->cld); | |
131 } | |
132 | |
133 static void print(const plan *ego_, printer *p) | |
134 { | |
135 const P *ego = (const P *) ego_; | |
136 p->print(p, "(%s-dht-%D%(%p%))", | |
137 ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", | |
138 ego->n, ego->cld); | |
139 } | |
140 | |
141 static int applicable0(const solver *ego_, const problem *p_) | |
142 { | |
143 const problem_rdft *p = (const problem_rdft *) p_; | |
144 UNUSED(ego_); | |
145 | |
146 return (1 | |
147 && p->sz->rnk == 1 | |
148 && p->vecsz->rnk == 0 | |
149 && (p->kind[0] == R2HC || p->kind[0] == HC2R) | |
150 | |
151 /* hack: size-2 DHT etc. are defined as being equivalent | |
152 to size-2 R2HC in problem.c, so we need this to prevent | |
153 infinite loops for size 2 in EXHAUSTIVE mode: */ | |
154 && p->sz->dims[0].n > 2 | |
155 ); | |
156 } | |
157 | |
158 static int applicable(const solver *ego, const problem *p_, | |
159 const planner *plnr) | |
160 { | |
161 return (!NO_SLOWP(plnr) && applicable0(ego, p_)); | |
162 } | |
163 | |
164 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
165 { | |
166 P *pln; | |
167 const problem_rdft *p; | |
168 problem *cldp; | |
169 plan *cld; | |
170 | |
171 static const plan_adt padt = { | |
172 X(rdft_solve), awake, print, destroy | |
173 }; | |
174 | |
175 if (!applicable(ego_, p_, plnr)) | |
176 return (plan *)0; | |
177 | |
178 p = (const problem_rdft *) p_; | |
179 | |
180 if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) | |
181 cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); | |
182 else { | |
183 tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); | |
184 cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); | |
185 X(tensor_destroy)(sz); | |
186 } | |
187 cld = X(mkplan_d)(plnr, cldp); | |
188 if (!cld) return (plan *)0; | |
189 | |
190 pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? | |
191 apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? | |
192 apply_hc2r_save : apply_hc2r)); | |
193 pln->n = p->sz->dims[0].n; | |
194 pln->is = p->sz->dims[0].is; | |
195 pln->os = p->sz->dims[0].os; | |
196 pln->cld = cld; | |
197 | |
198 pln->super.super.ops = cld->ops; | |
199 pln->super.super.ops.other += 4 * ((pln->n - 1)/2); | |
200 pln->super.super.ops.add += 2 * ((pln->n - 1)/2); | |
201 if (p->kind[0] == R2HC) | |
202 pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); | |
203 if (pln->super.apply == apply_hc2r_save) | |
204 pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); | |
205 | |
206 return &(pln->super.super); | |
207 } | |
208 | |
209 /* constructor */ | |
210 static solver *mksolver(void) | |
211 { | |
212 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
213 S *slv = MKSOLVER(S, &sadt); | |
214 return &(slv->super); | |
215 } | |
216 | |
217 void X(rdft_dht_register)(planner *p) | |
218 { | |
219 REGISTER_SOLVER(p, mksolver()); | |
220 } |