Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/buffered2.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* buffering of rdft2. We always buffer the complex array */ | |
23 | |
24 #include "rdft/rdft.h" | |
25 #include "dft/dft.h" | |
26 | |
27 typedef struct { | |
28 solver super; | |
29 size_t maxnbuf_ndx; | |
30 } S; | |
31 | |
32 static const INT maxnbufs[] = { 8, 256 }; | |
33 | |
34 typedef struct { | |
35 plan_rdft2 super; | |
36 | |
37 plan *cld, *cldcpy, *cldrest; | |
38 INT n, vl, nbuf, bufdist; | |
39 INT ivs_by_nbuf, ovs_by_nbuf; | |
40 INT ioffset, roffset; | |
41 } P; | |
42 | |
43 /* transform a vector input with the help of bufs */ | |
44 static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) | |
45 { | |
46 const P *ego = (const P *) ego_; | |
47 plan_rdft2 *cld = (plan_rdft2 *) ego->cld; | |
48 plan_dft *cldcpy = (plan_dft *) ego->cldcpy; | |
49 INT i, vl = ego->vl, nbuf = ego->nbuf; | |
50 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; | |
51 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS); | |
52 R *bufr = bufs + ego->roffset; | |
53 R *bufi = bufs + ego->ioffset; | |
54 plan_rdft2 *cldrest; | |
55 | |
56 for (i = nbuf; i <= vl; i += nbuf) { | |
57 /* transform to bufs: */ | |
58 cld->apply((plan *) cld, r0, r1, bufr, bufi); | |
59 r0 += ivs_by_nbuf; r1 += ivs_by_nbuf; | |
60 | |
61 /* copy back */ | |
62 cldcpy->apply((plan *) cldcpy, bufr, bufi, cr, ci); | |
63 cr += ovs_by_nbuf; ci += ovs_by_nbuf; | |
64 } | |
65 | |
66 X(ifree)(bufs); | |
67 | |
68 /* Do the remaining transforms, if any: */ | |
69 cldrest = (plan_rdft2 *) ego->cldrest; | |
70 cldrest->apply((plan *) cldrest, r0, r1, cr, ci); | |
71 } | |
72 | |
73 /* for hc2r problems, copy the input into buffer, and then | |
74 transform buffer->output, which allows for destruction of the | |
75 buffer */ | |
76 static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) | |
77 { | |
78 const P *ego = (const P *) ego_; | |
79 plan_rdft2 *cld = (plan_rdft2 *) ego->cld; | |
80 plan_dft *cldcpy = (plan_dft *) ego->cldcpy; | |
81 INT i, vl = ego->vl, nbuf = ego->nbuf; | |
82 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf; | |
83 R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS); | |
84 R *bufr = bufs + ego->roffset; | |
85 R *bufi = bufs + ego->ioffset; | |
86 plan_rdft2 *cldrest; | |
87 | |
88 for (i = nbuf; i <= vl; i += nbuf) { | |
89 /* copy input into bufs: */ | |
90 cldcpy->apply((plan *) cldcpy, cr, ci, bufr, bufi); | |
91 cr += ivs_by_nbuf; ci += ivs_by_nbuf; | |
92 | |
93 /* transform to output */ | |
94 cld->apply((plan *) cld, r0, r1, bufr, bufi); | |
95 r0 += ovs_by_nbuf; r1 += ovs_by_nbuf; | |
96 } | |
97 | |
98 X(ifree)(bufs); | |
99 | |
100 /* Do the remaining transforms, if any: */ | |
101 cldrest = (plan_rdft2 *) ego->cldrest; | |
102 cldrest->apply((plan *) cldrest, r0, r1, cr, ci); | |
103 } | |
104 | |
105 | |
106 static void awake(plan *ego_, enum wakefulness wakefulness) | |
107 { | |
108 P *ego = (P *) ego_; | |
109 | |
110 X(plan_awake)(ego->cld, wakefulness); | |
111 X(plan_awake)(ego->cldcpy, wakefulness); | |
112 X(plan_awake)(ego->cldrest, wakefulness); | |
113 } | |
114 | |
115 static void destroy(plan *ego_) | |
116 { | |
117 P *ego = (P *) ego_; | |
118 X(plan_destroy_internal)(ego->cldrest); | |
119 X(plan_destroy_internal)(ego->cldcpy); | |
120 X(plan_destroy_internal)(ego->cld); | |
121 } | |
122 | |
123 static void print(const plan *ego_, printer *p) | |
124 { | |
125 const P *ego = (const P *) ego_; | |
126 p->print(p, "(rdft2-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))", | |
127 ego->n, ego->nbuf, | |
128 ego->vl, ego->bufdist % ego->n, | |
129 ego->cld, ego->cldcpy, ego->cldrest); | |
130 } | |
131 | |
132 static int applicable0(const S *ego, const problem *p_, const planner *plnr) | |
133 { | |
134 const problem_rdft2 *p = (const problem_rdft2 *) p_; | |
135 iodim *d = p->sz->dims; | |
136 | |
137 if (1 | |
138 && p->vecsz->rnk <= 1 | |
139 && p->sz->rnk == 1 | |
140 | |
141 /* we assume even n throughout */ | |
142 && (d[0].n % 2) == 0 | |
143 | |
144 /* and we only consider these two cases */ | |
145 && (p->kind == R2HC || p->kind == HC2R) | |
146 | |
147 ) { | |
148 INT vl, ivs, ovs; | |
149 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); | |
150 | |
151 if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr)) | |
152 return 0; | |
153 | |
154 /* if this solver is redundant, in the sense that a solver | |
155 of lower index generates the same plan, then prune this | |
156 solver */ | |
157 if (X(nbuf_redundant)(d[0].n, vl, | |
158 ego->maxnbuf_ndx, | |
159 maxnbufs, NELEM(maxnbufs))) | |
160 return 0; | |
161 | |
162 if (p->r0 != p->cr) { | |
163 if (p->kind == HC2R) { | |
164 /* Allow HC2R problems only if the input is to be | |
165 preserved. This solver sets NO_DESTROY_INPUT, | |
166 which prevents infinite loops */ | |
167 return (NO_DESTROY_INPUTP(plnr)); | |
168 } else { | |
169 /* | |
170 In principle, the buffered transforms might be useful | |
171 when working out of place. However, in order to | |
172 prevent infinite loops in the planner, we require | |
173 that the output stride of the buffered transforms be | |
174 greater than 2. | |
175 */ | |
176 return (d[0].os > 2); | |
177 } | |
178 } | |
179 | |
180 /* | |
181 * If the problem is in place, the input/output strides must | |
182 * be the same or the whole thing must fit in the buffer. | |
183 */ | |
184 if (X(rdft2_inplace_strides(p, RNK_MINFTY))) | |
185 return 1; | |
186 | |
187 if (/* fits into buffer: */ | |
188 ((p->vecsz->rnk == 0) | |
189 || | |
190 (X(nbuf)(d[0].n, p->vecsz->dims[0].n, | |
191 maxnbufs[ego->maxnbuf_ndx]) | |
192 == p->vecsz->dims[0].n))) | |
193 return 1; | |
194 } | |
195 | |
196 return 0; | |
197 } | |
198 | |
199 static int applicable(const S *ego, const problem *p_, const planner *plnr) | |
200 { | |
201 const problem_rdft2 *p; | |
202 | |
203 if (NO_BUFFERINGP(plnr)) return 0; | |
204 | |
205 if (!applicable0(ego, p_, plnr)) return 0; | |
206 | |
207 p = (const problem_rdft2 *) p_; | |
208 if (p->kind == HC2R) { | |
209 if (NO_UGLYP(plnr)) { | |
210 /* UGLY if in-place and too big, since the problem | |
211 could be solved via transpositions */ | |
212 if (p->r0 == p->cr && X(toobig)(p->sz->dims[0].n)) | |
213 return 0; | |
214 } | |
215 } else { | |
216 if (NO_UGLYP(plnr)) { | |
217 if (p->r0 != p->cr || X(toobig)(p->sz->dims[0].n)) | |
218 return 0; | |
219 } | |
220 } | |
221 return 1; | |
222 } | |
223 | |
224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
225 { | |
226 P *pln; | |
227 const S *ego = (const S *)ego_; | |
228 plan *cld = (plan *) 0; | |
229 plan *cldcpy = (plan *) 0; | |
230 plan *cldrest = (plan *) 0; | |
231 const problem_rdft2 *p = (const problem_rdft2 *) p_; | |
232 R *bufs = (R *) 0; | |
233 INT nbuf = 0, bufdist, n, vl; | |
234 INT ivs, ovs, ioffset, roffset, id, od; | |
235 | |
236 static const plan_adt padt = { | |
237 X(rdft2_solve), awake, print, destroy | |
238 }; | |
239 | |
240 if (!applicable(ego, p_, plnr)) | |
241 goto nada; | |
242 | |
243 n = X(tensor_sz)(p->sz); | |
244 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); | |
245 | |
246 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]); | |
247 bufdist = X(bufdist)(n + 2, vl); /* complex-side rdft2 stores N+2 | |
248 real numbers */ | |
249 A(nbuf > 0); | |
250 | |
251 /* attempt to keep real and imaginary part in the same order, | |
252 so as to allow optimizations in the the copy plan */ | |
253 roffset = (p->cr - p->ci > 0) ? (INT)1 : (INT)0; | |
254 ioffset = 1 - roffset; | |
255 | |
256 /* initial allocation for the purpose of planning */ | |
257 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); | |
258 | |
259 id = ivs * (nbuf * (vl / nbuf)); | |
260 od = ovs * (nbuf * (vl / nbuf)); | |
261 | |
262 if (p->kind == R2HC) { | |
263 /* allow destruction of input if problem is in place */ | |
264 cld = X(mkplan_f_d)( | |
265 plnr, | |
266 X(mkproblem_rdft2_d)( | |
267 X(mktensor_1d)(n, p->sz->dims[0].is, 2), | |
268 X(mktensor_1d)(nbuf, ivs, bufdist), | |
269 TAINT(p->r0, ivs * nbuf), TAINT(p->r1, ivs * nbuf), | |
270 bufs + roffset, bufs + ioffset, p->kind), | |
271 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); | |
272 if (!cld) goto nada; | |
273 | |
274 /* copying back from the buffer is a rank-0 DFT: */ | |
275 cldcpy = X(mkplan_d)( | |
276 plnr, | |
277 X(mkproblem_dft_d)( | |
278 X(mktensor_0d)(), | |
279 X(mktensor_2d)(nbuf, bufdist, ovs, | |
280 n/2+1, 2, p->sz->dims[0].os), | |
281 bufs + roffset, bufs + ioffset, | |
282 TAINT(p->cr, ovs * nbuf), TAINT(p->ci, ovs * nbuf) )); | |
283 if (!cldcpy) goto nada; | |
284 | |
285 X(ifree)(bufs); bufs = 0; | |
286 | |
287 cldrest = X(mkplan_d)(plnr, | |
288 X(mkproblem_rdft2_d)( | |
289 X(tensor_copy)(p->sz), | |
290 X(mktensor_1d)(vl % nbuf, ivs, ovs), | |
291 p->r0 + id, p->r1 + id, | |
292 p->cr + od, p->ci + od, | |
293 p->kind)); | |
294 if (!cldrest) goto nada; | |
295 pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); | |
296 } else { | |
297 /* allow destruction of buffer */ | |
298 cld = X(mkplan_f_d)( | |
299 plnr, | |
300 X(mkproblem_rdft2_d)( | |
301 X(mktensor_1d)(n, 2, p->sz->dims[0].os), | |
302 X(mktensor_1d)(nbuf, bufdist, ovs), | |
303 TAINT(p->r0, ovs * nbuf), TAINT(p->r1, ovs * nbuf), | |
304 bufs + roffset, bufs + ioffset, p->kind), | |
305 0, 0, NO_DESTROY_INPUT); | |
306 if (!cld) goto nada; | |
307 | |
308 /* copying input into buffer is a rank-0 DFT: */ | |
309 cldcpy = X(mkplan_d)( | |
310 plnr, | |
311 X(mkproblem_dft_d)( | |
312 X(mktensor_0d)(), | |
313 X(mktensor_2d)(nbuf, ivs, bufdist, | |
314 n/2+1, p->sz->dims[0].is, 2), | |
315 TAINT(p->cr, ivs * nbuf), TAINT(p->ci, ivs * nbuf), | |
316 bufs + roffset, bufs + ioffset)); | |
317 if (!cldcpy) goto nada; | |
318 | |
319 X(ifree)(bufs); bufs = 0; | |
320 | |
321 cldrest = X(mkplan_d)(plnr, | |
322 X(mkproblem_rdft2_d)( | |
323 X(tensor_copy)(p->sz), | |
324 X(mktensor_1d)(vl % nbuf, ivs, ovs), | |
325 p->r0 + od, p->r1 + od, | |
326 p->cr + id, p->ci + id, | |
327 p->kind)); | |
328 if (!cldrest) goto nada; | |
329 | |
330 pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); | |
331 } | |
332 | |
333 pln->cld = cld; | |
334 pln->cldcpy = cldcpy; | |
335 pln->cldrest = cldrest; | |
336 pln->n = n; | |
337 pln->vl = vl; | |
338 pln->ivs_by_nbuf = ivs * nbuf; | |
339 pln->ovs_by_nbuf = ovs * nbuf; | |
340 pln->roffset = roffset; | |
341 pln->ioffset = ioffset; | |
342 | |
343 pln->nbuf = nbuf; | |
344 pln->bufdist = bufdist; | |
345 | |
346 { | |
347 opcnt t; | |
348 X(ops_add)(&cld->ops, &cldcpy->ops, &t); | |
349 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops); | |
350 } | |
351 | |
352 return &(pln->super.super); | |
353 | |
354 nada: | |
355 X(ifree0)(bufs); | |
356 X(plan_destroy_internal)(cldrest); | |
357 X(plan_destroy_internal)(cldcpy); | |
358 X(plan_destroy_internal)(cld); | |
359 return (plan *) 0; | |
360 } | |
361 | |
362 static solver *mksolver(size_t maxnbuf_ndx) | |
363 { | |
364 static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; | |
365 S *slv = MKSOLVER(S, &sadt); | |
366 slv->maxnbuf_ndx = maxnbuf_ndx; | |
367 return &(slv->super); | |
368 } | |
369 | |
370 void X(rdft2_buffered_register)(planner *p) | |
371 { | |
372 size_t i; | |
373 for (i = 0; i < NELEM(maxnbufs); ++i) | |
374 REGISTER_SOLVER(p, mksolver(i)); | |
375 } |