Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/dft-r2hc.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* Compute the complex DFT by combining R2HC RDFTs on the real | |
23 and imaginary parts. This could be useful for people just wanting | |
24 to link to the real codelets and not the complex ones. It could | |
25 also even be faster than the complex algorithms for split (as opposed | |
26 to interleaved) real/imag complex data. */ | |
27 | |
28 #include "rdft/rdft.h" | |
29 #include "dft/dft.h" | |
30 | |
31 typedef struct { | |
32 solver super; | |
33 } S; | |
34 | |
35 typedef struct { | |
36 plan_dft super; | |
37 plan *cld; | |
38 INT ishift, oshift; | |
39 INT os; | |
40 INT n; | |
41 } P; | |
42 | |
43 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
44 { | |
45 const P *ego = (const P *) ego_; | |
46 INT n; | |
47 | |
48 UNUSED(ii); | |
49 | |
50 { /* transform vector of real & imag parts: */ | |
51 plan_rdft *cld = (plan_rdft *) ego->cld; | |
52 cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); | |
53 } | |
54 | |
55 n = ego->n; | |
56 if (n > 1) { | |
57 INT i, os = ego->os; | |
58 for (i = 1; i < (n + 1)/2; ++i) { | |
59 E rop, iop, iom, rom; | |
60 rop = ro[os * i]; | |
61 iop = io[os * i]; | |
62 rom = ro[os * (n - i)]; | |
63 iom = io[os * (n - i)]; | |
64 ro[os * i] = rop - iom; | |
65 io[os * i] = iop + rom; | |
66 ro[os * (n - i)] = rop + iom; | |
67 io[os * (n - i)] = iop - rom; | |
68 } | |
69 } | |
70 } | |
71 | |
72 static void awake(plan *ego_, enum wakefulness wakefulness) | |
73 { | |
74 P *ego = (P *) ego_; | |
75 X(plan_awake)(ego->cld, wakefulness); | |
76 } | |
77 | |
78 static void destroy(plan *ego_) | |
79 { | |
80 P *ego = (P *) ego_; | |
81 X(plan_destroy_internal)(ego->cld); | |
82 } | |
83 | |
84 static void print(const plan *ego_, printer *p) | |
85 { | |
86 const P *ego = (const P *) ego_; | |
87 p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); | |
88 } | |
89 | |
90 | |
91 static int applicable0(const problem *p_) | |
92 { | |
93 const problem_dft *p = (const problem_dft *) p_; | |
94 return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) | |
95 || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) | |
96 ); | |
97 } | |
98 | |
99 static int splitp(R *r, R *i, INT n, INT s) | |
100 { | |
101 return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); | |
102 } | |
103 | |
104 static int applicable(const problem *p_, const planner *plnr) | |
105 { | |
106 if (!applicable0(p_)) return 0; | |
107 | |
108 { | |
109 const problem_dft *p = (const problem_dft *) p_; | |
110 | |
111 /* rank-0 problems are always OK */ | |
112 if (p->sz->rnk == 0) return 1; | |
113 | |
114 /* this solver is ok for split arrays */ | |
115 if (p->sz->rnk == 1 && | |
116 splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && | |
117 splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) | |
118 return 1; | |
119 | |
120 return !(NO_DFT_R2HCP(plnr)); | |
121 } | |
122 } | |
123 | |
124 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
125 { | |
126 P *pln; | |
127 const problem_dft *p; | |
128 plan *cld; | |
129 INT ishift = 0, oshift = 0; | |
130 | |
131 static const plan_adt padt = { | |
132 X(dft_solve), awake, print, destroy | |
133 }; | |
134 | |
135 UNUSED(ego_); | |
136 if (!applicable(p_, plnr)) | |
137 return (plan *)0; | |
138 | |
139 p = (const problem_dft *) p_; | |
140 | |
141 { | |
142 tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); | |
143 tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); | |
144 int i; | |
145 for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ | |
146 if (cld_vec->dims[i].is < 0) { | |
147 INT nm1 = cld_vec->dims[i].n - 1; | |
148 ishift -= nm1 * (cld_vec->dims[i].is *= -1); | |
149 oshift -= nm1 * (cld_vec->dims[i].os *= -1); | |
150 } | |
151 } | |
152 cld = X(mkplan_d)(plnr, | |
153 X(mkproblem_rdft_1)(p->sz, cld_vec, | |
154 p->ri + ishift, | |
155 p->ro + oshift, R2HC)); | |
156 X(tensor_destroy2)(ri_vec, cld_vec); | |
157 } | |
158 if (!cld) return (plan *)0; | |
159 | |
160 pln = MKPLAN_DFT(P, &padt, apply); | |
161 | |
162 if (p->sz->rnk == 0) { | |
163 pln->n = 1; | |
164 pln->os = 0; | |
165 } | |
166 else { | |
167 pln->n = p->sz->dims[0].n; | |
168 pln->os = p->sz->dims[0].os; | |
169 } | |
170 pln->ishift = ishift; | |
171 pln->oshift = oshift; | |
172 | |
173 pln->cld = cld; | |
174 | |
175 pln->super.super.ops = cld->ops; | |
176 pln->super.super.ops.other += 8 * ((pln->n - 1)/2); | |
177 pln->super.super.ops.add += 4 * ((pln->n - 1)/2); | |
178 pln->super.super.ops.other += 1; /* estimator hack for nop plans */ | |
179 | |
180 return &(pln->super.super); | |
181 } | |
182 | |
183 /* constructor */ | |
184 static solver *mksolver(void) | |
185 { | |
186 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | |
187 S *slv = MKSOLVER(S, &sadt); | |
188 return &(slv->super); | |
189 } | |
190 | |
191 void X(dft_r2hc_register)(planner *p) | |
192 { | |
193 REGISTER_SOLVER(p, mksolver()); | |
194 } |