Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/ct-hc2c-direct.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 #include "ct-hc2c.h" | |
23 | |
24 typedef struct { | |
25 hc2c_solver super; | |
26 const hc2c_desc *desc; | |
27 int bufferedp; | |
28 khc2c k; | |
29 } S; | |
30 | |
31 typedef struct { | |
32 plan_hc2c super; | |
33 khc2c k; | |
34 plan *cld0, *cldm; /* children for 0th and middle butterflies */ | |
35 INT r, m, v, extra_iter; | |
36 INT ms, vs; | |
37 stride rs, brs; | |
38 twid *td; | |
39 const S *slv; | |
40 } P; | |
41 | |
42 /************************************************************* | |
43 Nonbuffered code | |
44 *************************************************************/ | |
45 static void apply(const plan *ego_, R *cr, R *ci) | |
46 { | |
47 const P *ego = (const P *) ego_; | |
48 plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; | |
49 plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; | |
50 INT i, m = ego->m, v = ego->v; | |
51 INT ms = ego->ms, vs = ego->vs; | |
52 | |
53 for (i = 0; i < v; ++i, cr += vs, ci += vs) { | |
54 cld0->apply((plan *) cld0, cr, ci, cr, ci); | |
55 ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
56 ego->td->W, ego->rs, 1, (m+1)/2, ms); | |
57 cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, | |
58 cr + (m/2)*ms, ci + (m/2)*ms); | |
59 } | |
60 } | |
61 | |
62 static void apply_extra_iter(const plan *ego_, R *cr, R *ci) | |
63 { | |
64 const P *ego = (const P *) ego_; | |
65 plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; | |
66 plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; | |
67 INT i, m = ego->m, v = ego->v; | |
68 INT ms = ego->ms, vs = ego->vs; | |
69 INT mm = (m-1)/2; | |
70 | |
71 for (i = 0; i < v; ++i, cr += vs, ci += vs) { | |
72 cld0->apply((plan *) cld0, cr, ci, cr, ci); | |
73 | |
74 /* for 4-way SIMD when (m+1)/2-1 is odd: iterate over an | |
75 even vector length MM-1, and then execute the last | |
76 iteration as a 2-vector with vector stride 0. The | |
77 twiddle factors of the second half of the last iteration | |
78 are bogus, but we only store the results of the first | |
79 half. */ | |
80 ego->k(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
81 ego->td->W, ego->rs, 1, mm, ms); | |
82 ego->k(cr + mm*ms, ci + mm*ms, cr + (m-mm)*ms, ci + (m-mm)*ms, | |
83 ego->td->W, ego->rs, mm, mm+2, 0); | |
84 cldm->apply((plan *) cldm, cr + (m/2)*ms, ci + (m/2)*ms, | |
85 cr + (m/2)*ms, ci + (m/2)*ms); | |
86 } | |
87 | |
88 } | |
89 | |
90 /************************************************************* | |
91 Buffered code | |
92 *************************************************************/ | |
93 | |
94 /* should not be 2^k to avoid associativity conflicts */ | |
95 static INT compute_batchsize(INT radix) | |
96 { | |
97 /* round up to multiple of 4 */ | |
98 radix += 3; | |
99 radix &= -4; | |
100 | |
101 return (radix + 2); | |
102 } | |
103 | |
104 static void dobatch(const P *ego, R *Rp, R *Ip, R *Rm, R *Im, | |
105 INT mb, INT me, INT extra_iter, R *bufp) | |
106 { | |
107 INT b = WS(ego->brs, 1); | |
108 INT rs = WS(ego->rs, 1); | |
109 INT ms = ego->ms; | |
110 R *bufm = bufp + b - 2; | |
111 INT n = me - mb; | |
112 | |
113 X(cpy2d_pair_ci)(Rp + mb * ms, Ip + mb * ms, bufp, bufp + 1, | |
114 ego->r / 2, rs, b, | |
115 n, ms, 2); | |
116 X(cpy2d_pair_ci)(Rm - mb * ms, Im - mb * ms, bufm, bufm + 1, | |
117 ego->r / 2, rs, b, | |
118 n, -ms, -2); | |
119 | |
120 if (extra_iter) { | |
121 /* initialize the extra_iter element to 0. It would be ok | |
122 to leave it uninitialized, since we transform uninitialized | |
123 data and ignore the result. However, we want to avoid | |
124 FP exceptions in case somebody is trapping them. */ | |
125 A(n < compute_batchsize(ego->r)); | |
126 X(zero1d_pair)(bufp + 2*n, bufp + 1 + 2*n, ego->r / 2, b); | |
127 X(zero1d_pair)(bufm - 2*n, bufm + 1 - 2*n, ego->r / 2, b); | |
128 } | |
129 | |
130 ego->k(bufp, bufp + 1, bufm, bufm + 1, ego->td->W, | |
131 ego->brs, mb, me + extra_iter, 2); | |
132 X(cpy2d_pair_co)(bufp, bufp + 1, Rp + mb * ms, Ip + mb * ms, | |
133 ego->r / 2, b, rs, | |
134 n, 2, ms); | |
135 X(cpy2d_pair_co)(bufm, bufm + 1, Rm - mb * ms, Im - mb * ms, | |
136 ego->r / 2, b, rs, | |
137 n, -2, -ms); | |
138 } | |
139 | |
140 static void apply_buf(const plan *ego_, R *cr, R *ci) | |
141 { | |
142 const P *ego = (const P *) ego_; | |
143 plan_rdft2 *cld0 = (plan_rdft2 *) ego->cld0; | |
144 plan_rdft2 *cldm = (plan_rdft2 *) ego->cldm; | |
145 INT i, j, ms = ego->ms, v = ego->v; | |
146 INT batchsz = compute_batchsize(ego->r); | |
147 R *buf; | |
148 INT mb = 1, me = (ego->m+1) / 2; | |
149 size_t bufsz = ego->r * batchsz * 2 * sizeof(R); | |
150 | |
151 BUF_ALLOC(R *, buf, bufsz); | |
152 | |
153 for (i = 0; i < v; ++i, cr += ego->vs, ci += ego->vs) { | |
154 R *Rp = cr; | |
155 R *Ip = ci; | |
156 R *Rm = cr + ego->m * ms; | |
157 R *Im = ci + ego->m * ms; | |
158 | |
159 cld0->apply((plan *) cld0, Rp, Ip, Rp, Ip); | |
160 | |
161 for (j = mb; j + batchsz < me; j += batchsz) | |
162 dobatch(ego, Rp, Ip, Rm, Im, j, j + batchsz, 0, buf); | |
163 | |
164 dobatch(ego, Rp, Ip, Rm, Im, j, me, ego->extra_iter, buf); | |
165 | |
166 cldm->apply((plan *) cldm, | |
167 Rp + me * ms, Ip + me * ms, | |
168 Rp + me * ms, Ip + me * ms); | |
169 | |
170 } | |
171 | |
172 BUF_FREE(buf, bufsz); | |
173 } | |
174 | |
175 /************************************************************* | |
176 common code | |
177 *************************************************************/ | |
178 static void awake(plan *ego_, enum wakefulness wakefulness) | |
179 { | |
180 P *ego = (P *) ego_; | |
181 | |
182 X(plan_awake)(ego->cld0, wakefulness); | |
183 X(plan_awake)(ego->cldm, wakefulness); | |
184 X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw, | |
185 ego->r * ego->m, ego->r, | |
186 (ego->m - 1) / 2 + ego->extra_iter); | |
187 } | |
188 | |
189 static void destroy(plan *ego_) | |
190 { | |
191 P *ego = (P *) ego_; | |
192 X(plan_destroy_internal)(ego->cld0); | |
193 X(plan_destroy_internal)(ego->cldm); | |
194 X(stride_destroy)(ego->rs); | |
195 X(stride_destroy)(ego->brs); | |
196 } | |
197 | |
198 static void print(const plan *ego_, printer *p) | |
199 { | |
200 const P *ego = (const P *) ego_; | |
201 const S *slv = ego->slv; | |
202 const hc2c_desc *e = slv->desc; | |
203 | |
204 if (slv->bufferedp) | |
205 p->print(p, "(hc2c-directbuf/%D-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", | |
206 compute_batchsize(ego->r), | |
207 ego->r, X(twiddle_length)(ego->r, e->tw), | |
208 ego->extra_iter, ego->v, e->nam, | |
209 ego->cld0, ego->cldm); | |
210 else | |
211 p->print(p, "(hc2c-direct-%D/%D/%D%v \"%s\"%(%p%)%(%p%))", | |
212 ego->r, X(twiddle_length)(ego->r, e->tw), | |
213 ego->extra_iter, ego->v, e->nam, | |
214 ego->cld0, ego->cldm); | |
215 } | |
216 | |
217 static int applicable0(const S *ego, rdft_kind kind, | |
218 INT r, INT rs, | |
219 INT m, INT ms, | |
220 INT v, INT vs, | |
221 const R *cr, const R *ci, | |
222 const planner *plnr, | |
223 INT *extra_iter) | |
224 { | |
225 const hc2c_desc *e = ego->desc; | |
226 UNUSED(v); | |
227 | |
228 return ( | |
229 1 | |
230 && r == e->radix | |
231 && kind == e->genus->kind | |
232 | |
233 /* first v-loop iteration */ | |
234 && ((*extra_iter = 0, | |
235 e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
236 rs, 1, (m+1)/2, ms, plnr)) | |
237 || | |
238 (*extra_iter = 1, | |
239 ((e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
240 rs, 1, (m-1)/2, ms, plnr)) | |
241 && | |
242 (e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
243 rs, (m-1)/2, (m-1)/2 + 2, 0, plnr))))) | |
244 | |
245 /* subsequent v-loop iterations */ | |
246 && (cr += vs, ci += vs, 1) | |
247 | |
248 && e->genus->okp(cr + ms, ci + ms, cr + (m-1)*ms, ci + (m-1)*ms, | |
249 rs, 1, (m+1)/2 - *extra_iter, ms, plnr) | |
250 ); | |
251 } | |
252 | |
253 static int applicable0_buf(const S *ego, rdft_kind kind, | |
254 INT r, INT rs, | |
255 INT m, INT ms, | |
256 INT v, INT vs, | |
257 const R *cr, const R *ci, | |
258 const planner *plnr, INT *extra_iter) | |
259 { | |
260 const hc2c_desc *e = ego->desc; | |
261 INT batchsz, brs; | |
262 UNUSED(v); UNUSED(rs); UNUSED(ms); UNUSED(vs); | |
263 | |
264 return ( | |
265 1 | |
266 && r == e->radix | |
267 && kind == e->genus->kind | |
268 | |
269 /* ignore cr, ci, use buffer */ | |
270 && (cr = (const R *)0, ci = cr + 1, | |
271 batchsz = compute_batchsize(r), | |
272 brs = 4 * batchsz, 1) | |
273 | |
274 && e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, | |
275 brs, 1, 1+batchsz, 2, plnr) | |
276 | |
277 && ((*extra_iter = 0, | |
278 e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, | |
279 brs, 1, 1 + (((m-1)/2) % batchsz), 2, plnr)) | |
280 || | |
281 (*extra_iter = 1, | |
282 e->genus->okp(cr, ci, cr + brs - 2, ci + brs - 2, | |
283 brs, 1, 1 + 1 + (((m-1)/2) % batchsz), 2, plnr))) | |
284 | |
285 ); | |
286 } | |
287 | |
288 static int applicable(const S *ego, rdft_kind kind, | |
289 INT r, INT rs, | |
290 INT m, INT ms, | |
291 INT v, INT vs, | |
292 R *cr, R *ci, | |
293 const planner *plnr, INT *extra_iter) | |
294 { | |
295 if (ego->bufferedp) { | |
296 if (!applicable0_buf(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, | |
297 extra_iter)) | |
298 return 0; | |
299 } else { | |
300 if (!applicable0(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, | |
301 extra_iter)) | |
302 return 0; | |
303 } | |
304 | |
305 if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16), | |
306 v, m * r, r)) | |
307 return 0; | |
308 | |
309 return 1; | |
310 } | |
311 | |
312 static plan *mkcldw(const hc2c_solver *ego_, rdft_kind kind, | |
313 INT r, INT rs, | |
314 INT m, INT ms, | |
315 INT v, INT vs, | |
316 R *cr, R *ci, | |
317 planner *plnr) | |
318 { | |
319 const S *ego = (const S *) ego_; | |
320 P *pln; | |
321 const hc2c_desc *e = ego->desc; | |
322 plan *cld0 = 0, *cldm = 0; | |
323 INT imid = (m / 2) * ms; | |
324 INT extra_iter; | |
325 | |
326 static const plan_adt padt = { | |
327 0, awake, print, destroy | |
328 }; | |
329 | |
330 if (!applicable(ego, kind, r, rs, m, ms, v, vs, cr, ci, plnr, | |
331 &extra_iter)) | |
332 return (plan *)0; | |
333 | |
334 cld0 = X(mkplan_d)( | |
335 plnr, | |
336 X(mkproblem_rdft2_d)(X(mktensor_1d)(r, rs, rs), | |
337 X(mktensor_0d)(), | |
338 TAINT(cr, vs), TAINT(ci, vs), | |
339 TAINT(cr, vs), TAINT(ci, vs), | |
340 kind)); | |
341 if (!cld0) goto nada; | |
342 | |
343 cldm = X(mkplan_d)( | |
344 plnr, | |
345 X(mkproblem_rdft2_d)(((m % 2) ? | |
346 X(mktensor_0d)() : X(mktensor_1d)(r, rs, rs) ), | |
347 X(mktensor_0d)(), | |
348 TAINT(cr + imid, vs), TAINT(ci + imid, vs), | |
349 TAINT(cr + imid, vs), TAINT(ci + imid, vs), | |
350 kind == R2HC ? R2HCII : HC2RIII)); | |
351 if (!cldm) goto nada; | |
352 | |
353 if (ego->bufferedp) | |
354 pln = MKPLAN_HC2C(P, &padt, apply_buf); | |
355 else | |
356 pln = MKPLAN_HC2C(P, &padt, extra_iter ? apply_extra_iter : apply); | |
357 | |
358 pln->k = ego->k; | |
359 pln->td = 0; | |
360 pln->r = r; pln->rs = X(mkstride)(r, rs); | |
361 pln->m = m; pln->ms = ms; | |
362 pln->v = v; pln->vs = vs; | |
363 pln->slv = ego; | |
364 pln->brs = X(mkstride)(r, 4 * compute_batchsize(r)); | |
365 pln->cld0 = cld0; | |
366 pln->cldm = cldm; | |
367 pln->extra_iter = extra_iter; | |
368 | |
369 X(ops_zero)(&pln->super.super.ops); | |
370 X(ops_madd2)(v * (((m - 1) / 2) / e->genus->vl), | |
371 &e->ops, &pln->super.super.ops); | |
372 X(ops_madd2)(v, &cld0->ops, &pln->super.super.ops); | |
373 X(ops_madd2)(v, &cldm->ops, &pln->super.super.ops); | |
374 | |
375 if (ego->bufferedp) | |
376 pln->super.super.ops.other += 4 * r * m * v; | |
377 | |
378 return &(pln->super.super); | |
379 | |
380 nada: | |
381 X(plan_destroy_internal)(cld0); | |
382 X(plan_destroy_internal)(cldm); | |
383 return 0; | |
384 } | |
385 | |
386 static void regone(planner *plnr, khc2c codelet, | |
387 const hc2c_desc *desc, | |
388 hc2c_kind hc2ckind, | |
389 int bufferedp) | |
390 { | |
391 S *slv = (S *)X(mksolver_hc2c)(sizeof(S), desc->radix, hc2ckind, mkcldw); | |
392 slv->k = codelet; | |
393 slv->desc = desc; | |
394 slv->bufferedp = bufferedp; | |
395 REGISTER_SOLVER(plnr, &(slv->super.super)); | |
396 } | |
397 | |
398 void X(regsolver_hc2c_direct)(planner *plnr, khc2c codelet, | |
399 const hc2c_desc *desc, | |
400 hc2c_kind hc2ckind) | |
401 { | |
402 regone(plnr, codelet, desc, hc2ckind, /* bufferedp */0); | |
403 regone(plnr, codelet, desc, hc2ckind, /* bufferedp */1); | |
404 } |