comparison src/fftw-3.3.8/rdft/indirect.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22
23 /* solvers/plans for vectors of small RDFT's that cannot be done
24 in-place directly. Use a rank-0 plan to rearrange the data
25 before or after the transform. Can also change an out-of-place
26 plan into a copy + in-place (where the in-place transform
27 is e.g. unit stride). */
28
29 /* FIXME: merge with rank-geq2.c(?), since this is just a special case
30 of a rank split where the first/second transform has rank 0. */
31
32 #include "rdft/rdft.h"
33
34 typedef problem *(*mkcld_t) (const problem_rdft *p);
35
36 typedef struct {
37 rdftapply apply;
38 problem *(*mkcld)(const problem_rdft *p);
39 const char *nam;
40 } ndrct_adt;
41
42 typedef struct {
43 solver super;
44 const ndrct_adt *adt;
45 } S;
46
47 typedef struct {
48 plan_rdft super;
49 plan *cldcpy, *cld;
50 const S *slv;
51 } P;
52
53 /*-----------------------------------------------------------------------*/
54 /* first rearrange, then transform */
55 static void apply_before(const plan *ego_, R *I, R *O)
56 {
57 const P *ego = (const P *) ego_;
58
59 {
60 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
61 cldcpy->apply(ego->cldcpy, I, O);
62 }
63 {
64 plan_rdft *cld = (plan_rdft *) ego->cld;
65 cld->apply(ego->cld, O, O);
66 }
67 }
68
69 static problem *mkcld_before(const problem_rdft *p)
70 {
71 return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
72 X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
73 p->O, p->O, p->kind);
74 }
75
76 static const ndrct_adt adt_before =
77 {
78 apply_before, mkcld_before, "rdft-indirect-before"
79 };
80
81 /*-----------------------------------------------------------------------*/
82 /* first transform, then rearrange */
83
84 static void apply_after(const plan *ego_, R *I, R *O)
85 {
86 const P *ego = (const P *) ego_;
87
88 {
89 plan_rdft *cld = (plan_rdft *) ego->cld;
90 cld->apply(ego->cld, I, I);
91 }
92 {
93 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
94 cldcpy->apply(ego->cldcpy, I, O);
95 }
96 }
97
98 static problem *mkcld_after(const problem_rdft *p)
99 {
100 return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
101 X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
102 p->I, p->I, p->kind);
103 }
104
105 static const ndrct_adt adt_after =
106 {
107 apply_after, mkcld_after, "rdft-indirect-after"
108 };
109
110 /*-----------------------------------------------------------------------*/
111 static void destroy(plan *ego_)
112 {
113 P *ego = (P *) ego_;
114 X(plan_destroy_internal)(ego->cld);
115 X(plan_destroy_internal)(ego->cldcpy);
116 }
117
118 static void awake(plan *ego_, enum wakefulness wakefulness)
119 {
120 P *ego = (P *) ego_;
121 X(plan_awake)(ego->cldcpy, wakefulness);
122 X(plan_awake)(ego->cld, wakefulness);
123 }
124
125 static void print(const plan *ego_, printer *p)
126 {
127 const P *ego = (const P *) ego_;
128 const S *s = ego->slv;
129 p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
130 }
131
132 static int applicable0(const solver *ego_, const problem *p_,
133 const planner *plnr)
134 {
135 const S *ego = (const S *) ego_;
136 const problem_rdft *p = (const problem_rdft *) p_;
137 return (1
138 && FINITE_RNK(p->vecsz->rnk)
139
140 /* problem must be a nontrivial transform, not just a copy */
141 && p->sz->rnk > 0
142
143 && (0
144
145 /* problem must be in-place & require some
146 rearrangement of the data */
147 || (p->I == p->O
148 && !(X(tensor_inplace_strides2)(p->sz, p->vecsz)))
149
150 /* or problem must be out of place, transforming
151 from stride 1/2 to bigger stride, for apply_after */
152 || (p->I != p->O && ego->adt->apply == apply_after
153 && !NO_DESTROY_INPUTP(plnr)
154 && X(tensor_min_istride)(p->sz) <= 2
155 && X(tensor_min_ostride)(p->sz) > 2)
156
157 /* or problem must be out of place, transforming
158 to stride 1/2 from bigger stride, for apply_before */
159 || (p->I != p->O && ego->adt->apply == apply_before
160 && X(tensor_min_ostride)(p->sz) <= 2
161 && X(tensor_min_istride)(p->sz) > 2)
162
163 )
164 );
165 }
166
167 static int applicable(const solver *ego_, const problem *p_,
168 const planner *plnr)
169 {
170 if (!applicable0(ego_, p_, plnr)) return 0;
171
172 if (NO_INDIRECT_OP_P(plnr)) {
173 const problem_rdft *p = (const problem_rdft *)p_;
174 if (p->I != p->O) return 0;
175 }
176
177 return 1;
178 }
179
180 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
181 {
182 const problem_rdft *p = (const problem_rdft *) p_;
183 const S *ego = (const S *) ego_;
184 P *pln;
185 plan *cld = 0, *cldcpy = 0;
186
187 static const plan_adt padt = {
188 X(rdft_solve), awake, print, destroy
189 };
190
191 if (!applicable(ego_, p_, plnr))
192 return (plan *) 0;
193
194 cldcpy = X(mkplan_d)(plnr,
195 X(mkproblem_rdft_0_d)(
196 X(tensor_append)(p->vecsz, p->sz),
197 p->I, p->O));
198 if (!cldcpy) goto nada;
199
200 cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
201 if (!cld) goto nada;
202
203 pln = MKPLAN_RDFT(P, &padt, ego->adt->apply);
204 pln->cld = cld;
205 pln->cldcpy = cldcpy;
206 pln->slv = ego;
207 X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
208
209 return &(pln->super.super);
210
211 nada:
212 X(plan_destroy_internal)(cld);
213 X(plan_destroy_internal)(cldcpy);
214 return (plan *)0;
215 }
216
217 static solver *mksolver(const ndrct_adt *adt)
218 {
219 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
220 S *slv = MKSOLVER(S, &sadt);
221 slv->adt = adt;
222 return &(slv->super);
223 }
224
225 void X(rdft_indirect_register)(planner *p)
226 {
227 unsigned i;
228 static const ndrct_adt *const adts[] = {
229 &adt_before, &adt_after
230 };
231
232 for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
233 REGISTER_SOLVER(p, mksolver(adts[i]));
234 }